This document provides a summary of practical machine learning on big data platforms. It begins with an introduction and agenda, then provides a quick brief on the machine learning process. It discusses the current landscape of open source tools, including evolutionary drivers and examples. It covers case studies from Twitter and their experience. Finally, it discusses architectural forces like Moore's Law and Kryder's Law that are shaping the field. The document aims to present a unified approach for machine learning on big data platforms and discuss how industry leaders are implementing these techniques.