SlideShare a Scribd company logo
CASSANDRA COMMUNITY WEBINARS APRIL 2013
INTRODUCTION TO
APACHE CASSANDRA 1.2
Aaron Morton
Apache Cassandra Committer, Data Stax MVP for Apache Cassandra
@aaronmorton
www.thelastpickle.com
Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License
Cassandra Summit 2013
June 11 & 12
San Francisco
Use SFSummit25 for 25% off
Cassandra Summit 2013
DataStax Ac*ademy
Free certification during the
summit.
Overview
The Cluster
The Node
The Data Model
Cassandra
- Started at Facebook
- Open sourced in 2008
- Top Level Apache project
since 2010.
Used by...
Netflix,Twitter, Reddit,
Rackspace...
Inspiration
- Google Big Table (2006)
- Amazon Dynamo (2007)
Why Cassandra?
- Scale
- Operations
- Data Model
Overview
The Cluster
The Node
The Data Model
Store ‘foo’ key with Replication Factor 3.
Node 1 - 'foo'
Node 2 - 'foo'Node 4
Node 3 - 'foo'
Consistent Hashing.
- Evenly map keys to nodes
- Minimise key movements
when nodes join or leave
Partitioner.
RandomPartitioner
transforms Keys to Tokens
using MD5.
(Default pre version 1.2.)
Partitioner.
Murmur3Partitioner
transforms Keys to Tokens
using Murmur3.
(Default in version 1.2.)
Keys andTokens?
token 0 99
key 'fop' 'foo'
10 90
Token Ring.
'foo'
token: 90
'fop'
token: 10
99 0
Token Ranges pre v1.2.
Node 1
token: 0
Node 2
token: 25
Node 4
token: 75
Node 3
token: 50
1-2576-0
Token Ranges withVirtual Nodes in v1.2.
Node 1
Node 2
Node 3
Node 4
LocateToken Range.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Replication Strategy selects
Replication Factor number of
nodes for a row.
SimpleStrategy with RF 3.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
NetworkTopologyStrategy uses
a Replication Factor per Data
Centre.
(Default.)
Multi DC Replication with RF 3 and RF 2.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Node 1
Node 2
Node 3
Node 4
West DC East DC
The Snitch knows which Data
Centre and Rack the Node is
in.
SimpleSnitch.
Places all nodes in the same
DC and Rack.
(Default, there are others.)
EC2Snitch.
DC is set to AWS Region and
a Rack to Availability Zone.
The Client and the Coordinator.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Client
Multi DC Client and the Coordinator.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Client
Node 10
Node 20
Node 30
Node 40
Gossip.
Nodes share information with
a small number of neighbours.
Who share information with a
small number of neigh..
Consistency Level (CL).
- Specified for each request
- Number of nodes to wait
for.
Consistency Level (CL)
- Any*
- One,Two Three
- QUORUM
- LOCAL_QUORUM, EACH_QUOURM*
QUOURM at Replication Factor...
Replication
Factor
QUOURM
2 or 3 4 or 5 6 or 7
2 3 4
Write ‘foo’ at QUOURM with Hinted Handoff.
Node 1
Node 2
Node 3
Node 4
'foo' for #3
'foo'
token: 90
Client
Read ‘foo’ at QUOURM.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Client
Column Timestamps
used to resolve
differences.
Resolving differences.
Column Node 1 Node 2 Node 3
purple
cromulent
(timestamp 10)
cromulent
(timestamp 10)
<missing>
monkey
embiggens
(timestamp 10)
embiggens
(timestamp 10)
debigulator
(timestamp 5)
dishwasher
tomato
(timestamp 10)
tomato
(timestamp 10)
tomacco
(timestamp 15)
Consistent read for ‘foo’ at QUOURM.
Node 1
Node 2
Node 3
Node 4
Client
cromulent
cromulent
<empty>
Node 1
Node 2
Node 3
Node 4
Client
cromulent cromulent
Strong Consistency
W + R > N
(#Write Nodes + #Read Nodes> Replication Factor)
Achieving Strong Consistency.
- QUOURM Read + QUORUM Write
- ALL Read + ONE Write
- ONE Read + ALL Write
Achieving Consistency
- Consistency Level
- Hinted Handoff
- Read Repair
- Anti Entropy
Overview
The Cluster
The Node
The Data Model
Optimised for
Writes.
Write path
Append to Write
Ahead Log.
(fsync every 10s by default, other options available)
Write path...
Merge Columns
into Memtable.
(Lock free, always in memory.)
(Later.)
Asynchronously flush
Memtable to new files.
(May be 10’s or 100’s of MB in size.)
Data is stored in
immutable SSTables.
(Sorted String table.)
SSTable files.
*-Data.db
*-Index.db
*-Filter.db
(And others)
SSTables.
SSTable 1
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3 SSTable 4
foo:
dishwasher (ts 15):
tomacco
SSTable 5
Read purple, monkey, dishwasher.
SSTable 1-Data.db
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2-Data.db
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3-Data.db SSTable 4-Data.db
foo:
dishwasher (ts 15):
tomacco
SSTable 5-Data.db
Bloom Filter
Index Sample
SSTable 1-Index.db
Bloom Filter
Index Sample
SSTable 2-Index.db
Bloom Filter
Index Sample
SSTable 3-Index.db
Bloom Filter
Index Sample
SSTable 4-Index.db
Bloom Filter
Index Sample
SSTable 5-Index.db
Memory
Disk
Key Cache caches row key
position in *-Data.db file.
(Removes up to1disk seek per SSTable.)
Read with Key Cache.
SSTable 1-Data.db
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2-Data.db
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3-Data.db SSTable 4-Data.db
foo:
dishwasher (ts 15):
tomacco
SSTable 5-Data.db
Key Cache
Index Sample
SSTable 1-Index.db
Key Cache
Index Sample
SSTable 2-Index.db
Key Cache
Index Sample
SSTable 3-Index.db
Key Cache
Index Sample
SSTable 4-Index.db
Key Cache
Index Sample
SSTable 5-Index.db
Memory
Disk
Bloom Filter Bloom Filter Bloom Filter Bloom Filter Bloom Filter
Row Cache caches entire row.
(Removes all disk IO.)
Read with Row Cache.
Row Cache
SSTable 1-Data.db
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2-Data.db
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3-Data.db SSTable 4-Data.db
foo:
dishwasher (ts 15):
tomacco
SSTable 5-Data.db
Key Cache
Index Sample
SSTable 1-Index.db
Key Cache
Index Sample
SSTable 2-Index.db
Key Cache
Index Sample
SSTable 3-Index.db
Key Cache
Index Sample
SSTable 4-Index.db
Key Cache
Index Sample
SSTable 5-Index.db
Memory
Disk
Bloom Filter Bloom Filter Bloom Filter Bloom Filter Bloom Filter
Compaction merges truth from
multiple SSTables into one
SSTable with the same truth.
(Manual and continuous background process.)
Compaction.
Column SSTable 1 SSTable 2 SSTable 4 New
purple
cromulent
(timestamp 10)
<tombstone>
(timestamp 15)
<tombstone>
(timestamp 15)
monkey
embiggens
(timestamp 10)
embiggens
(timestamp 10)
dishwasher
tomato
(timestamp 10)
tomacco
(timestamp 15)
tomacco
(timestamp 15)
Overview
The Cluster
The Node
The Data Model
Cassandra is good at
reading data from a row in the
order it is stored.
Typically an efficient data model will
denormalize data and use the
storage engine order.
To create a good data model
understand the queries your
application requires.
API Choice
Thrift
Original and still fully
supported API.
API Choice
CQL3
New and fully supported API.
CQL 3
A Table Orientated, Schema
Driven, Data Model and
Query language similar to
SQL.
CQL 3
A Table Orientated, Schema
Driven, Data Model and
Query language similar to
SQL.
Twitter clone
using CQL 3 via the cqlsh
tool.
bin/cqlsh
Queries?
- Post Tweet to Followers
- Get Tweet by ID
- List Tweets by User
- List Tweets in User Timeline
- List Followers
Keyspace
A Namespace container.
Our Keyspace
CREATE KEYSPACE
cass_community
WITH replication =
{'class':'NetworkTopologyStrategy',
'datacenter1':1};
Table
A sparse collection of well
known, ordered columns.
FirstTable
CREATE TABLE User
(
user_name text,
password text,
real_name text,
PRIMARY KEY (user_name)
);
Some users
cqlsh:cass_community> INSERT INTO User
... (user_name, password, real_name)
... VALUES
... ('fred', 'sekr8t', 'Mr Foo');
cqlsh:cass_community> select * from User;
user_name | password | real_name
-----------+----------+-----------
fred | sekr8t | Mr Foo
Some users
cqlsh:cass_community> INSERT INTO User
... (user_name, password)
... VALUES
... ('bob', 'pwd');
cqlsh:cass_community> select * from User where user_name =
'bob';
user_name | password | real_name
-----------+----------+-----------
bob | pwd | null
Data Model (so far)
Table /
Value
User
user_name Primary Key
TweetTable
CREATE TABLE Tweet
(
tweet_id bigint,
body text,
user_name text,
timestamp timestamp,
PRIMARY KEY (tweet_id)
);
TweetTable...
cqlsh:cass_community> INSERT INTO Tweet
... (tweet_id, body, user_name, timestamp)
... VALUES
... (1, 'The Tweet','fred',1352150816917);
cqlsh:cass_community> select * from Tweet where tweet_id = 1;
tweet_id | body | timestamp | user_name
----------+-----------+--------------------------+-----------
1 | The Tweet | 2012-11-06 10:26:56+1300 | fred
Data Model (so far)
Table /
Value
User Tweet
user_name Primary Key Field
tweet_id Primary Key
UserTweetsTable
CREATE TABLE UserTweets
(
tweet_id bigint,
user_name text,
body text,
timestamp timestamp,
PRIMARY KEY (user_name, tweet_id)
);
UserTweetsTable...
cqlsh:cass_community> INSERT INTO UserTweets
... (tweet_id, body, user_name, timestamp)
... VALUES
... (1, 'The Tweet','fred',1352150816917);
cqlsh:cass_community> select * from UserTweets where
user_name='fred';
user_name | tweet_id | body | timestamp
-----------+----------+-----------+--------------------------
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
UserTweetsTable...
cqlsh:cass_community> select * from UserTweets where
user_name='fred' and tweet_id=1;
user_name | tweet_id | body | timestamp
-----------+----------+-----------+--------------------------
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
UserTweetsTable...
cqlsh:cass_community> INSERT INTO UserTweets
... (tweet_id, body, user_name, timestamp)
... VALUES
... (2, 'Second Tweet', 'fred', 1352150816918);
cqlsh:cass_community> select * from UserTweets where user_name = 'fred';
user_name | tweet_id | body | timestamp
-----------+----------+--------------+--------------------------
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
fred | 2 | Second Tweet | 2012-11-06 10:26:56+1300
UserTweetsTable...
cqlsh:cass_community> select * from UserTweets where user_name = 'fred' order by
tweet_id desc;
user_name | tweet_id | body | timestamp
-----------+----------+--------------+--------------------------
fred | 2 | Second Tweet | 2012-11-06 10:26:56+1300
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
UserTimeline
CREATE TABLE UserTimeline
(
user_name text,
tweet_id bigint,
tweet_user text,
body text,
timestamp timestamp,
PRIMARY KEY (user_name, tweet_id)
)
WITH CLUSTERING ORDER BY (tweet_id DESC);
UserTimeline
cqlsh:cass_community> INSERT INTO UserTimeline
... (user_name, tweet_id, tweet_user, body, timestamp)
... VALUES
... ('fred', 1, 'fred', 'The Tweet',1352150816917);
cqlsh:cass_community> INSERT INTO UserTimeline
... (user_name, tweet_id, tweet_user, body, timestamp)
... VALUES
... ('fred', 100, 'bob', 'My Tweet',1352150846917);
UserTimeline
cqlsh:cass_community> select * from UserTimeline where user_name = 'fred';
user_name | tweet_id | body | timestamp | tweet_user
-----------+----------+-----------+--------------------------+------------
fred | 100 | My Tweet | 2012-11-06 10:27:26+1300 | bob
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300 | fred
Data Model (so far)
Table /
Value
User Tweet
User
Tweets
User
Timeline
user_name Primary Key Field Primary Key Primary Key
tweet_id Primary Key
Primary Key
Component
Primary Key
Component
UserMetricsTable
CREATE TABLE UserMetrics
(
user_name text,
tweets counter,
followers counter,
following counter,
PRIMARY KEY (user_name)
);
UserMetricsTable...
cqlsh:cass_community> UPDATE
... UserMetrics
... SET
... tweets = tweets + 1
... WHERE
... user_name = 'fred';
cqlsh:cass_community> select * from UserMetrics where
user_name = 'fred';
user_name | followers | following | tweets
-----------+-----------+-----------+--------
fred | null | null | 1
Data Model (so far)
Table /
Value
User Tweet
User
Tweets
User
Timeline
User Metrics
user_name
Primary
Key
Field
Primary
Key
Primary
Key
Primary
Key
tweet_id
Primary
Key
Primary Key
Component
Primary Key
Component
Relationships
CREATE TABLE Followers
(
user_name text,
follower text,
timestamp timestamp,
PRIMARY KEY (user_name, follower)
);
CREATE TABLE Following
(
user_name text,
following text,
timestamp timestamp,
PRIMARY KEY (user_name, following)
);
Relationships
cqlsh:cass_community> INSERT INTO
... Following
... (user_name, following, timestamp)
... VALUES
... ('bob', 'fred', 1352247749161);
cqlsh:cass_community> INSERT INTO
... Followers
... (user_name, follower, timestamp)
... VALUES
... ('fred', 'bob', 1352247749161);
Relationships
cqlsh:cass_community> select * from Following;
user_name | following | timestamp
-----------+-----------+--------------------------
bob | fred | 2012-11-07 13:22:29+1300
cqlsh:cass_community> select * from Followers;
user_name | follower | timestamp
-----------+----------+--------------------------
fred | bob | 2012-11-07 13:22:29+1300
Data Model
Table /
Value
User Tweet
User
Tweets
User
Timeline
User
Metrics
Follows
Followers
user_name
Primary
Key
Field
Primary
Key
Primary
Key
Primary
Key
Primary
Key
tweet_id
Primary
Key
Primary Key
Component
Primary Key
Component
Cassandra Summit 2013
June 11 & 12
San Francisco
Use SFSummit25 for 25% off
Thanks.
Aaron Morton
@aaronmorton
www.thelastpickle.com
Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License

More Related Content

What's hot (20)

PDF
Cassandra introduction @ ParisJUG
Duyhai Doan
 
PDF
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Ontico
 
DOC
Unix Basics For Testers
nitin lakhanpal
 
PDF
Cassandra Summit 2013 Keynote
jbellis
 
PDF
Tokyo cassandra conference 2014
jbellis
 
PDF
Pdxpugday2010 pg90
Selena Deckelmann
 
PPTX
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB
 
PDF
Postgres can do THAT?
alexbrasetvik
 
PPT
OOUG: Oracle transaction locking
Kyle Hailey
 
TXT
Oracle ORA Errors
Manish Mudhliyar
 
PPTX
Database administration commands
Varsha Ajith
 
PDF
2013 london advanced-replication
Marc Schwering
 
PPT
UKOUG, Oracle Transaction Locks
Kyle Hailey
 
PDF
Cassandra introduction @ NantesJUG
Duyhai Doan
 
PDF
Decompressed vmlinux: linux kernel initialization from page table configurati...
Adrian Huang
 
PPTX
Replication and Replica Sets
MongoDB
 
PDF
了解Oracle rac brain split resolution
maclean liu
 
PDF
Unix Basics Commands
Sameeran Jenna
 
PPTX
Replication and Replica Sets
MongoDB
 
PPT
Oracle 10g Performance: chapter 09 enqueues
Kyle Hailey
 
Cassandra introduction @ ParisJUG
Duyhai Doan
 
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Ontico
 
Unix Basics For Testers
nitin lakhanpal
 
Cassandra Summit 2013 Keynote
jbellis
 
Tokyo cassandra conference 2014
jbellis
 
Pdxpugday2010 pg90
Selena Deckelmann
 
MongoDB London 2013: Basic Replication in MongoDB presented by Marc Schwering...
MongoDB
 
Postgres can do THAT?
alexbrasetvik
 
OOUG: Oracle transaction locking
Kyle Hailey
 
Oracle ORA Errors
Manish Mudhliyar
 
Database administration commands
Varsha Ajith
 
2013 london advanced-replication
Marc Schwering
 
UKOUG, Oracle Transaction Locks
Kyle Hailey
 
Cassandra introduction @ NantesJUG
Duyhai Doan
 
Decompressed vmlinux: linux kernel initialization from page table configurati...
Adrian Huang
 
Replication and Replica Sets
MongoDB
 
了解Oracle rac brain split resolution
maclean liu
 
Unix Basics Commands
Sameeran Jenna
 
Replication and Replica Sets
MongoDB
 
Oracle 10g Performance: chapter 09 enqueues
Kyle Hailey
 

Viewers also liked (8)

PPTX
Despliegue de Cassandra en la nube de Amazon
Jose Felix Hernandez Barrio
 
PDF
Cassandra Day Atlanta 2015: Diagnosing Problems in Production
DataStax Academy
 
PDF
Silicon Valley Data Science: From Oracle to Cassandra with Spark
DataStax Academy
 
PPTX
Cassandra internals
narsiman
 
PDF
Beginning Operations: 7 Deadly Sins for Apache Cassandra Ops
DataStax Academy
 
PPTX
3800 die-bonder overview
fastbr
 
PDF
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
DataStax Academy
 
PDF
Understanding Data Partitioning and Replication in Apache Cassandra
DataStax
 
Despliegue de Cassandra en la nube de Amazon
Jose Felix Hernandez Barrio
 
Cassandra Day Atlanta 2015: Diagnosing Problems in Production
DataStax Academy
 
Silicon Valley Data Science: From Oracle to Cassandra with Spark
DataStax Academy
 
Cassandra internals
narsiman
 
Beginning Operations: 7 Deadly Sins for Apache Cassandra Ops
DataStax Academy
 
3800 die-bonder overview
fastbr
 
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
DataStax Academy
 
Understanding Data Partitioning and Replication in Apache Cassandra
DataStax
 
Ad

Similar to Cassandra Community Webinar | Introduction to Apache Cassandra 1.2 (20)

PPTX
L6.sp17.pptx
SudheerKumar499932
 
PDF
Cassandra 101
Nader Ganayem
 
PDF
Cassandra1.2
Tianlun Zhang
 
PDF
Introduction to Cassandra & Data model
Duyhai Doan
 
PDF
About "Apache Cassandra"
Jihyun Ahn
 
PDF
Cassandra
Lucian Neghina
 
PDF
Cassandra introduction apache con 2014 budapest
Duyhai Doan
 
PDF
Cassandra Basics, Counters and Time Series Modeling
Vassilis Bekiaris
 
PDF
A Deep Dive into Apache Cassandra for .NET Developers
Luke Tillman
 
PPTX
Presentation
Dimitris Stripelis
 
PPTX
Cassandra
Bang Tsui Liou
 
PDF
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
Trivadis
 
PDF
Apache Cassandra - Data modelling
Alex Thompson
 
PDF
Deep Dive into Cassandra
Brent Theisen
 
PDF
Cassandra introduction mars jug
Duyhai Doan
 
PPTX
Cassandra under the hood
Andriy Rymar
 
PDF
Introduction to Cassandra
shimi_k
 
PDF
Big Data Grows Up - A (re)introduction to Cassandra
Robbie Strickland
 
PPTX
Apache Cassandra, part 2 – data model example, machinery
Andrey Lomakin
 
PPTX
Learning Cassandra NoSQL
Pankaj Khattar
 
L6.sp17.pptx
SudheerKumar499932
 
Cassandra 101
Nader Ganayem
 
Cassandra1.2
Tianlun Zhang
 
Introduction to Cassandra & Data model
Duyhai Doan
 
About "Apache Cassandra"
Jihyun Ahn
 
Cassandra
Lucian Neghina
 
Cassandra introduction apache con 2014 budapest
Duyhai Doan
 
Cassandra Basics, Counters and Time Series Modeling
Vassilis Bekiaris
 
A Deep Dive into Apache Cassandra for .NET Developers
Luke Tillman
 
Presentation
Dimitris Stripelis
 
Cassandra
Bang Tsui Liou
 
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
Trivadis
 
Apache Cassandra - Data modelling
Alex Thompson
 
Deep Dive into Cassandra
Brent Theisen
 
Cassandra introduction mars jug
Duyhai Doan
 
Cassandra under the hood
Andriy Rymar
 
Introduction to Cassandra
shimi_k
 
Big Data Grows Up - A (re)introduction to Cassandra
Robbie Strickland
 
Apache Cassandra, part 2 – data model example, machinery
Andrey Lomakin
 
Learning Cassandra NoSQL
Pankaj Khattar
 
Ad

More from DataStax (20)

PPTX
Is Your Enterprise Ready to Shine This Holiday Season?
DataStax
 
PPTX
Designing Fault-Tolerant Applications with DataStax Enterprise and Apache Cas...
DataStax
 
PPTX
Running DataStax Enterprise in VMware Cloud and Hybrid Environments
DataStax
 
PPTX
Best Practices for Getting to Production with DataStax Enterprise Graph
DataStax
 
PPTX
Webinar | Data Management for Hybrid and Multi-Cloud: A Four-Step Journey
DataStax
 
PPTX
Webinar | How to Understand Apache Cassandra™ Performance Through Read/Writ...
DataStax
 
PDF
Webinar | Better Together: Apache Cassandra and Apache Kafka
DataStax
 
PDF
Top 10 Best Practices for Apache Cassandra and DataStax Enterprise
DataStax
 
PDF
Introduction to Apache Cassandra™ + What’s New in 4.0
DataStax
 
PPTX
Webinar: How Active Everywhere Database Architecture Accelerates Hybrid Cloud...
DataStax
 
PPTX
Webinar | Aligning GDPR Requirements with Today's Hybrid Cloud Realities
DataStax
 
PDF
Designing a Distributed Cloud Database for Dummies
DataStax
 
PDF
How to Power Innovation with Geo-Distributed Data Management in Hybrid Cloud
DataStax
 
PDF
How to Evaluate Cloud Databases for eCommerce
DataStax
 
PPTX
Webinar: DataStax Enterprise 6: 10 Ways to Multiply the Power of Apache Cassa...
DataStax
 
PPTX
Webinar: DataStax and Microsoft Azure: Empowering the Right-Now Enterprise wi...
DataStax
 
PPTX
Webinar - Real-Time Customer Experience for the Right-Now Enterprise featurin...
DataStax
 
PPTX
Datastax - The Architect's guide to customer experience (CX)
DataStax
 
PPTX
An Operational Data Layer is Critical for Transformative Banking Applications
DataStax
 
PPTX
Becoming a Customer-Centric Enterprise Via Real-Time Data and Design Thinking
DataStax
 
Is Your Enterprise Ready to Shine This Holiday Season?
DataStax
 
Designing Fault-Tolerant Applications with DataStax Enterprise and Apache Cas...
DataStax
 
Running DataStax Enterprise in VMware Cloud and Hybrid Environments
DataStax
 
Best Practices for Getting to Production with DataStax Enterprise Graph
DataStax
 
Webinar | Data Management for Hybrid and Multi-Cloud: A Four-Step Journey
DataStax
 
Webinar | How to Understand Apache Cassandra™ Performance Through Read/Writ...
DataStax
 
Webinar | Better Together: Apache Cassandra and Apache Kafka
DataStax
 
Top 10 Best Practices for Apache Cassandra and DataStax Enterprise
DataStax
 
Introduction to Apache Cassandra™ + What’s New in 4.0
DataStax
 
Webinar: How Active Everywhere Database Architecture Accelerates Hybrid Cloud...
DataStax
 
Webinar | Aligning GDPR Requirements with Today's Hybrid Cloud Realities
DataStax
 
Designing a Distributed Cloud Database for Dummies
DataStax
 
How to Power Innovation with Geo-Distributed Data Management in Hybrid Cloud
DataStax
 
How to Evaluate Cloud Databases for eCommerce
DataStax
 
Webinar: DataStax Enterprise 6: 10 Ways to Multiply the Power of Apache Cassa...
DataStax
 
Webinar: DataStax and Microsoft Azure: Empowering the Right-Now Enterprise wi...
DataStax
 
Webinar - Real-Time Customer Experience for the Right-Now Enterprise featurin...
DataStax
 
Datastax - The Architect's guide to customer experience (CX)
DataStax
 
An Operational Data Layer is Critical for Transformative Banking Applications
DataStax
 
Becoming a Customer-Centric Enterprise Via Real-Time Data and Design Thinking
DataStax
 

Recently uploaded (20)

PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PPTX
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
PPTX
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
PDF
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
PDF
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
PDF
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
PDF
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
PPTX
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PDF
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
SIZING YOUR AIR CONDITIONER---A PRACTICAL GUIDE.pdf
Muhammad Rizwan Akram
 
Designing_the_Future_AI_Driven_Product_Experiences_Across_Devices.pptx
presentifyai
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 

Cassandra Community Webinar | Introduction to Apache Cassandra 1.2