This document presents a content-based image retrieval system that uses color and texture features. It uses a K-nearest neighbor classifier to classify images based on color features and extract texture features using log-Gabor filters. Images are then ranked based on their similarity to the query image using Spearman's rank correlation coefficient. The system is tested on a dataset of flag images to retrieve the most similar flags to a given query image based on color and texture features. Experimental results show that the combined approach of using classification, similarity measures and log-Gabor filtering for color and texture features provides better retrieval performance than methods using only wavelets or Gabor filters.