The document summarizes the Batch Normalization technique presented in the paper "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". Batch Normalization aims to address the issue of internal covariate shift in deep neural networks by normalizing layer inputs to have zero mean and unit variance. It works by computing normalization statistics for each mini-batch and applying them to the inputs. This helps in faster and more stable training of deep networks by reducing the distribution shift across layers. The paper presented ablation studies on MNIST and ImageNet datasets showing Batch Normalization improves training speed and accuracy compared to prior techniques.