SlideShare a Scribd company logo
Introduction to Bio	Ontologies
and The	Semantic Web
M.	Devisscher
Biological Databases
Overview
• Bio	ontologies
• Semantic technologies
• SPARQL	in	practice
Introduction
• Ontologies:	what are	ontologies ?
• Ontologies in	the	bio	domain:	OBO	Foundry
• Ontologies in	the	semantic web
• OBO
• RDF,	IRI,	TTL,	SPARQL,	OWL
What is	an ontology ?
• Ontology =	a	specification of	a	
conceptualization (Gruber 1993)
• In	practice:	controlled vocabularies
– Disambiguation (e.g.	Bank,	Running)
– Language/species	independence
• Very useful in	biology – complex	hierarchies of	
terms
Ontologies in	the	bio	Domain
• OBO	Foundry - open	Biological and
Biomedical Ontologies
• Common	principles
• List	of	ontologies at	
http://www.obofoundry.org
• OBO	is	also a	data	format	.obo
SideTrack – The	Gene	Ontology
• The	mother of	bio-ontologies:	the	GO
– Oldest bio	– ontology
– Many practical	applications:
• Cross	species	studies
• Overrepresentation studies	(RNASeq)
• GO	is	an OBO	ontology
SideTrack – The	Gene	Ontology
• Collection	of	terms
SideTrack – The	Gene	Ontology
• Relationships between terms:
– Subsumption:	is_a
– Partonomic:	part_of
• These	terms are	transitive
• Terms form	a	DAG	(directed,	acyclic graph)
• Some information	can be inferred
SideTrack – The	Gene	Ontology
SideTrack – The	Gene	Ontology
SideTrack – The	Gene	Ontology
• Know more:	www.geneontology.org
• AMIGO	:	the	GO	browser
Gene	Ontology	Annotation
• Gene	ontology	annotations	GOA	=	entities	
labeled	with	GO	terms
– E.g.	Uniprot-GOA
Semantic Technologies
• The	semantic web:	Tim	Berners Lee	et	al,	
Scientific American	2001
Semantic Technologies
• W3C:	a	set	of	specifications
http://www.w3.org/standards/semanticweb/
• A	mature toolset
– Dedicated data	formats
– Storage
– Query	language
Resource	Description	Framework
• A	standard	model	for data	interchange on	the
(semantic)	web
• Basic	data	element	=	a	Triple
– A	mini	sentence
– Contains three Terms:
• Subject	Predicate Object
• Representation of	triples
– Basic	data	format:	RDF/XML
– All data	expressed in	RDF	(Resource	Description
Framework)
– Several compatible	syntaxes:	TTL	(Terse Triple	
Language)	most	human	readable
Resource	Description	Framework
Example
The	Turtle Syntax
• Basic	Triple
<http://bioinformatics.be/entities#martijn>
<http://bioinformatics.be/relations#has_favorite_beer>
<http://bioinformatics.be/entities#karmeliet>.
The	Turtle Syntax
• Prefix
@prefix b4x: <http:bioinformatics.be/terms#>
b4x:martijn b4x:has_favorite_beer b4x:karmeliet.
The	Turtle Syntax
• Predicate lists
@prefix b4x: <http:bioinformatics.be/terms#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
b4x:martijn b4x:has_favorite_beer b4x:karmeliet;
foaf:name “Martijn Devisscher”.
The	Turtle Syntax
• Object	lists
@prefix b4x: <http:bioinformatics.be/terms#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
b4x:martijn b4x:has_favorite_beer b4x:karmeliet,
b4x:chimay_blauw;
foaf:name “Martijn Devisscher”.
IRI’s and Literals
• Terms can be either IRI’s,	Literals or	blank	nodes
• IRI	= Internationalized Resource	Identifier
• Unique	id – a	virtual	URI
– Example:	<http://bioinformatics.be/terms#martijn>
– There is	no	requirement for resolving
– Now:	Open	Data	initiatives:	please do	use resolvable
URI’s http://linkeddata.org
– Unique	identifiers can be registered on	
http://identifiers.org
Introduction
• Literals:	can be typed,	allowed types	from the	
XSD	namespace:
– E.g.	“This is	a	string	example”^^xsd:string
– E.g.	“5”^^xsd:integer
• IRI’s are	used for entities and attributes
• Literals are	used for attribute values that
aren’t entities
The	Turtle Syntax
• Typed literals
@prefix b4x: <http:bioinformatics.be/terms#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
b4x:martijn b4x:has_favorite_beer b4x:karmeliet,
b4x:chimay_blauw;
b4x:length “184”^^xsd:integer;
foaf:name “Martijn Devisscher”^^xsd:string.
The	Turtle Syntax
• Blank	nodes
@prefix b4x: <http:bioinformatics.be/terms#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
b4x:martijn b4x:has_favorite_beer b4x:karmeliet,
b4x:chimay_blauw;
b4x:length “184”^^xsd:integer;
foaf:name “Martijn Devisscher”^^xsd:string;
b4x:owns_cat [ b4x:color “Gray” ].
Classes	and Individuals
• rdf:type
@prefix b4x: <http:bioinformatics.be/terms#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
b4x:martijn rdf:type foaf:Person.
Classes	and Individuals
• Shorthand:	a
@prefix b4x: <http:bioinformatics.be/terms#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
b4x:martijn a foaf:Person;
foaf:knows b4x:geert.
b4x:geert a foaf:Person.
Example
<http://xmpl/entities#martijn>
<http://xmpl/relations#has_favorite_beer>
<http://xmpl/entities#karmeliet>.
Semantic Technologies
• Sets	of	triples form	a	Graph
Graphs
• Triples are	building	blocks of	Graphs
• Combining sets	of	triples allows the	
construction of	arbitrarily complex	graphs
b4x:martijn b4x:karmeliethas_favorite_beer
Graph	of	graphs
• Combining	RDF	datasets	can	be	considered	a	
slightly	bigger	graph,	a	knowledge	cloud
• Key	is	interoperability:	same	format	used	for	
disclosing	information,	independent	of	
backend
RDF	dataset	examples
• The	LOD	cloud	http://lod-cloud.net :	overview	
of	interlinked,	RDF	compatible	datasources
RDF	dataset	examples
• Closer	to	home
https://data.stad.gent/devzone/docs/linked-
open-data
Add meaning !
• Reuse terms from existing,	well	defined
vocabularies – ontologies (foaf,	dc,	go,	so)
• Describe new	terms =	Ontologies
• Contain
– A	crisp	human	definition
– Some machine	readable facts
Metadata
• Ontologies are	also described in	RDF
– RDFS:	RDF	- Schema
– OWL:	Web	Ontology Language
– Also expressed in	RDF
• For	clarity,	file	extension	can be .rdfs or	.owl
RDFS	Essentials
• Descriptions
– rdfs:label
– rdfs:comment
RDFS
• Relationships between properties,	classes
– rdfs:Class
– rdfs:subClassOf
– rdf:Property
– rdfs:subPropertyOf
– rdfs:range
– rdfs:domain
RDFS:	Example
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
b4x:karmeliet a b4x:Tripel .
b4x:Beer a rdfs:Class .
b4x:Tripel a rdfs:Class .
b4x:Tripel rdfs:subClassOf b4x:Beer .
b4x:has_favorite_beer a rdf:Property ;
rdfs:domain foaf:Person ;
rdfs:range b4x:Beer .
b4x:Beer rdfs:subClassOf b4x:Drink .
Analogy
• RDF	=	database	=	data
• RDFS/OWL	=	schema	=	metadata
• Both	are	described in	RDF,	but	have	a	different	
scope
Semantic Technologies
• Inference
– Enhance dataset	using knowledge from metadata
(e.g.	rdfs,	owl)
• Types	of	inference engines
– RDFS	inference
• RDFS	entailment regime
– OWL	inference
• Under	active research
• Engines	exist for specific subsets of	OWL	(OWL-DL)
RDFS	Entailment
RDFS:	Inference
b4x:kevin	b4x:has_favorite_beer	b4x:stella
Q:	What can we	infer from this using RDFS	
entailment ?
RDFS:	Inference
b4x:kevin	b4x:has_favorite_beer	b4x:stella
Inferred triples:
b4x:kevin	a	foaf:Person [from domain]
b4x:stella	a	b4x:Beer	[from range]
b4x:stella	a	b4x:Drink	[from subClassOf]
DuckTyping
• Watch	out	with inference !
Example:	You want	to express that people can
have	lengths
b4x:length a rdf:Property;
rdfs:domain foaf:Person;
rdfs:range xsd:integer.
DuckTyping
• Problem:
ex:VW_Transporter b4x:length “600”^xsd:integer.
• Would infer that VW_Transporter is	a	Person	!
• This is	called DuckTyping
If	it	looks	like	a	duck,	swims	like	a	duck,	and	
quacks	like	a	duck,	then	it	probably	is	a	duck
Task
• Find	a	solution:	express	in	rdfs that	people	can	
have	lengths
Task
• Find	a	solution:	express	in	rdfs that	people	can	
have	lengths
b4x:havingLenght a rdfs:Class.
b4x:length a rdf:Property;
rdfs:domain b4x:havingLength;
rdfs:range xsd:integer.
foaf:Person rdfs:subClassOf b4x:havingLength.
Storing	RDF
• As	an RDF	file	for download
• In	a	Triplestore
– Database	optimised for storing	triples
– Examples:	BlazeGraph,	Fuseki,	Sesame
Semantic Technologies
• Querying over	RDF	data:	SPARQL
• Cool	features:
– Distributed	querying =	actual distribution of	data	
and computing	resources
– SPARQL/Update:	modify data
• SPARQL	endpoints:	SPARQL	over	HTTP
SPARQL	Query	Syntax
• First	example:
SELECT ?subject ?predicate ?object WHERE {
?subject ?predicate ?object.
}
(Generally	not a	good idea as	it will pull	down	
the	whole dataset)
Binding	variables
Graph matching
?
SELECT ?person WHERE {
?person b4x:has_favorite_beer b4x:karmeliet
}
?
SPARQL	Query	Syntax
• Limit	result size :
SELECT ?subject ?predicate ?object WHERE {
?subject ?predicate ?object.
} LIMIT 10
SPARQL	Query	Syntax
• Find all classes:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?class ?label WHERE {
?class a rdfs:Class.
?class rdfs:label ?label.
}
(This will only retrieve classes	that have	a	label)
SPARQL	Query	Syntax
• Find all classes:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?class ?label WHERE {
?class a rdfs:Class.
OPTIONAL {
?class rdfs:label ?label.
}
}
SPARQL	Query	Syntax
• Find all classes	that contain “duck”	in	the	
label:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?class ?label WHERE {
?class a rdfs:Class.
?class rdfs:label ?label.
FILTER( CONTAINS (str(?label) , “duck” ) )
}
SPARQL	Query	Syntax
• Make	it case	insensitive:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?class ?label WHERE {
?class a rdfs:Class.
?class rdfs:label ?label.
FILTER( CONTAINS ( UCASE(str(?label)) , “DUCK” ) )
}
SPARQL	Query	Syntax
• Search	in	specific graph:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?class ?label
FROM <http://example.org/animals>
WHERE {
?class a rdfs:Class.
?class rdfs:label ?label.
FILTER( CONTAINS ( UCASE(str(?label)) , “DUCK” ) )
}
SPARQL	Query	Syntax
• Search	in	specific graph:
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?class ?label WHERE {
GRAPH <http://example.org/animals> {
?class a rdfs:Class.
?class rdfs:label ?label.
FILTER( CONTAINS ( UCASE(str(?label)) , “DUCK” ) )
}
}
SPARQL	Query	Syntax
• Can also search	for graphs :
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?g WHERE {
GRAPH ?g {
?class a rdfs:Class.
?class rdfs:label ?label.
FILTER( CONTAINS ( UCASE(str(?label)) , “DUCK” ) )
}
}
Summary:	Querying RDF	data
RDF	Data
Inference
Engine
RDFS/OWL
RDF	Data
Inferred
SPARQL
Endpoint
• Basic data element = a Triple
– A mini sentence
– Contains three Terms:
– Subject Predicate Object
• Example:
<http://xmpl/entities#martijn>
<http://xmpl/relations#has_favorite_beer>
<http://xmpl/entities#karmeliet>.
Take	home	Summary
• Combine triples to represent
knowledge
• Use terms from ONTOLOGIES
– COMMON VOCABULARIES
– POSSIBLE TO INFER
MEANING
• OMIABIS
• OBIB
• SNOMED/ICD
• MESH
?
• SPARQL searches for patterns
?
Interoperability between OBO	and
Semantic Technologies
• Originated from two separate	academic worlds
• Computing	applications of	OBO	mainly
consistency checking and overrepresentation
analysis
• Semantic Technologies:	much broader toolset
• Interoperability ?
– Direct	offering in	both formats
– Automated mappings
• Migration	towards semantic toolkits
Where to find ontologies
• OBO	Foundry
• Bioportal;	NCBO
• Biogateway
• Bio2RDF
Where to find RDF	data
• Google	for SPARQL	endpoint
• =>	e.g.	EBI	databases
• Non	biological:	DBpedia
How	about Tim	Berners Lee’s vision
• We’re not there yet,	but	for bio	data	we’re
getting quite close
– The	explicitome
– Crowd sourcing
– Nanopublications
SPARQL	REFERENCE
http://www.w3.org/TR/sparql11-overview/
Recap:
SPARQL	in	11	minutes
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
• FIND	the	pattern	?x rdfs:label ?label.
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
• FIND	the	pattern	?x rdfs:label ?label.
• BIND	variables	?label,	?x
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
• FIND	the	pattern	?x rdfs:label ?label.
• BIND	variables	?label,	?x
• RETRIEVE variable	?label
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
• FIND	the	pattern	?x rdfs:label ?label.
• BIND	variables	?label,	?x
• RETRIEVE	variable	?label
• PREFIX:	replace	rdfs:label by	<http://www.w3.org/2000/01/rdf-schema#label>
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
• FIND	the	pattern	?x rdfs:label ?label.
• BIND	variables	?label,	?x
• RETRIEVE	variable	?label
• PREFIX:	replace	rdfs:label by	<http://www.w3.org/2000/01/rdf-schema#>
• FILTER results	to	labels	containing	“dimethylalinine”
SPARQL	:	Recap
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?label
FROM <http://graphName> WHERE {
?x rdfs:label ?label.
FILTER ( CONTAINS(?label, “dimethylalinine”) )
} LIMIT 10 ORDER BY ?label
• FIND	the	pattern	?x rdfs:label ?label.
• BIND	variables	?label,	?x
• RETRIEVE	variable	?label
• PREFIX:	replace	rdfs:label by	<http://www.w3.org/2000/01/rdf-schema#>
• FILTER	results	to	labels	containing	“dimethylalinine”
• LIMIT	results	to	first	10	matches	ordered	by	label
SPARQL	:	Recap
DESCRIBE
<http://rdf.wikipathways.org/Pathway/WP1425_r74390/WP/Interaction/e077e>
• Useful	short	query	to	get	direct	links	from/to	a	
given	node
Running	SPARQL
• From	a	web	interface
• From	a	web	interface
• Using	http
– HTTP	GET
– HTTP	POST	:	for	larger	query	strings
– Headers	determine	response	type	(JSON,	XML,	HTML)
http://…/sparql?default-graph-uri=<http://graphName>&query=URLENCODEDQUERYSTRING
Running	SPARQL
BIO-ONTOLOGIES
BioPortal
Access
• From	the	web	interface	!
• SPARQL	endpoint:	using	API	key;	on	request	
• Running	a	local	copy:	download	VM	image;	on	
request
Exercises
• Find	a	term
• Find	ontologies	containing	a	term
• Browse	some	ontologies
• Check	the	NCBO	annotator	!
BIO-DATA
EBI	RDF	Resources
EBI	RDF	Resources
Ensembl
gene
transcript
exon
ordered	part
sio:SIO_001261
obo:SO_0000147
obo:SO_0000234
obo:SO_transcribed_from
faldo:location
obo:SO_0001217
obo:SO_has_part
location
faldo:location
location
faldo:location
location
obo:SO_translates_to
sio:SIO_000300
rank
translation
id
id
id
id
synonym
skos:altLabelxref
Simplified
Exercise
• From	uniprot find	proteins	that	are	annotated	
with	a	given	Gene	Ontology	term
PREFIX up:<http://purl.uniprot.org/core/>
PREFIX taxon:<http://purl.uniprot.org/taxonomy/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
SELECT * WHERE {
?protein up:classifiedWith obo:GO_0004499.
?protein up:organism taxon:9606.
}
http://sparql.uniprot.org
Exercise
• From	Expression	Atlas	find	proteins	that	are	
differentially	expressed	(P	<	1e-12)	in	Crohn’s
disease
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX efo: <http://www.ebi.ac.uk/efo/>
PREFIX atlas: <http://rdf.ebi.ac.uk/resource/atlas/>
PREFIX atlasterms: <http://rdf.ebi.ac.uk/terms/atlas/>
PREFIX up:<http://purl.uniprot.org/core/>
PREFIX biopax3:<http://www.biopax.org/release/biopax-level3.owl#>
SELECT distinct ?protein ?expressionValue ?pvalue WHERE {
?factor rdf:type efo:EFO_0000384 .
?value atlasterms:hasFactorValue ?factor .
?value atlasterms:isMeasurementOf ?probe .
?value atlasterms:pValue ?pvalue .
?value rdfs:label ?expressionValue .
?probe atlasterms:dbXref ?protein .
FILTER ( ?pvalue < 1e-12 )
FILTER ( strstarts(str(?protein),"http://purl.uniprot.org/uniprot/") )
}ORDER BY ASC (?pvalue)
https://www.ebi.ac.uk/rdf/services/atlas/sparql
• Links	pathways	with	genes,	terms	from	
Pathway,	Cell	line	and	Disease	ontology,	
PubMed	references
• Models	individual	Interactions
• Can	be	downloaded	as	RDF
• Has	an	experimental	SPARQL	endpoint
WikiPathways
• Define	a	query	to	find	pathways	linked	to	
TNFalpha gene
Exercise
PREFIX wp: <http://vocabularies.wikipathways.org/wp#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?PathwayName where {
?geneProduct a wp:GeneProduct .
?geneProduct dc:identifier ?GeneID .
?geneProduct dcterms:isPartOf ?pathway .
?geneProduct rdfs:label ?geneName .
?pathway dc:identifier ?pathwayid .
?pathway dc:title ?PathwayName .
FILTER(str(?geneName) = "TNFalpha" )
}
http://sparql.wikipathways.org
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]
• Try	this,	or	another	query
– Using	web	interface
– Using	http	get
• Define	a	simple	describe
• Use	a	web	tool	to	URLEncode the	query
• Submit	query	as	a	URL	parameter
Exercise
DisGeNet
Phenotype
GDA
gene
sio:SIO_001121 ncit:C7057
sio:SIO_010056
sio:SIO_000628
id
id
skos:exactMatch
Mesh
DiseaseClass
sio:SIO_000628
HPO
score
ncit:C25338
ncit:C16612
sio:SIO_000628
id
skos:exactMatch
Simplified
Bio ontologies and semantic technologies[2]
• Find	diseases	linked	to	BRCA1
Exercise
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
PREFIX up: <http://purl.uniprot.org/core/>
SELECT DISTINCT ?disease WHERE {
?gda a sio:SIO_000983.
?gda sio:SIO_000628 ?disease.
?disease a ncit:C7057.
?gda sio:SIO_000628 ?gene.
?gene a ncit:C16612.
?gene skos:exactMatch <http://identifiers.org/hgnc.symbol/BRCA1>}
http://rdf.disgenet.org/lodestar/sparql
• Yields	no	results
????
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
PREFIX up: <http://purl.uniprot.org/core/>
SELECT DISTINCT ?disease WHERE {
?gda a sio:SIO_000983.
?gda sio:SIO_000628 ?disease.
?disease a ncit:C7057.
?gda sio:SIO_000628 ?gene.
?gene a ncit:C16612.
?gene skos:exactMatch <http://identifiers.org/hgnc.symbol/BRCA1>}
http://rdf.disgenet.org/lodestar/sparql
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
PREFIX up: <http://purl.uniprot.org/core/>
SELECT DISTINCT ?disease WHERE {
?gda a [(rdfs:subClassOf)* sio:SIO_000983].
?gda sio:SIO_000628 ?disease.
?disease a ncit:C7057.
?gda sio:SIO_000628 ?gene.
?gene a ncit:C16612.
?gene skos:exactMatch <http://identifiers.org/hgnc.symbol/BRCA1>}
http://rdf.disgenet.org/lodestar/sparql
• Inference	cannot	be	assumed	on	a	SPARQL	
endpoint	=>	take	care	with	defining	queries
Why	?
• Define	a	query	to	find	genes	with	important	
link	to	Crohn’s	disease	(score	>	0.35)
Exercise
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
PREFIX up: <http://purl.uniprot.org/core/>
SELECT DISTINCT ?gene WHERE {
?gda sio:SIO_000628 ?gene,?disease .
?gene a ncit:C16612 .
?gene skos:exactMatch ?GeneID .
?disease a ncit:C7057 .
?disease dcterms:title ?DiseaseName .
?gda sio:SIO_000216 ?scoreIRI .
?scoreIRI sio:SIO_000300 ?score .
FILTER (?score > "0.35"^^xsd:decimal)
FILTER (contains(str(?DiseaseName),"Crohn"))
}
http://rdf.disgenet.org/lodestar/sparql
Bio ontologies and semantic technologies[2]
neXtProt
• Define	a	query	to	find	proteins	related	with	
Cardio	diseases
• Define	a	query	to	find	the	genomic	location	of	
gene	“TP53”
Exercise
select distinct ?id where {
?entry skos:exactMatch ?id.
?entry :isoform ?isoform.
?isoform :medical ?medical_annotation.
?medical_annotation :term ?term.
?term :related ?disease.
?disease a :MeshCv.
?disease rdfs:label ?label.
FILTER(CONTAINS(?label,"Cardio")).
}
https://snorql.nextprot.org/
Bio ontologies and semantic technologies[2]
select ?chrom ?start ?end where
{
?gene rdf:type :Gene.
?gene :name ?name.
?gene :chromosome ?chrom.
?gene :begin ?start.
?gene :end ?end.
FILTER (str(?name) = "TP53")
}
https://snorql.nextprot.org/
Bio ontologies and semantic technologies[2]
• Federated	querying:	include	data	from	
another	endpoint	using	the	SERVICE	keyword
• Example:	find	pathways	(from	wikipathways)	
involving	gene	linked	to	Crohn’s	disease	(from	
disgenet)
SPARQL	and	federated	queries
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX void: <http://rdfs.org/ns/void#>
PREFIX sio: <http://semanticscience.org/resource/>
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
PREFIX up: <http://purl.uniprot.org/core/>
PREFIX wp: <http://vocabularies.wikipathways.org/wp#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
http://rdf.disgenet.org/lodestar
SELECT DISTINCT ?PathwayName WHERE {
?gda sio:SIO_000628 ?gene, ?disease .
?gene a ncit:C16612 .
?disease a ncit:C7057 .
?disease dcterms:title ?DiseaseName .
?gda sio:SIO_000216 ?scoreIRI .
?scoreIRI sio:SIO_000300 ?score .
FILTER (?score > "0.35"^^xsd:decimal)
FILTER (contains(str(?DiseaseName),"Crohn"))
SERVICE <http://sparql.wikipathways.org/> {
?geneProduct a wp:GeneProduct .
?geneProduct dc:identifier ?gene .
?geneProduct dcterms:isPartOf ?pathway .
?pathway dc:identifier ?pathwayid .
?pathway dc:title ?PathwayName .
}
}
http://rdf.disgenet.org/lodestar/sparql
Bio ontologies and semantic technologies[2]
Application:	BOINQ
• Framework	for	managing	sequencing	data	
using	semantic	technologies
• Find	it	here	:	
https://github.com/mr-tijn/boinq2
Functionalities
• Uploader/converter
– Upload	BED/GFF/VCF	files
– Automatically	translated	into	triples
– Stored	in	triplestore
Functionalities
• Query	builder
– Visually	build	SPARQL	queries	that	query	your	data	
along	with	public	data
– Store	results	as	new	graphs	or	download	as	CSV
Demo:	query	for	finding	first	exons	of	
genes	related	to	colon	cancer

More Related Content

What's hot (20)

PDF
Bio ontologies and semantic technologies
Prof. Wim Van Criekinge
 
PPTX
How to make your published data findable, accessible, interoperable and reusable
Phoenix Bioinformatics
 
PPTX
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
PPTX
2016 02 23_biological_databases_part1
Prof. Wim Van Criekinge
 
PPTX
Building a repository of biomedical ontologies with Neo4j
Simon Jupp
 
PPTX
Connected Data for Machine Learning | Paul Groth
Connected Data World
 
PDF
Connecting life sciences data at the European Bioinformatics Institute
Connected Data World
 
PPTX
Facilitating semantic alignment.-biohackathon-jupp
Simon Jupp
 
PPTX
Ontologies neo4j-graph-workshop-berlin
Simon Jupp
 
PPTX
schema.org and biomedical ontologies
Simon Jupp
 
PPT
Importing life science at a into Neo4j
Simon Jupp
 
PDF
ECCB 2014: Extracting patterns of database and software usage from the bioinf...
geraintduck
 
PPTX
Semantics as a service at EMBL-EBI
Simon Jupp
 
PPTX
Semi-automated Exploration and Extraction of Data in Scientific Tables
Elsevier
 
PDF
Anyone Can Build A Recommendation Engine With Solr: Presented by Doug Turnbul...
Lucidworks
 
PPTX
Chris Brew - TR Discover: A Natural Language Interface for Exploring Linked D...
Machine Learning Prague
 
PDF
Query-Load aware partitioning of RDF data
Luis Galárraga
 
PPTX
LibrarySearch bootcamp
sttis
 
PPT
Tracing Networks: Ontology-based Software in a Nutshell
TracingNetworks
 
PPT
Rdf
Imran Babar
 
Bio ontologies and semantic technologies
Prof. Wim Van Criekinge
 
How to make your published data findable, accessible, interoperable and reusable
Phoenix Bioinformatics
 
2019 03 05_biological_databases_part5_v_upload
Prof. Wim Van Criekinge
 
2016 02 23_biological_databases_part1
Prof. Wim Van Criekinge
 
Building a repository of biomedical ontologies with Neo4j
Simon Jupp
 
Connected Data for Machine Learning | Paul Groth
Connected Data World
 
Connecting life sciences data at the European Bioinformatics Institute
Connected Data World
 
Facilitating semantic alignment.-biohackathon-jupp
Simon Jupp
 
Ontologies neo4j-graph-workshop-berlin
Simon Jupp
 
schema.org and biomedical ontologies
Simon Jupp
 
Importing life science at a into Neo4j
Simon Jupp
 
ECCB 2014: Extracting patterns of database and software usage from the bioinf...
geraintduck
 
Semantics as a service at EMBL-EBI
Simon Jupp
 
Semi-automated Exploration and Extraction of Data in Scientific Tables
Elsevier
 
Anyone Can Build A Recommendation Engine With Solr: Presented by Doug Turnbul...
Lucidworks
 
Chris Brew - TR Discover: A Natural Language Interface for Exploring Linked D...
Machine Learning Prague
 
Query-Load aware partitioning of RDF data
Luis Galárraga
 
LibrarySearch bootcamp
sttis
 
Tracing Networks: Ontology-based Software in a Nutshell
TracingNetworks
 

Similar to Bio ontologies and semantic technologies[2] (20)

PDF
RDF: what and why plus a SPARQL tutorial
Jerven Bolleman
 
PDF
A Hands On Overview Of The Semantic Web
Shamod Lacoul
 
PPT
Finding knowledge, data and answers on the Semantic Web
ebiquity
 
PDF
Bio2RDF @ W3C HCLS2009
François Belleau
 
PPT
NCBO SPARQL Endpoint
Trish Whetzel
 
PPTX
A Little SPARQL in your Analytics
Dr. Neil Brittliff
 
PDF
Graph databases & data integration v2
Dimitris Kontokostas
 
PPT
Ist16-04 An introduction to RDF
Emanuele Della Valle
 
PDF
Use of open_linked_data_in_bioinformatics
Remzi Çelebi
 
PDF
Querying Bio2RDF data
alison.callahan
 
PPT
A hands on overview of the semantic web
Marakana Inc.
 
PPTX
Infromation Reprentation, Structured Data and Semantics
Yogendra Tamang
 
PDF
Bio2RDF presentation at Combine 2012
François Belleau
 
PPTX
Introduction to SPARQL
Jose Emilio Labra Gayo
 
PPTX
Introduction to SPARQL
Jose Emilio Labra Gayo
 
PPT
Webofdata
Bill Roberts
 
PDF
Transforming Your Data with GraphDB: GraphDB Fundamentals, Jan 2018
Ontotext
 
PPT
SPARQL Query Forms
Leigh Dodds
 
PPT
Querying the Semantic Web with SPARQL
Emanuele Della Valle
 
ODP
Bio2RDF@BH2010
François Belleau
 
RDF: what and why plus a SPARQL tutorial
Jerven Bolleman
 
A Hands On Overview Of The Semantic Web
Shamod Lacoul
 
Finding knowledge, data and answers on the Semantic Web
ebiquity
 
Bio2RDF @ W3C HCLS2009
François Belleau
 
NCBO SPARQL Endpoint
Trish Whetzel
 
A Little SPARQL in your Analytics
Dr. Neil Brittliff
 
Graph databases & data integration v2
Dimitris Kontokostas
 
Ist16-04 An introduction to RDF
Emanuele Della Valle
 
Use of open_linked_data_in_bioinformatics
Remzi Çelebi
 
Querying Bio2RDF data
alison.callahan
 
A hands on overview of the semantic web
Marakana Inc.
 
Infromation Reprentation, Structured Data and Semantics
Yogendra Tamang
 
Bio2RDF presentation at Combine 2012
François Belleau
 
Introduction to SPARQL
Jose Emilio Labra Gayo
 
Introduction to SPARQL
Jose Emilio Labra Gayo
 
Webofdata
Bill Roberts
 
Transforming Your Data with GraphDB: GraphDB Fundamentals, Jan 2018
Ontotext
 
SPARQL Query Forms
Leigh Dodds
 
Querying the Semantic Web with SPARQL
Emanuele Della Valle
 
Bio2RDF@BH2010
François Belleau
 
Ad

More from Prof. Wim Van Criekinge (20)

PPTX
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
PPTX
P7 2018 biopython3
Prof. Wim Van Criekinge
 
PPTX
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
PPTX
P4 2018 io_functions
Prof. Wim Van Criekinge
 
PPTX
P3 2018 python_regexes
Prof. Wim Van Criekinge
 
PPTX
P1 2018 python
Prof. Wim Van Criekinge
 
PPTX
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
PPTX
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
PPTX
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
PPTX
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
PPTX
P7 2017 biopython3
Prof. Wim Van Criekinge
 
PPTX
P6 2017 biopython2
Prof. Wim Van Criekinge
 
PPTX
Van criekinge 2017_11_13_rodebiotech
Prof. Wim Van Criekinge
 
PPTX
P4 2017 io
Prof. Wim Van Criekinge
 
PPTX
T5 2017 database_searching_v_upload
Prof. Wim Van Criekinge
 
PPTX
P1 3 2017_python_exercises
Prof. Wim Van Criekinge
 
PPTX
P3 2017 python_regexes
Prof. Wim Van Criekinge
 
PPTX
P2 2017 python_strings
Prof. Wim Van Criekinge
 
PPTX
P1 2017 python
Prof. Wim Van Criekinge
 
PPTX
2017 molecular profiling_wim_vancriekinge
Prof. Wim Van Criekinge
 
2019 02 21_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
P7 2018 biopython3
Prof. Wim Van Criekinge
 
P6 2018 biopython2b
Prof. Wim Van Criekinge
 
P4 2018 io_functions
Prof. Wim Van Criekinge
 
P3 2018 python_regexes
Prof. Wim Van Criekinge
 
P1 2018 python
Prof. Wim Van Criekinge
 
2018 05 08_biological_databases_no_sql
Prof. Wim Van Criekinge
 
2018 03 27_biological_databases_part4_v_upload
Prof. Wim Van Criekinge
 
2018 03 20_biological_databases_part3
Prof. Wim Van Criekinge
 
2018 02 20_biological_databases_part2_v_upload
Prof. Wim Van Criekinge
 
P7 2017 biopython3
Prof. Wim Van Criekinge
 
P6 2017 biopython2
Prof. Wim Van Criekinge
 
Van criekinge 2017_11_13_rodebiotech
Prof. Wim Van Criekinge
 
T5 2017 database_searching_v_upload
Prof. Wim Van Criekinge
 
P1 3 2017_python_exercises
Prof. Wim Van Criekinge
 
P3 2017 python_regexes
Prof. Wim Van Criekinge
 
P2 2017 python_strings
Prof. Wim Van Criekinge
 
P1 2017 python
Prof. Wim Van Criekinge
 
2017 molecular profiling_wim_vancriekinge
Prof. Wim Van Criekinge
 
Ad

Recently uploaded (20)

PDF
People & Earth's Ecosystem -Lesson 2: People & Population
marvinnbustamante1
 
PPTX
Gall bladder, Small intestine and Large intestine.pptx
rekhapositivity
 
PDF
Federal dollars withheld by district, charter, grant recipient
Mebane Rash
 
PDF
BÀI TẬP BỔ TRỢ THEO LESSON TIẾNG ANH - I-LEARN SMART WORLD 7 - CẢ NĂM - CÓ ĐÁ...
Nguyen Thanh Tu Collection
 
PDF
Zoology (Animal Physiology) practical Manual
raviralanaresh2
 
PDF
DIGESTION OF CARBOHYDRATES,PROTEINS,LIPIDS
raviralanaresh2
 
PPTX
How to Configure Lost Reasons in Odoo 18 CRM
Celine George
 
PPTX
How to Manage Promotions in Odoo 18 Sales
Celine George
 
PDF
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
PPTX
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
PPTX
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
PDF
'' IMPORTANCE OF EXCLUSIVE BREAST FEEDING ''
SHAHEEN SHAIKH
 
PPTX
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
PPTX
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
PPTX
Soil and agriculture microbiology .pptx
Keerthana Ramesh
 
PDF
LAW OF CONTRACT (5 YEAR LLB & UNITARY LLB )- MODULE - 1.& 2 - LEARN THROUGH P...
APARNA T SHAIL KUMAR
 
PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
DOCX
A summary of SPRING SILKWORMS by Mao Dun.docx
maryjosie1
 
PDF
CHILD RIGHTS AND PROTECTION QUESTION BANK
Dr Raja Mohammed T
 
PPTX
Capitol Doctoral Presentation -July 2025.pptx
CapitolTechU
 
People & Earth's Ecosystem -Lesson 2: People & Population
marvinnbustamante1
 
Gall bladder, Small intestine and Large intestine.pptx
rekhapositivity
 
Federal dollars withheld by district, charter, grant recipient
Mebane Rash
 
BÀI TẬP BỔ TRỢ THEO LESSON TIẾNG ANH - I-LEARN SMART WORLD 7 - CẢ NĂM - CÓ ĐÁ...
Nguyen Thanh Tu Collection
 
Zoology (Animal Physiology) practical Manual
raviralanaresh2
 
DIGESTION OF CARBOHYDRATES,PROTEINS,LIPIDS
raviralanaresh2
 
How to Configure Lost Reasons in Odoo 18 CRM
Celine George
 
How to Manage Promotions in Odoo 18 Sales
Celine George
 
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
'' IMPORTANCE OF EXCLUSIVE BREAST FEEDING ''
SHAHEEN SHAIKH
 
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
Soil and agriculture microbiology .pptx
Keerthana Ramesh
 
LAW OF CONTRACT (5 YEAR LLB & UNITARY LLB )- MODULE - 1.& 2 - LEARN THROUGH P...
APARNA T SHAIL KUMAR
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
A summary of SPRING SILKWORMS by Mao Dun.docx
maryjosie1
 
CHILD RIGHTS AND PROTECTION QUESTION BANK
Dr Raja Mohammed T
 
Capitol Doctoral Presentation -July 2025.pptx
CapitolTechU
 

Bio ontologies and semantic technologies[2]