​From  insights  to  production  with  Big  Data  Analytics
​Eliano  Marques  – Senior  Data  Scientist
​November  2015
Big Data Analytics: From Insights to Production
Large scale solutions typically are part of a discovery
process and fully integrated with the organization strategy
Big Data Analytics Strategy and Ambition
1
Business analytics roadmap
Capture of analytics use
cases and development of
analytics roadmap(s) with
business areas
Productionisation
Large scale
deployment of
analytics use case
based on agile scrum
principles & methods
Analytics
1
23
4
Experimentation
Agile analytics discovery PoC
on offline/ online data to
prove analytics potential prior
to decision on large scale
productionisation
Validation
Decision on
whether to promote
analytics use case for
productionisation
Shared Big Data Analytics governance
Use case – Predictive Maintenance
Business analytics roadmap
CFO  &  Director  of  
Assets/Production
• What  is  the  outcome  of  different  capital  investment  for  the  next  5  
years?  How  do  I  measure  the  impact  on  maintenance?
• Which  assets/parts  should  be  targeted  for  replacement?  How  to  
prioritise them  over  time?
• How  to  plan  ahead  overall  costs?  What  options  are  available?Director  of  
Operations
• How  to  predict  demand  for  reactive  maintenance?  Can  it  be  
reduced?  What  is  the  optimal  mix  between  pro-­active  vs.  reactive  
maintenance?
• How  to  predict  stock  levels  for  assets/parts?  Can  it  be  minimise?  
• What  capacity  is  needed?  Do  we  need  to  sub-­contract?
Field  Teams  
Lead
• How  to  increase  field  force  efficiency?  How  can  we  reduce  
engineering  visits?
• How  to  prioritise faults?
• How  to  predict  false  alerts?
Strategy
Tactical
Operational
1
Use case – Predictive Maintenance
Experimentation
Production  Team
Experiment  Owner
Business	
  and	
  
data	
  Workshops
Experiment	
  
Development
Experiment	
  
Testing
Experiment	
  
Results
Key	
  activities:
Key	
  iterations:
Who’s	
  involved:
Weekly  sessions  to  check  
experiment  progress  and  
validate  initial  results
Delivery  workshop  with  
program  management  to  
share  experiment  results
Initial  workshops  between  
experiment  owners,  data  
owners,  data  engineers  and  
data  scientists
Data  engineers
Data  Scientists
Key	
  Outputs:
H1:  What's  the  impact  of  different  
capital  investment  strategies?
H2:  Can  sensor  data  be  use  to  predict  
time-­to-­fail  or  risk-­to-­fail  of  asset  parts?
H3:  How  to  minimise faults  detection  
root-­cause  and  uplift  efficiency?
• Segment  field  force  by  
time  to  detect  root  
cause  patterns
• Predict  root-­cause  of  
failure  by  type  of  
asset/part
• Validate/test  models  with  
key  stakeholders
• Link  sensors  with  faults
• Prioritise sensors  by  
criticality  of  failure
• Develop  models  and  
Predict  time/risk  to  fail  by  
asset/part
• Validate/test  models  
with  key  stakeholders
• Build  target  investment  
models  linked  with  
maintenance,  volumes  
and  workforce  
• Develop  simulation  
tool  and  run  scenarios  
on  demand
• Validate/test  solution  
with  key  stakeholders
2
Use case – Predictive Maintenance
Validation
Business	
  case	
  
assumptions
Business	
  case	
  
development
Workshop	
  
preparation
Validation	
  
workshop
Key	
  activities:
Key	
  iterations:
Who’s	
  involved:
Meeting  with  business  area  
lead  to  validate  business  
case
Validation  workshop  with  
steering  committee  to  obtain  
approval  for  moving  solution  
to  production
Meetings  with  production  
team  and  business  area  
leads  to  get  business  case  
inputs
Key	
  Outputs:
H2:  Can  sensor  data  be  use  to  predict  
time-­to-­fail  or  risk-­to-­fail  of  asset  parts?
Pos-­experimentation  question:
Is  it  worth  moving  to  production?
Experiment  team
Experiment  Owner
Steering  Comm.
Production  team
Analytics
Technology	
  costs	
  and	
  
changes	
  assumptions
Business	
  value	
  
assumptions
Business	
  case
Downstream
ApplicationsInformation Sources
Evaluate
Source
Data
Prepare Source
Metadata
Prepare Datafor
Ingest
Enterprise Data Lake
Sequence Automate
Apply Structure
Compress Protect
DashboardEngine
Collect & Manage
Metadata
Perimeter-Authentication-Authorisation
Ingest
3
• New  ingestions?  How  
many  models?  Prediction  
frequency?  Rules  
engine?
• How  users  will  access  
and  make  decisions  on  
demand?
• What’s  the  size  of  
benefit?  Is  it  tangible?
• Is  the  use  case  viable  
financially?  What’s  the  
ROI?  What’s  is  the  Pay-­
back  period?
Use case – Predictive Maintenance
Productionisation
Release	
  
Planning
Create	
  Project	
  
Backlog
Production	
  
Deployment
Key	
  activities:
Key	
  iterations:
Who’s	
  involved:
Bi-­weekly  sign-­off  of  development  
progress  by  program  management  
and  business  area  lead
Regular  meetings  in  an  agile  
scrum  format  including  sprint  
planning,  daily  scrums,  and  
sprint  review
Key	
  Outputs:
Experiment  team
Experiment  Owner
Production  Team
Scrum  Master
Gov.,	
  Maint &	
  
Training
H2:  Can  sensor  data  be  use  to  predict  
time-­to-­fail  or  risk-­to-­fail  of  asset  parts?
Pos-­experimentation  question:
Is  it  worth  moving  to  production?
YES
Sprint	
  
Cycles
Model	
  3
Model	
  2
Model	
  1
• Business  and  field  
engineers  can  now  act  on  
real  time  signals  based  on  
predictions  of  time/risk  to  
fail  for  assets  and  parts
• Rules  can  be  automated  
to  act  on  high-­risk  threads  
• Pro-­active  maintenance  
decisions  can  now  be  
made  to  optimise costs  
and  maintenance  
efficiency
Downstream
ApplicationsInformation Sources
Evaluate
Source
Data
Prepare Source
Metadata
Prepare Datafor
Ingest
Enterprise Data Lake
Sequence Automate
Apply Structure
Compress Protect
DashboardEngine
Collect & Manage
Metadata
Perimeter-Authentication-Authorisation
Ingest
Solution  running
4
✔
Think	
  you
Thank Big

More Related Content

PPTX
Adding Hadoop to Your Analytics Mix?
PPTX
Big Data for Finance – Challenges in High-Frequency Trading
PDF
Data-Related Presentations
PDF
Foundational Strategies for Trust in Big Data Part 1: Getting Data to the Pla...
PDF
Foundational Strategies for Trust in Big Data Part 2: Understanding Your Data
PDF
Accelerating Fast Data Strategy with Data Virtualization
PPTX
Predictive Analytics - Big Data Warehousing Meetup
PDF
Maximizing The Value of Your Structured and Unstructured Data with Data Catal...
Adding Hadoop to Your Analytics Mix?
Big Data for Finance – Challenges in High-Frequency Trading
Data-Related Presentations
Foundational Strategies for Trust in Big Data Part 1: Getting Data to the Pla...
Foundational Strategies for Trust in Big Data Part 2: Understanding Your Data
Accelerating Fast Data Strategy with Data Virtualization
Predictive Analytics - Big Data Warehousing Meetup
Maximizing The Value of Your Structured and Unstructured Data with Data Catal...

What's hot (19)

PDF
From Foundation to Mastery – Building a Mature Analytics Roadmap - Manav Misra
PDF
Data Science in Action for an Insurance Product - Shawn Jin
PDF
How to Build a Scalable Customer Analytics Hub
 
PDF
Ensuring Data Quality and Lineage in Cloud Migration - Dan Power
PDF
Gartner Business Intelligence & Analytics Summit Brochure
PPT
NLB Analytics Overview
PPTX
Business Value of Data
PPTX
Future of Analytics: Drivers of Change
 
PDF
Hiring and Developing Analytics Talent in the CPG and Retail Industry - Mohi...
PPTX
Business Analytics Overview
PDF
Modern Integrated Data Environment - Whitepaper | Qubole
PPTX
Big data
PDF
PDF
Introduction to Machine Learning with Azure & Databricks
 
PDF
Real-Time Data Integration for Modern BI
 
PPTX
Developing Big Data Strategy
PPTX
Advanced Analytics - Frameworks, Platforms and Metholodologies v 1.0
PPTX
Introduction to business intelligence
PDF
Your smarter data analytics strategy - Social Media Strategies Summit (SMSS) ...
From Foundation to Mastery – Building a Mature Analytics Roadmap - Manav Misra
Data Science in Action for an Insurance Product - Shawn Jin
How to Build a Scalable Customer Analytics Hub
 
Ensuring Data Quality and Lineage in Cloud Migration - Dan Power
Gartner Business Intelligence & Analytics Summit Brochure
NLB Analytics Overview
Business Value of Data
Future of Analytics: Drivers of Change
 
Hiring and Developing Analytics Talent in the CPG and Retail Industry - Mohi...
Business Analytics Overview
Modern Integrated Data Environment - Whitepaper | Qubole
Big data
Introduction to Machine Learning with Azure & Databricks
 
Real-Time Data Integration for Modern BI
 
Developing Big Data Strategy
Advanced Analytics - Frameworks, Platforms and Metholodologies v 1.0
Introduction to business intelligence
Your smarter data analytics strategy - Social Media Strategies Summit (SMSS) ...
Ad

Viewers also liked (13)

PPTX
Data Modeling on NoSQL
PPT
Teradata 13.10
PDF
Industrial Analytics and Predictive Maintenance 2017 - 2022
PPTX
PDF
Razorfish Multi-Channel Marketing: Better Customer Segmentation and Targeting
PPTX
Teradata Big Data London Seminar
PPTX
Predictive Maintenance by analysing acoustic data in an industrial environment
PPTX
Teradata introduction - A basic introduction for Taradate system Architecture
PPTX
Teradata introduction
PDF
[Tutorial] building machine learning models for predictive maintenance applic...
PPTX
How to Use Algorithms to Scale Digital Business
PPTX
Predictive Analytics: Extending asset management framework for multi-industry...
PDF
Deep Learning Use Cases - Data Science Pop-up Seattle
Data Modeling on NoSQL
Teradata 13.10
Industrial Analytics and Predictive Maintenance 2017 - 2022
Razorfish Multi-Channel Marketing: Better Customer Segmentation and Targeting
Teradata Big Data London Seminar
Predictive Maintenance by analysing acoustic data in an industrial environment
Teradata introduction - A basic introduction for Taradate system Architecture
Teradata introduction
[Tutorial] building machine learning models for predictive maintenance applic...
How to Use Algorithms to Scale Digital Business
Predictive Analytics: Extending asset management framework for multi-industry...
Deep Learning Use Cases - Data Science Pop-up Seattle
Ad

Similar to Big Data Analytics: From Insights to Production (20)

PDF
Barga Galvanize Sept 2015
PDF
Future-Proofing Asset Failures with Cognitive Predictive Maintenance
PDF
Data Driven Decision Making The Core of PdM Excellence
PDF
Mtc strategy-briefing-houston-pd m-05212018-3
PPTX
The Challenge of Driving Business Value from the Analytics of Things (AOT)
PPTX
AI Class Topic 3: Building Machine Learning Predictive Systems (Predictive Ma...
PPTX
Fractional Chief AI Officer Services For Hire
PDF
Master Data, From Inspection to Analytics to Business Decision
PDF
Data Analytics in your IoT Solution Fukiat Julnual, Technical Evangelist, Mic...
PDF
The Science of Predictive Maintenance: IBM's Predictive Analytics Solution
PDF
Implement Predictive Maintenance for Maximum Uptime
PDF
Data Science at Roche: From Exploration to Productionization - Frank Block
PDF
RA TechED 2019 - CL05 Reduce Waste with Logixai
PDF
179-Wolniak-1.pdf
PPTX
Small Investments, Big Returns: Three Successful Data Science Use Cases
PDF
Witekio introducing-predictive-maintenance
PDF
Global C4IR-1 Masterclass Adryan - Zuehlke Engineering 2017
PDF
Predictive Maintenance Solution -1019
PPTX
Delivering digital transformation and business impact with io t, machine lear...
PDF
Predictive Maintenance - Predict the Unpredictable
Barga Galvanize Sept 2015
Future-Proofing Asset Failures with Cognitive Predictive Maintenance
Data Driven Decision Making The Core of PdM Excellence
Mtc strategy-briefing-houston-pd m-05212018-3
The Challenge of Driving Business Value from the Analytics of Things (AOT)
AI Class Topic 3: Building Machine Learning Predictive Systems (Predictive Ma...
Fractional Chief AI Officer Services For Hire
Master Data, From Inspection to Analytics to Business Decision
Data Analytics in your IoT Solution Fukiat Julnual, Technical Evangelist, Mic...
The Science of Predictive Maintenance: IBM's Predictive Analytics Solution
Implement Predictive Maintenance for Maximum Uptime
Data Science at Roche: From Exploration to Productionization - Frank Block
RA TechED 2019 - CL05 Reduce Waste with Logixai
179-Wolniak-1.pdf
Small Investments, Big Returns: Three Successful Data Science Use Cases
Witekio introducing-predictive-maintenance
Global C4IR-1 Masterclass Adryan - Zuehlke Engineering 2017
Predictive Maintenance Solution -1019
Delivering digital transformation and business impact with io t, machine lear...
Predictive Maintenance - Predict the Unpredictable

Recently uploaded (20)

PDF
Nucleic-Acids_-Structure-Typ...-1.pdf 011
PPTX
lung disease detection using transfer learning approach.pptx
PDF
2025-08 San Francisco FinOps Meetup: Tiering, Intelligently.
PDF
Teal Blue Futuristic Metaverse Presentation.pdf
PPTX
Basic Statistical Analysis for experimental data.pptx
PPTX
cyber row.pptx for cyber proffesionals and hackers
PPTX
Chapter security of computer_8_v8.1.pptx
PPTX
transformers as a tool for understanding advance algorithms in deep learning
PPTX
DIGITAL DESIGN AND.pptx hhhhhhhhhhhhhhhhh
PPT
What is life? We never know the answer exactly
PPTX
inbound6529290805104538764.pptxmmmmmmmmm
PDF
American Journal of Multidisciplinary Research and Review
PDF
Book Trusted Companions in Delhi – 24/7 Available Delhi Personal Meeting Ser...
PPTX
Stats annual compiled ipd opd ot br 2024
PPTX
Sheep Seg. Marketing Plan_C2 2025 (1).pptx
PDF
Introduction to Database Systems Lec # 1
PPTX
Bussiness Plan S Group of college 2020-23 Final
PPTX
Capstone Presentation a.pptx on data sci
PDF
toaz.info-grade-11-2nd-quarter-earth-and-life-science-pr_5360bfd5a497b75f7ae4...
PDF
Grey Minimalist Professional Project Presentation (1).pdf
Nucleic-Acids_-Structure-Typ...-1.pdf 011
lung disease detection using transfer learning approach.pptx
2025-08 San Francisco FinOps Meetup: Tiering, Intelligently.
Teal Blue Futuristic Metaverse Presentation.pdf
Basic Statistical Analysis for experimental data.pptx
cyber row.pptx for cyber proffesionals and hackers
Chapter security of computer_8_v8.1.pptx
transformers as a tool for understanding advance algorithms in deep learning
DIGITAL DESIGN AND.pptx hhhhhhhhhhhhhhhhh
What is life? We never know the answer exactly
inbound6529290805104538764.pptxmmmmmmmmm
American Journal of Multidisciplinary Research and Review
Book Trusted Companions in Delhi – 24/7 Available Delhi Personal Meeting Ser...
Stats annual compiled ipd opd ot br 2024
Sheep Seg. Marketing Plan_C2 2025 (1).pptx
Introduction to Database Systems Lec # 1
Bussiness Plan S Group of college 2020-23 Final
Capstone Presentation a.pptx on data sci
toaz.info-grade-11-2nd-quarter-earth-and-life-science-pr_5360bfd5a497b75f7ae4...
Grey Minimalist Professional Project Presentation (1).pdf

Big Data Analytics: From Insights to Production

  • 1. ​From  insights  to  production  with  Big  Data  Analytics ​Eliano  Marques  – Senior  Data  Scientist ​November  2015
  • 3. Large scale solutions typically are part of a discovery process and fully integrated with the organization strategy Big Data Analytics Strategy and Ambition 1 Business analytics roadmap Capture of analytics use cases and development of analytics roadmap(s) with business areas Productionisation Large scale deployment of analytics use case based on agile scrum principles & methods Analytics 1 23 4 Experimentation Agile analytics discovery PoC on offline/ online data to prove analytics potential prior to decision on large scale productionisation Validation Decision on whether to promote analytics use case for productionisation Shared Big Data Analytics governance
  • 4. Use case – Predictive Maintenance Business analytics roadmap CFO  &  Director  of   Assets/Production • What  is  the  outcome  of  different  capital  investment  for  the  next  5   years?  How  do  I  measure  the  impact  on  maintenance? • Which  assets/parts  should  be  targeted  for  replacement?  How  to   prioritise them  over  time? • How  to  plan  ahead  overall  costs?  What  options  are  available?Director  of   Operations • How  to  predict  demand  for  reactive  maintenance?  Can  it  be   reduced?  What  is  the  optimal  mix  between  pro-­active  vs.  reactive   maintenance? • How  to  predict  stock  levels  for  assets/parts?  Can  it  be  minimise?   • What  capacity  is  needed?  Do  we  need  to  sub-­contract? Field  Teams   Lead • How  to  increase  field  force  efficiency?  How  can  we  reduce   engineering  visits? • How  to  prioritise faults? • How  to  predict  false  alerts? Strategy Tactical Operational 1
  • 5. Use case – Predictive Maintenance Experimentation Production  Team Experiment  Owner Business  and   data  Workshops Experiment   Development Experiment   Testing Experiment   Results Key  activities: Key  iterations: Who’s  involved: Weekly  sessions  to  check   experiment  progress  and   validate  initial  results Delivery  workshop  with   program  management  to   share  experiment  results Initial  workshops  between   experiment  owners,  data   owners,  data  engineers  and   data  scientists Data  engineers Data  Scientists Key  Outputs: H1:  What's  the  impact  of  different   capital  investment  strategies? H2:  Can  sensor  data  be  use  to  predict   time-­to-­fail  or  risk-­to-­fail  of  asset  parts? H3:  How  to  minimise faults  detection   root-­cause  and  uplift  efficiency? • Segment  field  force  by   time  to  detect  root   cause  patterns • Predict  root-­cause  of   failure  by  type  of   asset/part • Validate/test  models  with   key  stakeholders • Link  sensors  with  faults • Prioritise sensors  by   criticality  of  failure • Develop  models  and   Predict  time/risk  to  fail  by   asset/part • Validate/test  models   with  key  stakeholders • Build  target  investment   models  linked  with   maintenance,  volumes   and  workforce   • Develop  simulation   tool  and  run  scenarios   on  demand • Validate/test  solution   with  key  stakeholders 2
  • 6. Use case – Predictive Maintenance Validation Business  case   assumptions Business  case   development Workshop   preparation Validation   workshop Key  activities: Key  iterations: Who’s  involved: Meeting  with  business  area   lead  to  validate  business   case Validation  workshop  with   steering  committee  to  obtain   approval  for  moving  solution   to  production Meetings  with  production   team  and  business  area   leads  to  get  business  case   inputs Key  Outputs: H2:  Can  sensor  data  be  use  to  predict   time-­to-­fail  or  risk-­to-­fail  of  asset  parts? Pos-­experimentation  question: Is  it  worth  moving  to  production? Experiment  team Experiment  Owner Steering  Comm. Production  team Analytics Technology  costs  and   changes  assumptions Business  value   assumptions Business  case Downstream ApplicationsInformation Sources Evaluate Source Data Prepare Source Metadata Prepare Datafor Ingest Enterprise Data Lake Sequence Automate Apply Structure Compress Protect DashboardEngine Collect & Manage Metadata Perimeter-Authentication-Authorisation Ingest 3 • New  ingestions?  How   many  models?  Prediction   frequency?  Rules   engine? • How  users  will  access   and  make  decisions  on   demand? • What’s  the  size  of   benefit?  Is  it  tangible? • Is  the  use  case  viable   financially?  What’s  the   ROI?  What’s  is  the  Pay-­ back  period?
  • 7. Use case – Predictive Maintenance Productionisation Release   Planning Create  Project   Backlog Production   Deployment Key  activities: Key  iterations: Who’s  involved: Bi-­weekly  sign-­off  of  development   progress  by  program  management   and  business  area  lead Regular  meetings  in  an  agile   scrum  format  including  sprint   planning,  daily  scrums,  and   sprint  review Key  Outputs: Experiment  team Experiment  Owner Production  Team Scrum  Master Gov.,  Maint &   Training H2:  Can  sensor  data  be  use  to  predict   time-­to-­fail  or  risk-­to-­fail  of  asset  parts? Pos-­experimentation  question: Is  it  worth  moving  to  production? YES Sprint   Cycles Model  3 Model  2 Model  1 • Business  and  field   engineers  can  now  act  on   real  time  signals  based  on   predictions  of  time/risk  to   fail  for  assets  and  parts • Rules  can  be  automated   to  act  on  high-­risk  threads   • Pro-­active  maintenance   decisions  can  now  be   made  to  optimise costs   and  maintenance   efficiency Downstream ApplicationsInformation Sources Evaluate Source Data Prepare Source Metadata Prepare Datafor Ingest Enterprise Data Lake Sequence Automate Apply Structure Compress Protect DashboardEngine Collect & Manage Metadata Perimeter-Authentication-Authorisation Ingest Solution  running 4 ✔