This document provides an agenda and overview of Big Data Analytics using Spark and Cassandra. It discusses Cassandra as a distributed database and Spark as a data processing framework. It covers connecting Spark and Cassandra, reading and writing Cassandra tables as Spark RDDs, and using Spark SQL, Spark Streaming, and Spark MLLib with Cassandra data. Key capabilities of each technology are highlighted such as Cassandra's tunable consistency and Spark's fault tolerance through RDD lineage. Examples demonstrate basic operations like filtering, aggregating, and joining Cassandra data with Spark.