Housekeeping
o  The recording and slides for today’s presentation will be
made available within the next 48 hours.
o  Please use the chat window to submit questions
throughout the webinar. We will have time designated at
the end for Q&A.
o  Join the conversation on Twitter by tweeting @Qualtrics
using #visualdata
o  Qualtrics & Tableau Partnership
o  What is Visual Analytics?
o  Human Perception and Cognition
o  The Cycle of Visual Analysis
o  Visualization Best Practices
o  Q&A
Today’s Agenda
Webinar Speakers
Sasha Pasulka
Director, Product Marketing
Shane Evans
Director, Strategic Alliances & Partnerships
o  Innovation Exchange
o  Why Tableau?
o  Qualtrics + Tableau = Better Together
Qualtrics Ecosystem
Visual Analytics Best Practices
Sasha Pasulka
Director, Product Marketing
spasulka@tableau.com
What isVisual Analytics?
“Visual analytics is the representation and
presentation of data that exploits our
visual perception abilities in order to
amplify cognition.”
- Andy Kirk, author of “DataVisualization:
a successful design process”
Let’s Look at Some Data
I II III IV
x y x y x y x y
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5
12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89
I II III IV
x y x y x y x y
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5
12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89
Let’s Look at Some Data
Property Value
Mean of x in each case	
   9 (exact)
Variance of x in each case	
   11 (exact)
Mean of y in each case 7.50 (to 2 decimal places)
Variance of y in each case 4.122 or 4.127 (to 3 decimal places)
Correlation between x and y i
n each case	
  
0.816 (to 3 decimal places)
Linear regression line in each
case	
  
y = 3.00 + 0.500x (to 2 and 3 decimal
places, respectively)
Let’s Look at Some Data …Visually
“Anscombe’s Quartet”
Source:Wikipedia
Human Perception &
Cognition
We’re Faster When We Can “See” Data
We’re Faster When We Can “See” Data
We’re Faster When We Can “See” Data
PreattentiveVisual Attributes
Visual Interruptions Make People Slow
Visualization Best
Practices
Best Practices Overview
1.  Representing data for humans
2.  Color
3.  Maps
4.  Creating dashboards
Types of Data
•  Qualitative (nominal)
•  Arizona, NewYork,Texas
•  Sarah, John, Maria
•  Coors, Bud Light, Stella Artois
•  Qualitative (ordinal)
•  Gold, silver, bronze
•  Excellent health, good health, poor health
•  Love it, like it, hate it
•  Quantitative
•  Weight (10 lbs, 20 lbs, 5000 lbs)
•  Cost ($50, $100, $0.05)
•  Discount (5%, 10%, 12.8%)
How Do Humans Like Their Data?
How Do Humans Like Their Data?
Position
Color
Size
Shape
More
important
Less
important
How Do Humans Like Their Data?
•  Time: on an x-axis
•  Location: on a map
•  Comparing values: bar
chart
•  Exploring relationships:
scatter plot
•  Relative proportions:
treemap
How Do Humans Like Their Data?
Orient data so people can read it easily
Better
Good
Color Me Impressed
Color perception is relative, not absolute
Color Me Impressed
Provide a consistent background
Color Me Impressed
Humans can only distinguish ~8 colors
Color Me Impressed
Humans can only distinguish ~8 colors
Color Me Impressed
For quantitative data, color intensity and
diverging color palettes work well
Mapping to Insight
Use maps when location is relevant
“Where do forest fires occur?”
Mapping to Insight
Don’t use maps just because you can
Mapping to Insight
Use filled maps (“choropleths”) for defined
areas and only ONE measure
Mapping to Insight
Filled maps won’t work for multiple measures
Mapping to Insight
Maps don’t have to be geographic
Mapping to Insight
Maps don’t have to be geographic
Dashboards
Dashboards bring together multiple views
Dashboards
Dashboards should pass the 5-second test
Dashboarding for the 5-second Test
•  Most important view
goes on top or top-left
•  Legends go near their
views
•  Avoid using multiple
color schemes on a single
dashboard
•  Use 5 views or fewer in
dashboards
•  Provide interactivity
UseYour Words!
•  Titles
•  Axes
•  Key facts and figures
•  Units
•  Remove extra digits in
numbers
Questions?
Thank you.

Best Practices for Killer Data Visualization

  • 2.
    Housekeeping o  The recordingand slides for today’s presentation will be made available within the next 48 hours. o  Please use the chat window to submit questions throughout the webinar. We will have time designated at the end for Q&A. o  Join the conversation on Twitter by tweeting @Qualtrics using #visualdata
  • 3.
    o  Qualtrics &Tableau Partnership o  What is Visual Analytics? o  Human Perception and Cognition o  The Cycle of Visual Analysis o  Visualization Best Practices o  Q&A Today’s Agenda
  • 4.
    Webinar Speakers Sasha Pasulka Director,Product Marketing Shane Evans Director, Strategic Alliances & Partnerships
  • 5.
    o  Innovation Exchange o Why Tableau? o  Qualtrics + Tableau = Better Together Qualtrics Ecosystem
  • 6.
    Visual Analytics BestPractices Sasha Pasulka Director, Product Marketing [email protected]
  • 9.
  • 10.
    “Visual analytics isthe representation and presentation of data that exploits our visual perception abilities in order to amplify cognition.” - Andy Kirk, author of “DataVisualization: a successful design process”
  • 11.
    Let’s Look atSome Data I II III IV x y x y x y x y 10 8.04 10 9.14 10 7.46 8 6.58 8 6.95 8 8.14 8 6.77 8 5.76 13 7.58 13 8.74 13 12.74 8 7.71 9 8.81 9 8.77 9 7.11 8 8.84 11 8.33 11 9.26 11 7.81 8 8.47 14 9.96 14 8.1 14 8.84 8 7.04 6 7.24 6 6.13 6 6.08 8 5.25 4 4.26 4 3.1 4 5.39 19 12.5 12 10.84 12 9.13 12 8.15 8 5.56 7 4.82 7 7.26 7 6.42 8 7.91 5 5.68 5 4.74 5 5.73 8 6.89
  • 12.
    I II IIIIV x y x y x y x y 10 8.04 10 9.14 10 7.46 8 6.58 8 6.95 8 8.14 8 6.77 8 5.76 13 7.58 13 8.74 13 12.74 8 7.71 9 8.81 9 8.77 9 7.11 8 8.84 11 8.33 11 9.26 11 7.81 8 8.47 14 9.96 14 8.1 14 8.84 8 7.04 6 7.24 6 6.13 6 6.08 8 5.25 4 4.26 4 3.1 4 5.39 19 12.5 12 10.84 12 9.13 12 8.15 8 5.56 7 4.82 7 7.26 7 6.42 8 7.91 5 5.68 5 4.74 5 5.73 8 6.89 Let’s Look at Some Data Property Value Mean of x in each case   9 (exact) Variance of x in each case   11 (exact) Mean of y in each case 7.50 (to 2 decimal places) Variance of y in each case 4.122 or 4.127 (to 3 decimal places) Correlation between x and y i n each case   0.816 (to 3 decimal places) Linear regression line in each case   y = 3.00 + 0.500x (to 2 and 3 decimal places, respectively)
  • 13.
    Let’s Look atSome Data …Visually “Anscombe’s Quartet” Source:Wikipedia
  • 14.
  • 15.
    We’re Faster WhenWe Can “See” Data
  • 16.
    We’re Faster WhenWe Can “See” Data
  • 17.
    We’re Faster WhenWe Can “See” Data
  • 18.
  • 19.
  • 20.
  • 21.
    Best Practices Overview 1. Representing data for humans 2.  Color 3.  Maps 4.  Creating dashboards
  • 22.
    Types of Data • Qualitative (nominal) •  Arizona, NewYork,Texas •  Sarah, John, Maria •  Coors, Bud Light, Stella Artois •  Qualitative (ordinal) •  Gold, silver, bronze •  Excellent health, good health, poor health •  Love it, like it, hate it •  Quantitative •  Weight (10 lbs, 20 lbs, 5000 lbs) •  Cost ($50, $100, $0.05) •  Discount (5%, 10%, 12.8%)
  • 23.
    How Do HumansLike Their Data?
  • 24.
    How Do HumansLike Their Data? Position Color Size Shape More important Less important
  • 25.
    How Do HumansLike Their Data? •  Time: on an x-axis •  Location: on a map •  Comparing values: bar chart •  Exploring relationships: scatter plot •  Relative proportions: treemap
  • 26.
    How Do HumansLike Their Data? Orient data so people can read it easily Better Good
  • 27.
    Color Me Impressed Colorperception is relative, not absolute
  • 28.
    Color Me Impressed Providea consistent background
  • 29.
    Color Me Impressed Humanscan only distinguish ~8 colors
  • 30.
    Color Me Impressed Humanscan only distinguish ~8 colors
  • 31.
    Color Me Impressed Forquantitative data, color intensity and diverging color palettes work well
  • 32.
    Mapping to Insight Usemaps when location is relevant “Where do forest fires occur?”
  • 33.
    Mapping to Insight Don’tuse maps just because you can
  • 34.
    Mapping to Insight Usefilled maps (“choropleths”) for defined areas and only ONE measure
  • 35.
    Mapping to Insight Filledmaps won’t work for multiple measures
  • 36.
    Mapping to Insight Mapsdon’t have to be geographic
  • 37.
    Mapping to Insight Mapsdon’t have to be geographic
  • 38.
  • 39.
  • 40.
    Dashboarding for the5-second Test •  Most important view goes on top or top-left •  Legends go near their views •  Avoid using multiple color schemes on a single dashboard •  Use 5 views or fewer in dashboards •  Provide interactivity
  • 41.
    UseYour Words! •  Titles • Axes •  Key facts and figures •  Units •  Remove extra digits in numbers
  • 42.
  • 44.