SlideShare a Scribd company logo
Brief Introduction to Deep Learning +
Solving XOR using ANN
MENOUFIA UNIVERSITY
FACULTY OF COMPUTERS AND INFORMATION
‫المنوفية‬ ‫جامعة‬
‫الحاسبات‬ ‫كلية‬‫والمعلومات‬
‫المنوفية‬ ‫جامعة‬
Ahmed Fawzy Gad
ahmed.fawzy@ci.menofia.edu.eg
Classification Example
BA
01
1
10
00
0
11
Neural Networks
Input Hidden Output
BA
01
1
10
00
0
11
Neural Networks
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
=
+0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Network Architecture!!
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
=
+ 0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
Input OutputHidden
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
Input OutputHidden
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
Input OutputHidden
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
A
B
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
A
B
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1 10
00
0 11
Input Output
A
B
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
A
B
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
BA
01
1
10
00
0
11
Input Output
A
B
1/0
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
Input Output
A
B
1/0
𝑾 𝟏
𝑾 𝟐
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
=
+ 0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
Input Output
A
B
1/0
𝑾 𝟑
𝑾 𝟒
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
A
B
1/0
𝑾 𝟑
𝑾 𝟒
A
B
1/0
𝑾 𝟏
𝑾 𝟐
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
0
0.2
0.4
0.6
0.8
1
1.2
0 0.5 1 1.5
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
A
B
𝑾 𝟑
𝑾 𝟒
A
B
𝑾 𝟏
𝑾 𝟐
A
B
𝑾 𝟑
𝑾 𝟒
𝑾 𝟓
𝑾 𝟔
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
A
B
𝑾 𝟑
𝑾 𝟒
𝑾 𝟓
𝑾 𝟔
A 𝑾 𝟏
𝑾 𝟐
B
𝑾 𝟑
𝑾 𝟒
𝑾 𝟓
𝑾 𝟔
A 𝑾 𝟏
𝑾 𝟐
B
𝑾 𝟑
𝑾 𝟒
Brief Introduction to Deep Learning + Solving XOR using ANNs
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Brief Introduction to Deep Learning + Solving XOR using ANNs
Brief Introduction to Deep Learning + Solving XOR using ANNs
Brief Introduction to Deep Learning + Solving XOR using ANNs
Brief Introduction to Deep Learning + Solving XOR using ANNs
Brief Introduction to Deep Learning + Solving XOR using ANNs
Input Output
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Hidden
Weights=𝑾𝒊
𝑾 𝟓
𝑾 𝟔
1/0
𝒀𝒋
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Output
𝒀𝒋
BA
01
1
10
00
0
11
Input Hidden
1/0
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Output
𝒀𝒋
BA
01
1
10
00
0
11
Input Hidden
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Output
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Components
Output
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Inputs
Output
s
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Inputs
Output
s
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=SOP(𝑿𝒊, 𝑾𝒊)
Activation Function
Inputs
Output
s
𝑿𝒊=Inputs 𝑾𝒊=Weights
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=SOP(𝑿𝒊, 𝑾𝒊)
Activation Function
Inputs
Output
s
𝑿𝒊=Inputs 𝑾𝒊=Weights
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=SOP(𝑿𝒊, 𝑾𝒊)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Inputs
Output
s
𝑿𝒊=Inputs 𝑾𝒊=Weights
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
s=SOP(𝑿𝒊, 𝑾𝒊)
1/0
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Each Hidden/Output Layer
Neuron has its SOP.
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Activation Function
Inputs
Output
s
𝑿 𝟏
𝑿 𝟐
𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
S= 𝟏
𝒎
𝑿𝒊 𝑾𝒊
1/0
Activation Function
Outputs
Output
F(s)s
𝑿 𝟏
𝑿 𝟐
Class Label
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Function
Outputs
Output
F(s)s
𝑿 𝟏
𝑿 𝟐
Class Label
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
Input Hidden
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Activation Functions
Piecewise
Linear Sigmoid Binary
Activation Functions
Which activation function to use?
Outputs
Class
Labels
Activation
Function
TWO Class
Labels
TWO
Outputs
One that gives two outputs.
Which activation function to use?
𝑪𝒋𝒀𝒋
BA
01
1
10
00
0
11
BA
01
1 10
00
0 11
Activation Functions
Piecewise
Linear Sigmoid BinaryBinary
Activation Function
Output
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
BA
01
1
10
00
0
11
0
0.2
0.4
0.6
0.8
1
1.2
0 0.2 0.4 0.6 0.8 1 1.2
1/0
Input Hidden
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Hidden Layer Neurons
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
Bias
Output Layer Neurons
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟑
1/0
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
All Bias Values
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
1/0
+1
𝒃 𝟑
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
1/0
+1
𝒃 𝟑
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Bias
Add Bias to SOP
Input Output
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
1/0
+1
𝒃 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Learning Rate
𝟎 ≤ η ≤ 𝟏
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
Other Parameters
Step n
𝒏 = 𝟎, 𝟏, 𝟐, …
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
Other Parameters
Desired Output 𝒅𝒋
𝒏 = 𝟎, 𝟏, 𝟐, …
𝒅 𝒏 =
𝟏, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟏 (𝟏)
𝟎, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟐 (𝟎)
BA
01
1
10
00
0
11
F(s)s
𝑿 𝟏
𝑿 𝟐
bin
𝒀𝒋
+1
𝒃 𝟏
+1
𝒃 𝟐
1/0
+1
𝒃 𝟑
𝑾 𝟓
𝑾 𝟔
A
B
𝑾 𝟏
𝑾 𝟐
𝑾 𝟑
𝑾 𝟒
s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…)
𝟎 ≤ η ≤ 𝟏
𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …)
W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
Neural Networks Training Steps
Weights Initialization
Inputs Application
Sum of Inputs-Weights Products
Activation Function Response Calculation
Weights Adaptation
Back to Step 2
1
2
3
4
5
6
Regarding 5th Step: Weights Adaptation
• If the predicted output Y is not the same as the desired output d,
then weights are to be adapted according to the following equation:
𝑾 𝒏 + 𝟏 = 𝑾 𝒏 + η 𝒅 𝒏 − 𝒀 𝒏 𝑿(𝒏)
Where
𝑾 𝒏 = [𝒃 𝒏 , 𝑾 𝟏(𝒏), 𝑾 𝟐(𝒏), 𝑾 𝟑(𝒏), … , 𝑾 𝒎(𝒏)]
Neural Networks
Training Example
Step n=0
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=0:
η = .001
𝑋 𝑛 = 𝑋 0 = +1, +1, +1,1, 0
𝑊 𝑛 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 0 = 1
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=0
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=0 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+1*1+0*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 −. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+1*1+0*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑩𝑰𝑵 𝑺2
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+0*-2+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0 - Output
𝒀 𝒏 = 𝒀 𝟎 = 𝒀 𝑺3
= 1
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=0
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟎 = 1
𝐝 𝒏 = 𝒅 𝟎 = 1
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=1:
η = .001
𝑋 𝑛 = 𝑋 1 = +1, +1, +1,0, 1
𝑊 𝑛 = 𝑊 1 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 1 = +1
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=1
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=1 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+0*1+1*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 −. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+0*1+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑩𝑰𝑵 𝑺2
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+0*-2+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1 - Output
𝒀 𝒏 = 𝒀 𝟏 = 𝒀 𝑺3
= 1
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=1
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟏 = 1
𝐝 𝒏 = 𝒅 𝟏 = 1
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−2
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=2:
η = .001
𝑋 𝑛 = 𝑋 2 = +1, +1, +1,0, 0
𝑊 𝑛 = 𝑊 2 = 𝑊 1 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 2 = 0
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=2
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=2 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+0*1+0*1
=-1.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 −𝟏. 𝟓
= 𝟎
𝒃𝒊n 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+0*1+0*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑺𝑮𝑵 𝑺2
= 𝑺𝑮𝑵 −. 𝟓
=0
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+0*-2+0*1
=-.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 −. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2 - Output
𝒀 𝒏 = 𝒀 𝟐 = 𝒀 𝑺3
= 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=2
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟐 = 𝟎
𝐝 𝒏 = 𝒅 𝟐 = 𝟎
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3
• In each step in the solution, the parameters of the neural network
must be known.
• Parameters of step n=3:
η = .001
𝑋 𝑛 = 𝑋 3 = +1, +1, +1,1, 1
𝑊 𝑛 = 𝑊 3 = 𝑊 2 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6
= −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1
𝑑 𝑛 = 𝑑 3 = 0
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=3
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
BA
01
1 => 1
10
00
0 => 0
11
Neural Networks
Training Example
Step n=3 – SOP – 𝑺 𝟏
𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑)
=+1*-1.5+1*1+1*1
=.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – Output – 𝑺 𝟏
𝒀 𝑺 𝟏 =
= 𝑩𝑰𝑵 𝑺 𝟏
= 𝑩𝑰𝑵 . 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – SOP – 𝑺 𝟐
𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒)
=+1*-.5+1*1+1*1
=1.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – Output – 𝑺 𝟐
𝒀 𝑺2 =
= 𝑩𝑰𝑵 𝑺2
= 𝑩𝑰𝑵 𝟏. 𝟓
= 1
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
−𝟏, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – SOP – 𝑺 𝟑
𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔)
=+1*-.5+1*-2+1*1
=-1.5
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 – Output – 𝑺 𝟑
𝒀 𝑺3 =
= 𝑩𝑰𝑵 𝑺3
= 𝑩𝑰𝑵 −𝟏. 𝟓
= 𝟎
𝒃𝒊𝒏 𝒔 =
+𝟏, 𝒔 ≥ 𝟎
𝟎, 𝒔 < 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3 - Output
𝒀 𝒏 = 𝒀 𝟑 = 𝒀 𝑺3
= 𝟎
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Neural Networks
Training Example
Step n=3
Predicted Vs. Desired
𝒀 𝒏 = 𝒀 𝟑 = 𝟎
𝐝 𝒏 = 𝒅 𝟑 = 𝟎
∵ 𝒀 𝒏 = 𝒅 𝒏
∴ Weights are Correct.
No Adaptation
BA
01
1 => 1
10
00
0 => 0
11
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Final Weights
s
𝑿 𝟏
𝑿 𝟐
𝒀𝒋
+1
−𝟏. 𝟓
+1
−. 𝟓
1/0
+1
−. 𝟓
−𝟐
+𝟏
A
B
+𝟏
+𝟏
+𝟏
+𝟏
bin
Current weights predicted
the desired outputs.

More Related Content

What's hot (20)

PDF
210523 swin transformer v1.5
taeseon ryu
 
PPTX
Deep Learning - CNN and RNN
Ashray Bhandare
 
PPTX
Lstm
Mehrnaz Faraz
 
PPT
Back propagation
Nagarajan
 
PDF
Neural Networks: Multilayer Perceptron
Mostafa G. M. Mostafa
 
PDF
Deep Belief Networks
Hasan H Topcu
 
PPTX
Deep neural networks
Si Haem
 
PDF
Deep learning
Mohamed Loey
 
PPTX
1.1. the central concepts of automata theory
Sampath Kumar S
 
PDF
Yurii Pashchenko: Zero-shot learning capabilities of CLIP model from OpenAI
Lviv Startup Club
 
PPT
Multi-Layer Perceptrons
ESCOM
 
PDF
Feature Engineering
HJ van Veen
 
PPTX
Naive bayes
Ashraf Uddin
 
PDF
Introduction to XGBoost
Joonyoung Yi
 
PPTX
Deep Neural Networks (DNN)
Sir Syed University of Engineering & Technology
 
PDF
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
PPTX
Neural network & its applications
Ahmed_hashmi
 
PDF
Deep Feed Forward Neural Networks and Regularization
Yan Xu
 
PPTX
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Preferred Networks
 
210523 swin transformer v1.5
taeseon ryu
 
Deep Learning - CNN and RNN
Ashray Bhandare
 
Back propagation
Nagarajan
 
Neural Networks: Multilayer Perceptron
Mostafa G. M. Mostafa
 
Deep Belief Networks
Hasan H Topcu
 
Deep neural networks
Si Haem
 
Deep learning
Mohamed Loey
 
1.1. the central concepts of automata theory
Sampath Kumar S
 
Yurii Pashchenko: Zero-shot learning capabilities of CLIP model from OpenAI
Lviv Startup Club
 
Multi-Layer Perceptrons
ESCOM
 
Feature Engineering
HJ van Veen
 
Naive bayes
Ashraf Uddin
 
Introduction to XGBoost
Joonyoung Yi
 
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Neural network & its applications
Ahmed_hashmi
 
Deep Feed Forward Neural Networks and Regularization
Yan Xu
 
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Preferred Networks
 

Similar to Brief Introduction to Deep Learning + Solving XOR using ANNs (20)

PDF
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Ahmed Gad
 
PPTX
Deep learning study 2
San Kim
 
PPTX
Module1 (2).pptxvgybhunjimko,l.vgbyhnjmk;
vallepubalaji66
 
PPTX
latest TYPES OF NEURAL NETWORKS (2).pptx
MdMahfoozAlam5
 
PPTX
Introduction to Neural Networks and Deep Learning from Scratch
Ahmed BESBES
 
PPTX
Artificial neural networks - A gentle introduction to ANNS.pptx
AttaNox1
 
PPTX
Deep learning simplified
Lovelyn Rose
 
PDF
Artificial Neural Networks
Stefano Dalla Palma
 
PDF
Nural Network ppt presentation which help about nural
sayaleedeshmukh5
 
PPT
Ann ics320 part4
Hasan Suthar
 
PPT
SOFTCOMPUTERING TECHNICS - Unit
sravanthi computers
 
PDF
Machine Learning.pdf
nikola_tesla1
 
PPTX
CS767_Lecture_04.pptx
ShujatHussainGadi
 
PPTX
Introduction to Neural Networks and its application
RahulKumar812056
 
PDF
Neural networks
Prakhar Mishra
 
PPT
Annintro
kaushaljha009
 
PDF
(Artificial) Neural Network
Putri Wikie
 
PPTX
Neural Networks in Artificial intelligence
SridarshiniVikkram
 
PPT
Neural network and mlp
partha pratim deb
 
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
Ahmed Gad
 
Deep learning study 2
San Kim
 
Module1 (2).pptxvgybhunjimko,l.vgbyhnjmk;
vallepubalaji66
 
latest TYPES OF NEURAL NETWORKS (2).pptx
MdMahfoozAlam5
 
Introduction to Neural Networks and Deep Learning from Scratch
Ahmed BESBES
 
Artificial neural networks - A gentle introduction to ANNS.pptx
AttaNox1
 
Deep learning simplified
Lovelyn Rose
 
Artificial Neural Networks
Stefano Dalla Palma
 
Nural Network ppt presentation which help about nural
sayaleedeshmukh5
 
Ann ics320 part4
Hasan Suthar
 
SOFTCOMPUTERING TECHNICS - Unit
sravanthi computers
 
Machine Learning.pdf
nikola_tesla1
 
CS767_Lecture_04.pptx
ShujatHussainGadi
 
Introduction to Neural Networks and its application
RahulKumar812056
 
Neural networks
Prakhar Mishra
 
Annintro
kaushaljha009
 
(Artificial) Neural Network
Putri Wikie
 
Neural Networks in Artificial intelligence
SridarshiniVikkram
 
Neural network and mlp
partha pratim deb
 
Ad

More from Ahmed Gad (20)

PPTX
ICEIT'20 Cython for Speeding-up Genetic Algorithm
Ahmed Gad
 
PDF
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...
Ahmed Gad
 
PDF
Python for Computer Vision - Revision 2nd Edition
Ahmed Gad
 
PDF
Multi-Objective Optimization using Non-Dominated Sorting Genetic Algorithm wi...
Ahmed Gad
 
PDF
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
Ahmed Gad
 
PDF
Derivation of Convolutional Neural Network from Fully Connected Network Step-...
Ahmed Gad
 
PDF
Introduction to Optimization with Genetic Algorithm (GA)
Ahmed Gad
 
PDF
Derivation of Convolutional Neural Network (ConvNet) from Fully Connected Net...
Ahmed Gad
 
PDF
Avoid Overfitting with Regularization
Ahmed Gad
 
PDF
Genetic Algorithm (GA) Optimization - Step-by-Step Example
Ahmed Gad
 
PDF
ICCES 2017 - Crowd Density Estimation Method using Regression Analysis
Ahmed Gad
 
PDF
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
Ahmed Gad
 
PDF
Computer Vision: Correlation, Convolution, and Gradient
Ahmed Gad
 
PDF
Python for Computer Vision - Revision
Ahmed Gad
 
PDF
Anime Studio Pro 10 Tutorial as Part of Multimedia Course
Ahmed Gad
 
PDF
Operations in Digital Image Processing + Convolution by Example
Ahmed Gad
 
PDF
MATLAB Code + Description : Real-Time Object Motion Detection and Tracking
Ahmed Gad
 
PDF
MATLAB Code + Description : Very Simple Automatic English Optical Character R...
Ahmed Gad
 
PDF
Graduation Project - Face Login : A Robust Face Identification System for Sec...
Ahmed Gad
 
PDF
Introduction to MATrices LABoratory (MATLAB) as Part of Digital Signal Proces...
Ahmed Gad
 
ICEIT'20 Cython for Speeding-up Genetic Algorithm
Ahmed Gad
 
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...
Ahmed Gad
 
Python for Computer Vision - Revision 2nd Edition
Ahmed Gad
 
Multi-Objective Optimization using Non-Dominated Sorting Genetic Algorithm wi...
Ahmed Gad
 
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
Ahmed Gad
 
Derivation of Convolutional Neural Network from Fully Connected Network Step-...
Ahmed Gad
 
Introduction to Optimization with Genetic Algorithm (GA)
Ahmed Gad
 
Derivation of Convolutional Neural Network (ConvNet) from Fully Connected Net...
Ahmed Gad
 
Avoid Overfitting with Regularization
Ahmed Gad
 
Genetic Algorithm (GA) Optimization - Step-by-Step Example
Ahmed Gad
 
ICCES 2017 - Crowd Density Estimation Method using Regression Analysis
Ahmed Gad
 
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
Ahmed Gad
 
Computer Vision: Correlation, Convolution, and Gradient
Ahmed Gad
 
Python for Computer Vision - Revision
Ahmed Gad
 
Anime Studio Pro 10 Tutorial as Part of Multimedia Course
Ahmed Gad
 
Operations in Digital Image Processing + Convolution by Example
Ahmed Gad
 
MATLAB Code + Description : Real-Time Object Motion Detection and Tracking
Ahmed Gad
 
MATLAB Code + Description : Very Simple Automatic English Optical Character R...
Ahmed Gad
 
Graduation Project - Face Login : A Robust Face Identification System for Sec...
Ahmed Gad
 
Introduction to MATrices LABoratory (MATLAB) as Part of Digital Signal Proces...
Ahmed Gad
 
Ad

Recently uploaded (20)

PPTX
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
PPTX
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
PDF
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
PPTX
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
PPTX
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
PDF
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PPTX
THE TAME BIRD AND THE FREE BIRD.pptxxxxx
MarcChristianNicolas
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PPTX
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
PDF
DIGESTION OF CARBOHYDRATES,PROTEINS,LIPIDS
raviralanaresh2
 
PDF
CEREBRAL PALSY: NURSING MANAGEMENT .pdf
PRADEEP ABOTHU
 
PPTX
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
PPTX
How to Set Maximum Difference Odoo 18 POS
Celine George
 
PPTX
SPINA BIFIDA: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PPTX
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
PDF
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
PPTX
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
PPTX
Pyhton with Mysql to perform CRUD operations.pptx
Ramakrishna Reddy Bijjam
 
PDF
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
How to Manage Large Scrollbar in Odoo 18 POS
Celine George
 
BANDHA (BANDAGES) PPT.pptx ayurveda shalya tantra
rakhan78619
 
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
Mathematics 5 - Time Measurement: Time Zone
menchreo
 
STAFF DEVELOPMENT AND WELFARE: MANAGEMENT
PRADEEP ABOTHU
 
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
THE TAME BIRD AND THE FREE BIRD.pptxxxxx
MarcChristianNicolas
 
Dimensions of Societal Planning in Commonism
StefanMz
 
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
DIGESTION OF CARBOHYDRATES,PROTEINS,LIPIDS
raviralanaresh2
 
CEREBRAL PALSY: NURSING MANAGEMENT .pdf
PRADEEP ABOTHU
 
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
How to Set Maximum Difference Odoo 18 POS
Celine George
 
SPINA BIFIDA: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
Pyhton with Mysql to perform CRUD operations.pptx
Ramakrishna Reddy Bijjam
 
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 

Brief Introduction to Deep Learning + Solving XOR using ANNs

  • 1. Brief Introduction to Deep Learning + Solving XOR using ANN MENOUFIA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATION ‫المنوفية‬ ‫جامعة‬ ‫الحاسبات‬ ‫كلية‬‫والمعلومات‬ ‫المنوفية‬ ‫جامعة‬ Ahmed Fawzy Gad [email protected]
  • 3. Neural Networks Input Hidden Output BA 01 1 10 00 0 11
  • 12. = +0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5
  • 13. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Network Architecture!!
  • 14. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 = + 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5
  • 17. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 Input OutputHidden
  • 18. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 Input OutputHidden
  • 19. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 Input OutputHidden
  • 20. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output
  • 21. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output
  • 22. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output
  • 23. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output A B
  • 24. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output A B
  • 25. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output A B
  • 26. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output A B
  • 27. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 BA 01 1 10 00 0 11 Input Output A B 1/0
  • 28. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 Input Output A B 1/0 𝑾 𝟏 𝑾 𝟐
  • 29. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 = + 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5
  • 32. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 Input Output A B 1/0 𝑾 𝟑 𝑾 𝟒
  • 33. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 A B 1/0 𝑾 𝟑 𝑾 𝟒 A B 1/0 𝑾 𝟏 𝑾 𝟐 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5
  • 34. 0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 A B 𝑾 𝟑 𝑾 𝟒
  • 35. A B 𝑾 𝟏 𝑾 𝟐 A B 𝑾 𝟑 𝑾 𝟒 𝑾 𝟓 𝑾 𝟔
  • 36. 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 A B 𝑾 𝟑 𝑾 𝟒 𝑾 𝟓 𝑾 𝟔 A 𝑾 𝟏 𝑾 𝟐 B 𝑾 𝟑 𝑾 𝟒
  • 37. 𝑾 𝟓 𝑾 𝟔 A 𝑾 𝟏 𝑾 𝟐 B 𝑾 𝟑 𝑾 𝟒
  • 40. . . .
  • 42. . . .
  • 45. . . .
  • 46. . . .
  • 52. Input Output BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Hidden Weights=𝑾𝒊 𝑾 𝟓 𝑾 𝟔 1/0 𝒀𝒋 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 53. Activation Function Output 𝒀𝒋 BA 01 1 10 00 0 11 Input Hidden 1/0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 54. Activation Function Output 𝒀𝒋 BA 01 1 10 00 0 11 Input Hidden 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 55. Activation Function Output 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 56. Activation Function Components Output 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 57. Activation Function Inputs Output s 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 58. Activation Function Inputs Output s 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=SOP(𝑿𝒊, 𝑾𝒊)
  • 59. Activation Function Inputs Output s 𝑿𝒊=Inputs 𝑾𝒊=Weights 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=SOP(𝑿𝒊, 𝑾𝒊)
  • 60. Activation Function Inputs Output s 𝑿𝒊=Inputs 𝑾𝒊=Weights 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=SOP(𝑿𝒊, 𝑾𝒊)
  • 61. 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 Activation Function Inputs Output s 𝑿𝒊=Inputs 𝑾𝒊=Weights 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 s=SOP(𝑿𝒊, 𝑾𝒊) 1/0
  • 62. Activation Function Inputs Output s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0 Each Hidden/Output Layer Neuron has its SOP.
  • 63. Activation Function Inputs Output s 𝑿 𝟏 𝑿 𝟐 𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0
  • 64. Activation Function Inputs Output s 𝑿 𝟏 𝑿 𝟐 𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0
  • 65. Activation Function Inputs Output s 𝑿 𝟏 𝑿 𝟐 𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 S= 𝟏 𝒎 𝑿𝒊 𝑾𝒊 1/0
  • 66. Activation Function Outputs Output F(s)s 𝑿 𝟏 𝑿 𝟐 Class Label 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 67. Activation Function Outputs Output F(s)s 𝑿 𝟏 𝑿 𝟐 Class Label 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Input Hidden 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 69. Activation Functions Which activation function to use? Outputs Class Labels Activation Function TWO Class Labels TWO Outputs One that gives two outputs. Which activation function to use? 𝑪𝒋𝒀𝒋 BA 01 1 10 00 0 11 BA 01 1 10 00 0 11
  • 71. Activation Function Output F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 BA 01 1 10 00 0 11 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 1/0 Input Hidden 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 72. Bias Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 73. Bias Hidden Layer Neurons Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0
  • 74. Bias Output Layer Neurons Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟑 1/0 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 75. All Bias Values Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 76. Bias Add Bias to SOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 77. Bias Add Bias to SOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟏=(𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 1/0 +1 𝒃 𝟑 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 78. Bias Add Bias to SOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟐=(𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 1/0 +1 𝒃 𝟑 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 79. Bias Add Bias to SOP Input Output BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 𝑺 𝟑=(𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 1/0 +1 𝒃 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 80. Learning Rate 𝟎 ≤ η ≤ 𝟏 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒
  • 81. Other Parameters Step n 𝒏 = 𝟎, 𝟏, 𝟐, … F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
  • 82. Other Parameters Desired Output 𝒅𝒋 𝒏 = 𝟎, 𝟏, 𝟐, … 𝒅 𝒏 = 𝟏, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟏 (𝟏) 𝟎, 𝒙 𝒏 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑪𝟐 (𝟎) BA 01 1 10 00 0 11 F(s)s 𝑿 𝟏 𝑿 𝟐 bin 𝒀𝒋 +1 𝒃 𝟏 +1 𝒃 𝟐 1/0 +1 𝒃 𝟑 𝑾 𝟓 𝑾 𝟔 A B 𝑾 𝟏 𝑾 𝟐 𝑾 𝟑 𝑾 𝟒 s=(𝑿 𝟎 𝑾 𝟎+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟐+…) 𝟎 ≤ η ≤ 𝟏 𝑿(𝒏)=(𝑿 𝟎, 𝑿 𝟏,𝑿 𝟐, …) W(𝒏)=(𝑾 𝟎, 𝑾 𝟏,𝑾 𝟐, …)
  • 83. Neural Networks Training Steps Weights Initialization Inputs Application Sum of Inputs-Weights Products Activation Function Response Calculation Weights Adaptation Back to Step 2 1 2 3 4 5 6
  • 84. Regarding 5th Step: Weights Adaptation • If the predicted output Y is not the same as the desired output d, then weights are to be adapted according to the following equation: 𝑾 𝒏 + 𝟏 = 𝑾 𝒏 + η 𝒅 𝒏 − 𝒀 𝒏 𝑿(𝒏) Where 𝑾 𝒏 = [𝒃 𝒏 , 𝑾 𝟏(𝒏), 𝑾 𝟐(𝒏), 𝑾 𝟑(𝒏), … , 𝑾 𝒎(𝒏)]
  • 85. Neural Networks Training Example Step n=0 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=0: η = .001 𝑋 𝑛 = 𝑋 0 = +1, +1, +1,1, 0 𝑊 𝑛 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 0 = 1 BA 01 1 => 1 10 00 0 => 0 11
  • 86. Neural Networks Training Example Step n=0 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 87. Neural Networks Training Example Step n=0 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+1*1+0*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 88. Neural Networks Training Example Step n=0 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 −. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 89. Neural Networks Training Example Step n=0 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+1*1+0*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 90. Neural Networks Training Example Step n=0 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑩𝑰𝑵 𝑺2 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 91. Neural Networks Training Example Step n=0 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+0*-2+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 92. Neural Networks Training Example Step n=0 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 93. Neural Networks Training Example Step n=0 - Output 𝒀 𝒏 = 𝒀 𝟎 = 𝒀 𝑺3 = 1 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 94. Neural Networks Training Example Step n=0 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟎 = 1 𝐝 𝒏 = 𝒅 𝟎 = 1 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 95. Neural Networks Training Example Step n=1 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=1: η = .001 𝑋 𝑛 = 𝑋 1 = +1, +1, +1,0, 1 𝑊 𝑛 = 𝑊 1 = 𝑊 0 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 1 = +1 BA 01 1 => 1 10 00 0 => 0 11
  • 96. Neural Networks Training Example Step n=1 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 97. Neural Networks Training Example Step n=1 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+0*1+1*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 98. Neural Networks Training Example Step n=1 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 −. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 99. Neural Networks Training Example Step n=1 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+0*1+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 100. Neural Networks Training Example Step n=1 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑩𝑰𝑵 𝑺2 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 101. Neural Networks Training Example Step n=1 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+0*-2+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 102. Neural Networks Training Example Step n=1 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 103. Neural Networks Training Example Step n=1 - Output 𝒀 𝒏 = 𝒀 𝟏 = 𝒀 𝑺3 = 1 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 104. Neural Networks Training Example Step n=1 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟏 = 1 𝐝 𝒏 = 𝒅 𝟏 = 1 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −2 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 105. Neural Networks Training Example Step n=2 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=2: η = .001 𝑋 𝑛 = 𝑋 2 = +1, +1, +1,0, 0 𝑊 𝑛 = 𝑊 2 = 𝑊 1 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 2 = 0 BA 01 1 => 1 10 00 0 => 0 11
  • 106. Neural Networks Training Example Step n=2 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 107. Neural Networks Training Example Step n=2 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+0*1+0*1 =-1.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 108. Neural Networks Training Example Step n=2 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 −𝟏. 𝟓 = 𝟎 𝒃𝒊n 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 109. Neural Networks Training Example Step n=2 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+0*1+0*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 110. Neural Networks Training Example Step n=2 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑺𝑮𝑵 𝑺2 = 𝑺𝑮𝑵 −. 𝟓 =0 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 111. Neural Networks Training Example Step n=2 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+0*-2+0*1 =-.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 112. Neural Networks Training Example Step n=2 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 −. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 113. Neural Networks Training Example Step n=2 - Output 𝒀 𝒏 = 𝒀 𝟐 = 𝒀 𝑺3 = 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 114. Neural Networks Training Example Step n=2 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟐 = 𝟎 𝐝 𝒏 = 𝒅 𝟐 = 𝟎 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 115. Neural Networks Training Example Step n=3 • In each step in the solution, the parameters of the neural network must be known. • Parameters of step n=3: η = .001 𝑋 𝑛 = 𝑋 3 = +1, +1, +1,1, 1 𝑊 𝑛 = 𝑊 3 = 𝑊 2 = 𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 = −1.5, −.5, −.5, 1, 1, 1, 1, −2, 1 𝑑 𝑛 = 𝑑 3 = 0 BA 01 1 => 1 10 00 0 => 0 11
  • 116. Neural Networks Training Example Step n=3 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin BA 01 1 => 1 10 00 0 => 0 11
  • 117. Neural Networks Training Example Step n=3 – SOP – 𝑺 𝟏 𝑺 𝟏=(+𝟏𝒃 𝟏+𝑿 𝟏 𝑾 𝟏+𝑿 𝟐 𝑾 𝟑) =+1*-1.5+1*1+1*1 =.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 118. Neural Networks Training Example Step n=3 – Output – 𝑺 𝟏 𝒀 𝑺 𝟏 = = 𝑩𝑰𝑵 𝑺 𝟏 = 𝑩𝑰𝑵 . 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 119. Neural Networks Training Example Step n=3 – SOP – 𝑺 𝟐 𝑺 𝟐=(+𝟏𝒃 𝟐+𝑿 𝟏 𝑾 𝟐+𝑿 𝟐 𝑾 𝟒) =+1*-.5+1*1+1*1 =1.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 120. Neural Networks Training Example Step n=3 – Output – 𝑺 𝟐 𝒀 𝑺2 = = 𝑩𝑰𝑵 𝑺2 = 𝑩𝑰𝑵 𝟏. 𝟓 = 1 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 −𝟏, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 121. Neural Networks Training Example Step n=3 – SOP – 𝑺 𝟑 𝑺 𝟑=(+𝟏𝒃 𝟑+𝑺 𝟏 𝑾 𝟓+𝑺 𝟐 𝑾 𝟔) =+1*-.5+1*-2+1*1 =-1.5 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 122. Neural Networks Training Example Step n=3 – Output – 𝑺 𝟑 𝒀 𝑺3 = = 𝑩𝑰𝑵 𝑺3 = 𝑩𝑰𝑵 −𝟏. 𝟓 = 𝟎 𝒃𝒊𝒏 𝒔 = +𝟏, 𝒔 ≥ 𝟎 𝟎, 𝒔 < 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 123. Neural Networks Training Example Step n=3 - Output 𝒀 𝒏 = 𝒀 𝟑 = 𝒀 𝑺3 = 𝟎 BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 124. Neural Networks Training Example Step n=3 Predicted Vs. Desired 𝒀 𝒏 = 𝒀 𝟑 = 𝟎 𝐝 𝒏 = 𝒅 𝟑 = 𝟎 ∵ 𝒀 𝒏 = 𝒅 𝒏 ∴ Weights are Correct. No Adaptation BA 01 1 => 1 10 00 0 => 0 11 s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin
  • 125. Final Weights s 𝑿 𝟏 𝑿 𝟐 𝒀𝒋 +1 −𝟏. 𝟓 +1 −. 𝟓 1/0 +1 −. 𝟓 −𝟐 +𝟏 A B +𝟏 +𝟏 +𝟏 +𝟏 bin Current weights predicted the desired outputs.