SlideShare a Scribd company logo
Chapter 10 – Sociotechnical SystemsLecture 11Chapter 10 Sociotechnical Systems
Topics coveredComplex systemsSystems engineeringSystems procurementSystem developmentSystem operationChapter 10 Sociotechnical Systems2
SystemsSoftware engineering is not an isolated activity but is part of a broader systems engineering process.Software systems are therefore not isolated systems but are essential components of broader systems that have a human, social or organizational purpose.ExampleWilderness weather system is part of broader weather recording and forecasting systemsThese include hardware and software, forecasting processes, system users, the organizations that depend on weather forecasts, etc.Chapter 10 Sociotechnical Systems3
The sociotechnical systems stack4Chapter 10 Sociotechnical Systems
Layers in the STS stackEquipmentHardware devices, some of which may be computers. Most devices will include an embedded system of some kind.Operating systemProvides a set of common facilities for higher levels in the system.Communications and data managementMiddleware that provides access to remote systems and databases.Application systemsSpecific functionality to meet some organization requirements.Chapter 10 Sociotechnical Systems5
Layers in the STS stackBusiness processesA set of processes involving people and computer systems that support the activities of the business.OrganizationsHigher level strategic business activities that affect the operation of the system.SocietyLaws, regulation and culture that affect the operation of the system.Chapter 10 Sociotechnical Systems6
Holistic system designThere are interactions and dependencies between the layers in a system and changes at one level ripple through the other levelsExample: Change in regulations (society) leads to changes in business processes and application software.For dependability, a systems perspective is essentialContain software failures within the enclosing layers of the STS stack.Understand how faults and failures in adjacent layers may affect the software in a system.Chapter 10 Sociotechnical Systems7
Complex systemsA system is a purposeful collection of inter-related components working together to achieve some common objective. A system may include software, mechanical, electrical and electronic hardware and be operated by people.System components are dependent on other system components.The properties and behaviour of system components are inextricably inter-mingled. This leads to complexity.
System categoriesTechnical computer-based systemsSystems that include hardware and software but where the operators and operational processes are not normally considered to be part of the system. The system is not self-aware.Example: A word processor used to write a book.Socio-technical systemsSystems that include technical systems but also operational processes and people who use and interact with the technical system. Socio-technical systems are governed by organisational policies and rules.Example: A publishing system to produce a book.
Organizational affectsProcess changesSystems may require changes to business processes so training may be required. Significant changes may be resisted by users.Job changesSystems may de-skill users or cause changes to the way they work. The status of individuals in an organization may be affected by the introduction of a new system.Organizational changesSystems may change the political power structure in an organization. If an organization depends on a system then those that control the system have more power.Chapter 10 Sociotechnical Systems10
Socio-technical system characteristicsEmergent propertiesProperties of the system of a whole that depend on the system components and their relationships.Non-deterministicThey do not always produce the same output when presented with the same input because the systems’s behaviour is partially dependent on human operators.Complex relationships with organisational objectivesThe extent to which the system supports organisational objectives does not just depend on the system itself.
Emergent propertiesProperties of the system as a whole rather than properties that can be derived from the properties of components of a systemEmergent properties are a consequence of the relationships between system componentsThey can therefore only be assessed and measured once the components have been integrated into a system
Examplesofemergent properties13Chapter 10 Sociotechnical Systems
Types of emergent propertyFunctional properties These appear when all the parts of a system work together to achieve some objective. For example, a bicycle has the functional property of being a transportation device once it has been assembled from its components.Non-functional emergent propertiesExamples are reliability, performance, safety, and security. These relate to the behaviour of the system in its operational environment. They are often critical for computer-based systems as failure to achieve some minimal defined level in these properties may make the system unusable.
Because of component inter-dependencies, faults can be propagated through the system.System failures often occur because of unforeseen inter-relationships between components.It is practically impossible to anticipate all possible component relationships.Software reliability measures may give a false picture of the overall system reliability.Reliability as an emergent property
Hardware reliability What is the probability of a hardware component failing and how long does it take to repair that component?Software reliabilityHow likely is it that a software component will produce an incorrect output. Software failure is usually distinct from hardware failure in that software does not wear out.  Operator reliability How likely is it that the operator of a system will make an error?Failures are not independent and they propagate from one level to another.Influences on reliability
Failure propagation17Chapter 10 Sociotechnical Systems
Non-determinismA deterministic system is one where a given sequence of inputs will always produce the same sequence of outputs.Software systems are deterministic; systems that include humans are non-deterministicA socio-technical system will not always produce the same sequence of outputs from the same input sequenceHuman elementsPeople do not always behave in the same waySystem changesSystem behaviour is unpredictable because of frequent changes to hardware, software and data.Chapter 10 Sociotechnical Systems18
Success criteriaComplex systems are developed to address ‘wicked problems’ – problems where there cannot be a complete specification.Different stakeholders see the problem in different ways and each has a partial understanding of the issues affecting the system.Consequently, different stakeholders have their own views about whether or not a system is ‘successful’Success is a judgment and cannot be objectively measured.Success is judged using the effectiveness of the system when deployed rather than judged against the original reasons for procuement.Chapter 10 Sociotechnical Systems19
Conflicting views of successMHC-PMS designed to support multiple, conflicting goalsImprove quality of care.Provide better information and care costs and so increase revenue.Fundamental conflictTo satisfy reporting goal, doctors and nurses had to provide additional information over and above that required for clinical purposes.They had less time to interact with patients, so quality of care reduced. System was not a success.However, managers had better reportsSystem was a success from a managerial perspective.Chapter 10 Sociotechnical Systems20
Systems engineeringProcuring, specifying, designing, implementing, validating, deploying and maintaining socio-technical systems.Concerned with the services provided by the system, constraints on its construction and operation and the ways in which it is used to fulfil its purpose or purposes.Chapter 10 Sociotechnical Systems21
Stages of systems engineering22Chapter 10 Sociotechnical Systems
Systems engineering stagesProcurement (acquisition)The purpose of the system is established, high-level system requirements are defined, decisions are made on how functionality is distributed and the system components are purchased.DevelopmentThe system is developed – requirements are defined in detail, the system is implemented and tested and operational processes are defined.OperationThe system is deployed and put into use. Changes are made as new requirements emerge. Eventually, the system is decommissioned.Chapter 10 Sociotechnical Systems23
Security and dependability considerationsDesign options limited by procurement decisionsPurchased components may make some safeguards impossible to implement.Human errors made during development may introduce faults into the system.Inadequate testing may mean faults are not discovered before deployment.Configuration errors during deployment may introduce vulnerabilities.Assumptions made during procurement may be forgotten when system changes are made.Chapter 10 Sociotechnical Systems24
Professional disciplines involved in systems engineering25Chapter 10 Sociotechnical Systems
Inter-disciplinary workingCommunication difficultiesDifferent disciplines use the same terminology to mean different things. This can lead to misunderstandings about what will be implemented.Differing assumptionsEach discipline makes assumptions about what can and can’t be done by other disciplines. Professional boundariesEach discipline tries to protect their professional boundaries and expertise and this affects their judgments on the system.Chapter 10 Sociotechnical Systems26
Key pointsSocio-technical systems include computer hardware, software and people and are designed to meet some business goal.Human and organizational factors, such as the organizational structure, have a significant effect on the operation of socio-technical systems.Emergent properties are properties that are characteristic of the system as a whole and not its component parts. The fundamental stages of systems engineering are procurement, development and operation.Chapter 10 Sociotechnical Systems27
Chapter 10 – Sociotechnical SystemsLecture 228Chapter 10 Sociotechnical Systems
System procurementAcquiring a system (or systems) to meet some identified organizational need.Before procurement, decisions are made on:Scope of the systemSystem budgets and timescalesHigh-level system requirementsBased on this information, decisions are made on whether to procure a system, the type of system and the potential system suppliers.Chapter 10 Sociotechnical Systems29
Decision driversThe state of other organizational systemsThe need to comply with external regulationsExternal competitionBusiness re-organizationAvailable budgetChapter 10 Sociotechnical Systems30
Procurement and developmentSome system specification and architectural design is usually necessary before procurementYou need a specification to let a contract for system developmentThe specification may allow you to buy a commercial off-the-shelf (COTS) system. Almost always cheaper than developing a system from scratchLarge complex systems usually consist of a mix of off the shelf and specially designed components. The procurement processes for these different types of component are usually different.
System procurement processes32Chapter 10 Sociotechnical Systems
Procurement issuesRequirements may have to be modified to match the capabilities of off-the-shelf components.The requirements specification may be part of the contract for the development of the system.There is usually a contract negotiation period to agree changes after the contractor to build a system has been selected.
Contractors and sub-contractorsThe procurement of large hardware/software systems is usually based around some principal contractor.Sub-contracts are issued to other suppliers to supply parts of the system.Customer liases with the principal contractor and does not deal directly with sub-contractors.
Procurement and dependabilityProcurement decisions have profound effects on system dependability as these decisions limit the scope of dependability requirements.For an off-the-shelf system, the procurer has very limited influence on the security and dependability requirements of the system.For a custom system, considerable effort has to be expended in defining security and dependability requirements.Chapter 10 Sociotechnical Systems35
System developmentUsually follows a plan-driven approach because of the need for parallel development of different parts of the systemLittle scope for iteration between phases because hardware changes are very expensive. Software may have to compensate for hardware problems.Inevitably involves engineers from different disciplines who must work togetherMuch scope for misunderstanding here.As explained, different disciplines use a different vocabulary and much negotiation is required. Engineers may have personal agendas to fulfil.
Systems development37Chapter 10 Sociotechnical Systems
System requirements definitionThree types of requirement defined at this stageAbstract functional requirements. System functions are defined in an abstract way;System properties. Non-functional requirements for the system in general are defined;Undesirable characteristics. Unacceptable system behaviour is specified.Should also define overall organisational objectives for the system.
The system design processPartition requirementsOrganise requirements into related groups.  Identify sub-systemsIdentify a set of sub-systems which collectively can meet the system requirements.Assign requirements to sub-systemsCauses particular problems when COTS are integrated.Specify sub-system functionality.Define sub-system interfacesCritical activity for parallel sub-system development.
Requirements and designRequirements engineering and system design are inextricably linked.Constraints posed by the system’s environment and other systems limit design choices so the actual design to be used may be a requirement.Initial design may be necessary to structure the requirements.As you do design, you learn more about the requirements.
Requirements and design spiral41Chapter 10 Sociotechnical Systems
Sub-system developmentTypically parallel projects developing the hardware, software and communications.May involve some COTS  (Commercial Off-the-Shelf) systems procurement.Lack of communication across implementation teams can cause problems.There may be a bureaucratic and slow mechanism for proposing system changes, which means that the development schedule may be extended because of the need for rework.
The process of putting hardware, software and people together to make a system.Should ideally be tackled incrementally so that sub-systems are integrated one at a time.The system is tested as it is integrated.Interface problems between sub-systems are usually found at this stage.May be problems with uncoordinated deliveries of system components.System integration
After completion, the system has to be installed in the customer’s environmentEnvironmental assumptions may be incorrect;May be human resistance to the introduction of a new system;System may have to coexist with alternative systems for some time;May be physical installation problems (e.g. cabling problems);Data cleanup may be required;Operator training has to be identified.System delivery and deployment
Development and dependabilityDecisions are made on dependability and security requirements and trade-offs made between costs, schedule, performance and dependability.Human errors may lead to the introduction of faults into the system.Testing and validation processes may be limited because of limited budgets.Problems in deployment mean there may be a mismatch between the system and its operational environment.Chapter 10 Sociotechnical Systems45
System operationOperational processes are the processes involved in using the system for its defined purpose.For new systems, these processes may have to be designed and tested and operators trained in the use of the system.Operational processes should be flexible to allow operators to cope with problems and periods of fluctuating workload.Chapter 10 Sociotechnical Systems46
Human errorHuman errors occur in operational processes that influence the overall dependability of the system.Viewing human errors:The person approach makes errors the responsibility of the individual and places the blame for error on the operator concerned. Actions to reduce error include threats of punishment, better training, more stringent procedures, etc.The systems approach assumes that people are fallible and will make mistakes. The system is designed to detect these mistakes before they lead to system failure. When a failure occurs, the aim is not to blame an individual but to understand why the system defenses did not trap the error.Chapter 10 Sociotechnical Systems47
System defensesTo improve security and dependability, designers should think about the checks for human error that should be included in a system.As I discuss in later lectures, there should be multiple (redundant) barriers which should be different (diverse)No single barrier can be perfect. There will be latent conditions in the system that may lead to failure.However, with multiple barriers, all have to fail for a system failure to occur.Chapter 10 Sociotechnical Systems48
Reason’s Swiss cheese model of system failure 49Chapter 10 Sociotechnical Systems
Defenses in an ATC systemConflict alert systemRaises an audible alarm when aircraft are on conflicting pathsRecording of instructionsAllows instructions issues to be reviewed and checked.Sharing of informationThe team of controllers cross-check each other’s work.Chapter 10 Sociotechnical Systems50
System evolutionLarge systems have a long lifetime. They must evolve to meet changing requirements.Evolution is inherently costlyChanges must be analysed from a technical and business perspective;Sub-systems interact so unanticipated problems can arise;There is rarely a rationale for original design decisions;System structure is corrupted as changes are made to it.Existing systems which must be maintained are sometimes called legacy systems.
Evolution and dependabilityChanges to a system are often a source of problems and vulnerabilities.Changes may be made without knowledge of previous design decisions made for security and dependability reasons. Built-in safeguards may stop working.New faults may be introduced or latent faults exposed by changes. These may not be discovered because complete system retesting is too expensive.Chapter 10 Sociotechnical Systems52
Key pointsSystem procurement covers all of the activities involved in deciding what system to buy and who should supply that system.System development includes requirements specification, design, construction, integration and testing.When a system is put into use, the operational processes and the system itself have to change to reflect changing business requirements. Human errors are inevitable and systems should include barriers to detect these errors before they lead to system failure.Chapter 10 Sociotechnical Systems53

More Related Content

PPTX
Ch11-Software Engineering 9
Ian Sommerville
 
PPTX
Ch8-Software Engineering 9
Ian Sommerville
 
PPTX
Ch4-Software Engineering 9
Ian Sommerville
 
PPTX
Ch12-Software Engineering 9
Ian Sommerville
 
PPTX
Ch13-Software Engineering 9
Ian Sommerville
 
PPTX
Ch9-Software Engineering 9
Ian Sommerville
 
PPTX
Ch1-Software Engineering 9
Ian Sommerville
 
PPTX
Ch6-Software Engineering 9
Ian Sommerville
 
Ch11-Software Engineering 9
Ian Sommerville
 
Ch8-Software Engineering 9
Ian Sommerville
 
Ch4-Software Engineering 9
Ian Sommerville
 
Ch12-Software Engineering 9
Ian Sommerville
 
Ch13-Software Engineering 9
Ian Sommerville
 
Ch9-Software Engineering 9
Ian Sommerville
 
Ch1-Software Engineering 9
Ian Sommerville
 
Ch6-Software Engineering 9
Ian Sommerville
 

What's hot (20)

PPT
Ian Sommerville, Software Engineering, 9th Edition Ch1
Mohammed Romi
 
PPTX
Ch7-Software Engineering 9
Ian Sommerville
 
PPT
Ian Sommerville, Software Engineering, 9th EditionCh 8
Mohammed Romi
 
PPT
Ian Sommerville, Software Engineering, 9th Edition Ch2
Mohammed Romi
 
PPTX
Ch22-Software Engineering 9
Ian Sommerville
 
PPTX
Ch5- Software Engineering 9
Ian Sommerville
 
PPTX
Ch9 evolution
software-engineering-book
 
PPTX
Ch2-Software Engineering 9
Ian Sommerville
 
PPTX
Ch16-Software Engineering 9
Ian Sommerville
 
PPTX
Ch13 security engineering
software-engineering-book
 
PPTX
Ch12 safety engineering
software-engineering-book
 
PPTX
Ch24 quality management
software-engineering-book
 
PPTX
Ch11 reliability engineering
software-engineering-book
 
PPT
Ch 6
Mohammed Romi
 
PPTX
Ch3-Software Engineering 9
Ian Sommerville
 
PPTX
Ch14-Software Engineering 9
Ian Sommerville
 
PPTX
Ch7 implementation
software-engineering-book
 
PPTX
Ch16 component based software engineering
software-engineering-book
 
PPTX
Ch6 - Architectural Design
Harsh Verdhan Raj
 
PPT
Legacy system.
gourav kottawar
 
Ian Sommerville, Software Engineering, 9th Edition Ch1
Mohammed Romi
 
Ch7-Software Engineering 9
Ian Sommerville
 
Ian Sommerville, Software Engineering, 9th EditionCh 8
Mohammed Romi
 
Ian Sommerville, Software Engineering, 9th Edition Ch2
Mohammed Romi
 
Ch22-Software Engineering 9
Ian Sommerville
 
Ch5- Software Engineering 9
Ian Sommerville
 
Ch2-Software Engineering 9
Ian Sommerville
 
Ch16-Software Engineering 9
Ian Sommerville
 
Ch13 security engineering
software-engineering-book
 
Ch12 safety engineering
software-engineering-book
 
Ch24 quality management
software-engineering-book
 
Ch11 reliability engineering
software-engineering-book
 
Ch3-Software Engineering 9
Ian Sommerville
 
Ch14-Software Engineering 9
Ian Sommerville
 
Ch7 implementation
software-engineering-book
 
Ch16 component based software engineering
software-engineering-book
 
Ch6 - Architectural Design
Harsh Verdhan Raj
 
Legacy system.
gourav kottawar
 
Ad

Viewers also liked (7)

PPTX
Ch26 - software engineering 9
Ian Sommerville
 
PPTX
Ch25-Software Engineering 9
Ian Sommerville
 
PPTX
Chap1 RE Introduction
Ian Sommerville
 
PPTX
Chap3 RE elicitation
Ian Sommerville
 
PPTX
Chap5 RE management
Ian Sommerville
 
PPTX
Chap2 RE processes
Ian Sommerville
 
PPTX
Chap4 RE validation
Ian Sommerville
 
Ch26 - software engineering 9
Ian Sommerville
 
Ch25-Software Engineering 9
Ian Sommerville
 
Chap1 RE Introduction
Ian Sommerville
 
Chap3 RE elicitation
Ian Sommerville
 
Chap5 RE management
Ian Sommerville
 
Chap2 RE processes
Ian Sommerville
 
Chap4 RE validation
Ian Sommerville
 
Ad

Similar to Ch10-Software Engineering 9 (20)

PDF
Socio-technical System
Rahul Hada
 
PPTX
SOCIAL_TECHNICAL_SYSTEMS AND SYSTEMS ENGINEERING.pptx
GracePeter13
 
PPTX
Ch19 - Systems Engineering
Harsh Verdhan Raj
 
PPTX
Ch19 systems engineering
software-engineering-book
 
PPS
testing slide
guest08962a
 
PPTX
CS 5032 L3 socio-technical systems 2013
Ian Sommerville
 
PDF
Socio technical system
Sweta Kumari Barnwal
 
PPTX
Socio technical systems (LSCITS EngD)
Ian Sommerville
 
PPT
Ch2
Saad Gabr
 
PPT
Ch2
phanleson
 
PPTX
Sw2 1
Hungrymind Hms
 
PPTX
Ch10 dependable systems
software-engineering-book
 
PPTX
Ch10 - Dependable Systems
Harsh Verdhan Raj
 
PPTX
ch10.pptx
gdfgdfgdf1
 
PPT
Socio Technical Systems in Software Engineering SE2
koolkampus
 
PPTX
Socio - technic System Case Study(SE).pptx
RohanMistry15
 
PDF
Separation of concerns is a design concept [Dij82] that suggests that any com...
premsridev11
 
PPT
System engineering
Dr.M.Karthika parthasarathy
 
PPTX
Introducing sociotechnical systems
sommerville-videos
 
Socio-technical System
Rahul Hada
 
SOCIAL_TECHNICAL_SYSTEMS AND SYSTEMS ENGINEERING.pptx
GracePeter13
 
Ch19 - Systems Engineering
Harsh Verdhan Raj
 
Ch19 systems engineering
software-engineering-book
 
testing slide
guest08962a
 
CS 5032 L3 socio-technical systems 2013
Ian Sommerville
 
Socio technical system
Sweta Kumari Barnwal
 
Socio technical systems (LSCITS EngD)
Ian Sommerville
 
Ch10 dependable systems
software-engineering-book
 
Ch10 - Dependable Systems
Harsh Verdhan Raj
 
ch10.pptx
gdfgdfgdf1
 
Socio Technical Systems in Software Engineering SE2
koolkampus
 
Socio - technic System Case Study(SE).pptx
RohanMistry15
 
Separation of concerns is a design concept [Dij82] that suggests that any com...
premsridev11
 
System engineering
Dr.M.Karthika parthasarathy
 
Introducing sociotechnical systems
sommerville-videos
 

More from Ian Sommerville (8)

PPTX
Ch17-Software Engineering 9
Ian Sommerville
 
PPTX
Ch18-Software Engineering 9
Ian Sommerville
 
PPTX
Ch19-Software Engineering 9
Ian Sommerville
 
PPTX
Ch21-Software Engineering 9
Ian Sommerville
 
PPTX
Ch20-Software Engineering 9
Ian Sommerville
 
PPTX
Ch15-Software Engineering 9
Ian Sommerville
 
PPTX
Ch23-Software Engineering 9
Ian Sommerville
 
PPTX
Ch24-Software Engineering 9
Ian Sommerville
 
Ch17-Software Engineering 9
Ian Sommerville
 
Ch18-Software Engineering 9
Ian Sommerville
 
Ch19-Software Engineering 9
Ian Sommerville
 
Ch21-Software Engineering 9
Ian Sommerville
 
Ch20-Software Engineering 9
Ian Sommerville
 
Ch15-Software Engineering 9
Ian Sommerville
 
Ch23-Software Engineering 9
Ian Sommerville
 
Ch24-Software Engineering 9
Ian Sommerville
 

Ch10-Software Engineering 9

  • 1. Chapter 10 – Sociotechnical SystemsLecture 11Chapter 10 Sociotechnical Systems
  • 2. Topics coveredComplex systemsSystems engineeringSystems procurementSystem developmentSystem operationChapter 10 Sociotechnical Systems2
  • 3. SystemsSoftware engineering is not an isolated activity but is part of a broader systems engineering process.Software systems are therefore not isolated systems but are essential components of broader systems that have a human, social or organizational purpose.ExampleWilderness weather system is part of broader weather recording and forecasting systemsThese include hardware and software, forecasting processes, system users, the organizations that depend on weather forecasts, etc.Chapter 10 Sociotechnical Systems3
  • 4. The sociotechnical systems stack4Chapter 10 Sociotechnical Systems
  • 5. Layers in the STS stackEquipmentHardware devices, some of which may be computers. Most devices will include an embedded system of some kind.Operating systemProvides a set of common facilities for higher levels in the system.Communications and data managementMiddleware that provides access to remote systems and databases.Application systemsSpecific functionality to meet some organization requirements.Chapter 10 Sociotechnical Systems5
  • 6. Layers in the STS stackBusiness processesA set of processes involving people and computer systems that support the activities of the business.OrganizationsHigher level strategic business activities that affect the operation of the system.SocietyLaws, regulation and culture that affect the operation of the system.Chapter 10 Sociotechnical Systems6
  • 7. Holistic system designThere are interactions and dependencies between the layers in a system and changes at one level ripple through the other levelsExample: Change in regulations (society) leads to changes in business processes and application software.For dependability, a systems perspective is essentialContain software failures within the enclosing layers of the STS stack.Understand how faults and failures in adjacent layers may affect the software in a system.Chapter 10 Sociotechnical Systems7
  • 8. Complex systemsA system is a purposeful collection of inter-related components working together to achieve some common objective. A system may include software, mechanical, electrical and electronic hardware and be operated by people.System components are dependent on other system components.The properties and behaviour of system components are inextricably inter-mingled. This leads to complexity.
  • 9. System categoriesTechnical computer-based systemsSystems that include hardware and software but where the operators and operational processes are not normally considered to be part of the system. The system is not self-aware.Example: A word processor used to write a book.Socio-technical systemsSystems that include technical systems but also operational processes and people who use and interact with the technical system. Socio-technical systems are governed by organisational policies and rules.Example: A publishing system to produce a book.
  • 10. Organizational affectsProcess changesSystems may require changes to business processes so training may be required. Significant changes may be resisted by users.Job changesSystems may de-skill users or cause changes to the way they work. The status of individuals in an organization may be affected by the introduction of a new system.Organizational changesSystems may change the political power structure in an organization. If an organization depends on a system then those that control the system have more power.Chapter 10 Sociotechnical Systems10
  • 11. Socio-technical system characteristicsEmergent propertiesProperties of the system of a whole that depend on the system components and their relationships.Non-deterministicThey do not always produce the same output when presented with the same input because the systems’s behaviour is partially dependent on human operators.Complex relationships with organisational objectivesThe extent to which the system supports organisational objectives does not just depend on the system itself.
  • 12. Emergent propertiesProperties of the system as a whole rather than properties that can be derived from the properties of components of a systemEmergent properties are a consequence of the relationships between system componentsThey can therefore only be assessed and measured once the components have been integrated into a system
  • 14. Types of emergent propertyFunctional properties These appear when all the parts of a system work together to achieve some objective. For example, a bicycle has the functional property of being a transportation device once it has been assembled from its components.Non-functional emergent propertiesExamples are reliability, performance, safety, and security. These relate to the behaviour of the system in its operational environment. They are often critical for computer-based systems as failure to achieve some minimal defined level in these properties may make the system unusable.
  • 15. Because of component inter-dependencies, faults can be propagated through the system.System failures often occur because of unforeseen inter-relationships between components.It is practically impossible to anticipate all possible component relationships.Software reliability measures may give a false picture of the overall system reliability.Reliability as an emergent property
  • 16. Hardware reliability What is the probability of a hardware component failing and how long does it take to repair that component?Software reliabilityHow likely is it that a software component will produce an incorrect output. Software failure is usually distinct from hardware failure in that software does not wear out. Operator reliability How likely is it that the operator of a system will make an error?Failures are not independent and they propagate from one level to another.Influences on reliability
  • 17. Failure propagation17Chapter 10 Sociotechnical Systems
  • 18. Non-determinismA deterministic system is one where a given sequence of inputs will always produce the same sequence of outputs.Software systems are deterministic; systems that include humans are non-deterministicA socio-technical system will not always produce the same sequence of outputs from the same input sequenceHuman elementsPeople do not always behave in the same waySystem changesSystem behaviour is unpredictable because of frequent changes to hardware, software and data.Chapter 10 Sociotechnical Systems18
  • 19. Success criteriaComplex systems are developed to address ‘wicked problems’ – problems where there cannot be a complete specification.Different stakeholders see the problem in different ways and each has a partial understanding of the issues affecting the system.Consequently, different stakeholders have their own views about whether or not a system is ‘successful’Success is a judgment and cannot be objectively measured.Success is judged using the effectiveness of the system when deployed rather than judged against the original reasons for procuement.Chapter 10 Sociotechnical Systems19
  • 20. Conflicting views of successMHC-PMS designed to support multiple, conflicting goalsImprove quality of care.Provide better information and care costs and so increase revenue.Fundamental conflictTo satisfy reporting goal, doctors and nurses had to provide additional information over and above that required for clinical purposes.They had less time to interact with patients, so quality of care reduced. System was not a success.However, managers had better reportsSystem was a success from a managerial perspective.Chapter 10 Sociotechnical Systems20
  • 21. Systems engineeringProcuring, specifying, designing, implementing, validating, deploying and maintaining socio-technical systems.Concerned with the services provided by the system, constraints on its construction and operation and the ways in which it is used to fulfil its purpose or purposes.Chapter 10 Sociotechnical Systems21
  • 22. Stages of systems engineering22Chapter 10 Sociotechnical Systems
  • 23. Systems engineering stagesProcurement (acquisition)The purpose of the system is established, high-level system requirements are defined, decisions are made on how functionality is distributed and the system components are purchased.DevelopmentThe system is developed – requirements are defined in detail, the system is implemented and tested and operational processes are defined.OperationThe system is deployed and put into use. Changes are made as new requirements emerge. Eventually, the system is decommissioned.Chapter 10 Sociotechnical Systems23
  • 24. Security and dependability considerationsDesign options limited by procurement decisionsPurchased components may make some safeguards impossible to implement.Human errors made during development may introduce faults into the system.Inadequate testing may mean faults are not discovered before deployment.Configuration errors during deployment may introduce vulnerabilities.Assumptions made during procurement may be forgotten when system changes are made.Chapter 10 Sociotechnical Systems24
  • 25. Professional disciplines involved in systems engineering25Chapter 10 Sociotechnical Systems
  • 26. Inter-disciplinary workingCommunication difficultiesDifferent disciplines use the same terminology to mean different things. This can lead to misunderstandings about what will be implemented.Differing assumptionsEach discipline makes assumptions about what can and can’t be done by other disciplines. Professional boundariesEach discipline tries to protect their professional boundaries and expertise and this affects their judgments on the system.Chapter 10 Sociotechnical Systems26
  • 27. Key pointsSocio-technical systems include computer hardware, software and people and are designed to meet some business goal.Human and organizational factors, such as the organizational structure, have a significant effect on the operation of socio-technical systems.Emergent properties are properties that are characteristic of the system as a whole and not its component parts. The fundamental stages of systems engineering are procurement, development and operation.Chapter 10 Sociotechnical Systems27
  • 28. Chapter 10 – Sociotechnical SystemsLecture 228Chapter 10 Sociotechnical Systems
  • 29. System procurementAcquiring a system (or systems) to meet some identified organizational need.Before procurement, decisions are made on:Scope of the systemSystem budgets and timescalesHigh-level system requirementsBased on this information, decisions are made on whether to procure a system, the type of system and the potential system suppliers.Chapter 10 Sociotechnical Systems29
  • 30. Decision driversThe state of other organizational systemsThe need to comply with external regulationsExternal competitionBusiness re-organizationAvailable budgetChapter 10 Sociotechnical Systems30
  • 31. Procurement and developmentSome system specification and architectural design is usually necessary before procurementYou need a specification to let a contract for system developmentThe specification may allow you to buy a commercial off-the-shelf (COTS) system. Almost always cheaper than developing a system from scratchLarge complex systems usually consist of a mix of off the shelf and specially designed components. The procurement processes for these different types of component are usually different.
  • 32. System procurement processes32Chapter 10 Sociotechnical Systems
  • 33. Procurement issuesRequirements may have to be modified to match the capabilities of off-the-shelf components.The requirements specification may be part of the contract for the development of the system.There is usually a contract negotiation period to agree changes after the contractor to build a system has been selected.
  • 34. Contractors and sub-contractorsThe procurement of large hardware/software systems is usually based around some principal contractor.Sub-contracts are issued to other suppliers to supply parts of the system.Customer liases with the principal contractor and does not deal directly with sub-contractors.
  • 35. Procurement and dependabilityProcurement decisions have profound effects on system dependability as these decisions limit the scope of dependability requirements.For an off-the-shelf system, the procurer has very limited influence on the security and dependability requirements of the system.For a custom system, considerable effort has to be expended in defining security and dependability requirements.Chapter 10 Sociotechnical Systems35
  • 36. System developmentUsually follows a plan-driven approach because of the need for parallel development of different parts of the systemLittle scope for iteration between phases because hardware changes are very expensive. Software may have to compensate for hardware problems.Inevitably involves engineers from different disciplines who must work togetherMuch scope for misunderstanding here.As explained, different disciplines use a different vocabulary and much negotiation is required. Engineers may have personal agendas to fulfil.
  • 37. Systems development37Chapter 10 Sociotechnical Systems
  • 38. System requirements definitionThree types of requirement defined at this stageAbstract functional requirements. System functions are defined in an abstract way;System properties. Non-functional requirements for the system in general are defined;Undesirable characteristics. Unacceptable system behaviour is specified.Should also define overall organisational objectives for the system.
  • 39. The system design processPartition requirementsOrganise requirements into related groups. Identify sub-systemsIdentify a set of sub-systems which collectively can meet the system requirements.Assign requirements to sub-systemsCauses particular problems when COTS are integrated.Specify sub-system functionality.Define sub-system interfacesCritical activity for parallel sub-system development.
  • 40. Requirements and designRequirements engineering and system design are inextricably linked.Constraints posed by the system’s environment and other systems limit design choices so the actual design to be used may be a requirement.Initial design may be necessary to structure the requirements.As you do design, you learn more about the requirements.
  • 41. Requirements and design spiral41Chapter 10 Sociotechnical Systems
  • 42. Sub-system developmentTypically parallel projects developing the hardware, software and communications.May involve some COTS (Commercial Off-the-Shelf) systems procurement.Lack of communication across implementation teams can cause problems.There may be a bureaucratic and slow mechanism for proposing system changes, which means that the development schedule may be extended because of the need for rework.
  • 43. The process of putting hardware, software and people together to make a system.Should ideally be tackled incrementally so that sub-systems are integrated one at a time.The system is tested as it is integrated.Interface problems between sub-systems are usually found at this stage.May be problems with uncoordinated deliveries of system components.System integration
  • 44. After completion, the system has to be installed in the customer’s environmentEnvironmental assumptions may be incorrect;May be human resistance to the introduction of a new system;System may have to coexist with alternative systems for some time;May be physical installation problems (e.g. cabling problems);Data cleanup may be required;Operator training has to be identified.System delivery and deployment
  • 45. Development and dependabilityDecisions are made on dependability and security requirements and trade-offs made between costs, schedule, performance and dependability.Human errors may lead to the introduction of faults into the system.Testing and validation processes may be limited because of limited budgets.Problems in deployment mean there may be a mismatch between the system and its operational environment.Chapter 10 Sociotechnical Systems45
  • 46. System operationOperational processes are the processes involved in using the system for its defined purpose.For new systems, these processes may have to be designed and tested and operators trained in the use of the system.Operational processes should be flexible to allow operators to cope with problems and periods of fluctuating workload.Chapter 10 Sociotechnical Systems46
  • 47. Human errorHuman errors occur in operational processes that influence the overall dependability of the system.Viewing human errors:The person approach makes errors the responsibility of the individual and places the blame for error on the operator concerned. Actions to reduce error include threats of punishment, better training, more stringent procedures, etc.The systems approach assumes that people are fallible and will make mistakes. The system is designed to detect these mistakes before they lead to system failure. When a failure occurs, the aim is not to blame an individual but to understand why the system defenses did not trap the error.Chapter 10 Sociotechnical Systems47
  • 48. System defensesTo improve security and dependability, designers should think about the checks for human error that should be included in a system.As I discuss in later lectures, there should be multiple (redundant) barriers which should be different (diverse)No single barrier can be perfect. There will be latent conditions in the system that may lead to failure.However, with multiple barriers, all have to fail for a system failure to occur.Chapter 10 Sociotechnical Systems48
  • 49. Reason’s Swiss cheese model of system failure 49Chapter 10 Sociotechnical Systems
  • 50. Defenses in an ATC systemConflict alert systemRaises an audible alarm when aircraft are on conflicting pathsRecording of instructionsAllows instructions issues to be reviewed and checked.Sharing of informationThe team of controllers cross-check each other’s work.Chapter 10 Sociotechnical Systems50
  • 51. System evolutionLarge systems have a long lifetime. They must evolve to meet changing requirements.Evolution is inherently costlyChanges must be analysed from a technical and business perspective;Sub-systems interact so unanticipated problems can arise;There is rarely a rationale for original design decisions;System structure is corrupted as changes are made to it.Existing systems which must be maintained are sometimes called legacy systems.
  • 52. Evolution and dependabilityChanges to a system are often a source of problems and vulnerabilities.Changes may be made without knowledge of previous design decisions made for security and dependability reasons. Built-in safeguards may stop working.New faults may be introduced or latent faults exposed by changes. These may not be discovered because complete system retesting is too expensive.Chapter 10 Sociotechnical Systems52
  • 53. Key pointsSystem procurement covers all of the activities involved in deciding what system to buy and who should supply that system.System development includes requirements specification, design, construction, integration and testing.When a system is put into use, the operational processes and the system itself have to change to reflect changing business requirements. Human errors are inevitable and systems should include barriers to detect these errors before they lead to system failure.Chapter 10 Sociotechnical Systems53