Calcium channel blockers
continued
• Prevent movement of calcium inside
myocardial cells and vascular smooth muscle
cells
Cardiac exitation/contraction coupling↓
vascular smooth muscle relaxation
Chemical Type Chemical Names Brand Names
Phenylalkylamines verapamil Calan,
Calna SR,
Isoptin SR,
Verelan
Benzothiazepines diltiazem Cardizem CD,
Dilacor XR
1,4-Dihydropyridines Nifedipine
nicardipine
isradipine
felodipine
amlodipine
Adalat CC,
Procardia XL
Cardene
DynaCirc
Plendil
Norvasc
Three Classes of CCBs
Subtypes of Ca
channels
• L , T, N , P
• L Type in cardiac and vascular tissue
• N in neuronal tissue.
Continued
• L type calcium channel
• Subunit-α1,α2,β,gamma,δ
Voltage Gated Calcium Channel
Mechanism of action
• Voltage depended L channel plugging-
Nefedipine
• L channel distortion-Verapamil,Diltiazem
 Increase the time that Ca2+ channels are closed
 Relaxation of the arterial smooth muscle but not
much effect on venous smooth muscle
 Significant reduction in afterload but not preload
Effects of CCB
Cardiac cells rely on L-type Ca2+ channels for contraction
and for the upstroke of the AP in slow response cells
Contractile Cells
(atria, ventricle)
L-Type
Ca2+
Ca2+ Ca2+
Slow Response Cells
(SA node, AV node)
L-Type
Ca2+
Ca2+
Vascular smooth muscle relies on Ca2+ influx
through L-type Ca2+ channels for contraction
(graded, Ca2+ dependent
contraction)
L-Type
Ca2+
Effects of CCB in LV function
LV
Performance
Reduced
Contractility
V>N>D
Reduced
Afterload
N>D=V
Reflex
sympathetic
stimulation
N>D=V
Unchanged
Preload
Variable
HR
N↑,V↓,D↓
Differential effects of different CCBs on CV cells
AV
SN
AV
SN
Potential reflex
increase in
HR, myocardial
contractility
and O2 demand
Coronary
VD
Dihydropyridines: Selective vasodilators Non -dihydropyridines: equipotent for
cardiac tissue and vasculature
Heart rate
moderating
Mild Peripheral
and coronary
vasodilation
Reduced
inotropism
Peripheral
vasodilation
Effect Verapamil Diltiazem Nifedipine
Peripheral
vasodilatation
  
Coronary
vasodilatation
  
Preload 0 0 0/
Afterload   
Contractility  0/ / *
Heart rate 0/  /0
AV conduction   0
Hemodynamic Effects of CCBs
Agent
Oral
Absorption
(%)
Bioavail-
Ability
(%)
Protein
Bound
(%)
Elimination
Half-Life
(h)
Verapamil >90 10-35 83-92 2.8-6.3*
Diltiazem >90 41-67 77-80 3.5-7
Nifedipine >90 45-86 92-98 1.9-5.8
Nicardipine
-100
35 >95 2-4
Isradipine
>90
15-24 >95 8-9
Felodipine
-100
20 >99 11-16
Amlodipine
>90
64-90 97-99 30-50
CCBs: Pharmacokinetics
 Angina pectoris(prinzmetal)
 Hypertension
 Treatment of supraventricular
arrhythmias
- Atrial Fibrillation
- Paroxysmal SVT
Hypertrophied cardiomyopathy
Raynaud phenomenon
Widespread use of CCBs
uses
• Amlodipine-isolated systolic HF in elderly
• PRAISE study-safe in EF>30%
• Combination with BB but not in Diabetics and
EF<30%
• Useful for supraventricular arrythmias,stable
angina,Migraine-Verapamil
• Atrial fibrillation-Diltiazem
• Nimodipine-SAH
• Nicardipine-tocolytic agent
Newer and investigational uses
• Hypertrophied cardiomyopathy
• Cold cardioplegia
• PAH
• ↓platelet aggregation
• Asthma
• Achalasia cardia,esophageal spasm
• Technique of induced hypotension
Caution
• For unstable angina
• HF with significant LVD with EF<30%(no)
• Conduction defects
• WPW syndrome
• Hypotension
Contraindication Verapamil Nifedipine Diltiazem
Hypotension + ++ +
Sinus
bradycardia
+ 0 +
AV conduction
defects
++ 0 ++
Severe cardiac
failure
++ + +
Contradications for CCBs
Adverse effects
• Bradycardia
• Hypotension
• Dizziness
• Headache
• Constipation
• Oedema(ankle)
• LVD
Drug interactions
• Ca channel blocker +inhalation agent=depress
SA& AV node,↓BP,↓MAC value
• LA + Ca channel blocker= toxicity may be ↑
• NMB+Ca channel blocker=prolong NMB
• K solution+ Ca channel blocker=hyperkalemia
• Plasma Digoxin level ↑d/t ↓clearence
• Verapamil elevate dose of epinephrine
producing arrythmia in Halothane use
Thank you!

Calcium channel blocker

  • 1.
  • 2.
    continued • Prevent movementof calcium inside myocardial cells and vascular smooth muscle cells Cardiac exitation/contraction coupling↓ vascular smooth muscle relaxation
  • 3.
    Chemical Type ChemicalNames Brand Names Phenylalkylamines verapamil Calan, Calna SR, Isoptin SR, Verelan Benzothiazepines diltiazem Cardizem CD, Dilacor XR 1,4-Dihydropyridines Nifedipine nicardipine isradipine felodipine amlodipine Adalat CC, Procardia XL Cardene DynaCirc Plendil Norvasc Three Classes of CCBs
  • 4.
    Subtypes of Ca channels •L , T, N , P • L Type in cardiac and vascular tissue • N in neuronal tissue.
  • 5.
    Continued • L typecalcium channel • Subunit-α1,α2,β,gamma,δ
  • 6.
  • 7.
    Mechanism of action •Voltage depended L channel plugging- Nefedipine • L channel distortion-Verapamil,Diltiazem
  • 8.
     Increase thetime that Ca2+ channels are closed  Relaxation of the arterial smooth muscle but not much effect on venous smooth muscle  Significant reduction in afterload but not preload Effects of CCB
  • 9.
    Cardiac cells relyon L-type Ca2+ channels for contraction and for the upstroke of the AP in slow response cells Contractile Cells (atria, ventricle) L-Type Ca2+ Ca2+ Ca2+ Slow Response Cells (SA node, AV node) L-Type Ca2+ Ca2+
  • 10.
    Vascular smooth musclerelies on Ca2+ influx through L-type Ca2+ channels for contraction (graded, Ca2+ dependent contraction) L-Type Ca2+
  • 11.
    Effects of CCBin LV function LV Performance Reduced Contractility V>N>D Reduced Afterload N>D=V Reflex sympathetic stimulation N>D=V Unchanged Preload Variable HR N↑,V↓,D↓
  • 12.
    Differential effects ofdifferent CCBs on CV cells AV SN AV SN Potential reflex increase in HR, myocardial contractility and O2 demand Coronary VD Dihydropyridines: Selective vasodilators Non -dihydropyridines: equipotent for cardiac tissue and vasculature Heart rate moderating Mild Peripheral and coronary vasodilation Reduced inotropism Peripheral vasodilation
  • 13.
    Effect Verapamil DiltiazemNifedipine Peripheral vasodilatation    Coronary vasodilatation    Preload 0 0 0/ Afterload    Contractility  0/ / * Heart rate 0/  /0 AV conduction   0 Hemodynamic Effects of CCBs
  • 14.
    Agent Oral Absorption (%) Bioavail- Ability (%) Protein Bound (%) Elimination Half-Life (h) Verapamil >90 10-3583-92 2.8-6.3* Diltiazem >90 41-67 77-80 3.5-7 Nifedipine >90 45-86 92-98 1.9-5.8 Nicardipine -100 35 >95 2-4 Isradipine >90 15-24 >95 8-9 Felodipine -100 20 >99 11-16 Amlodipine >90 64-90 97-99 30-50 CCBs: Pharmacokinetics
  • 15.
     Angina pectoris(prinzmetal) Hypertension  Treatment of supraventricular arrhythmias - Atrial Fibrillation - Paroxysmal SVT Hypertrophied cardiomyopathy Raynaud phenomenon Widespread use of CCBs
  • 16.
    uses • Amlodipine-isolated systolicHF in elderly • PRAISE study-safe in EF>30% • Combination with BB but not in Diabetics and EF<30% • Useful for supraventricular arrythmias,stable angina,Migraine-Verapamil • Atrial fibrillation-Diltiazem • Nimodipine-SAH • Nicardipine-tocolytic agent
  • 17.
    Newer and investigationaluses • Hypertrophied cardiomyopathy • Cold cardioplegia • PAH • ↓platelet aggregation • Asthma • Achalasia cardia,esophageal spasm • Technique of induced hypotension
  • 18.
    Caution • For unstableangina • HF with significant LVD with EF<30%(no) • Conduction defects • WPW syndrome • Hypotension
  • 19.
    Contraindication Verapamil NifedipineDiltiazem Hypotension + ++ + Sinus bradycardia + 0 + AV conduction defects ++ 0 ++ Severe cardiac failure ++ + + Contradications for CCBs
  • 20.
    Adverse effects • Bradycardia •Hypotension • Dizziness • Headache • Constipation • Oedema(ankle) • LVD
  • 21.
    Drug interactions • Cachannel blocker +inhalation agent=depress SA& AV node,↓BP,↓MAC value • LA + Ca channel blocker= toxicity may be ↑ • NMB+Ca channel blocker=prolong NMB • K solution+ Ca channel blocker=hyperkalemia • Plasma Digoxin level ↑d/t ↓clearence • Verapamil elevate dose of epinephrine producing arrythmia in Halothane use
  • 22.