Chapter 11: Storage and File Structure Database System Concepts, 5th Ed . ©Silberschatz, Korth and Sudarshan See  www.db-book.com  for conditions on re-use  Rev. Aug 1, 2008
Chapter 11: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage  Storage Access File Organization Organization of Records in Files Data-Dictionary Storage 11.2 Database System Concepts - 5 th  Edition
Classification of Physical Storage Media Speed with which data can be accessed Cost per unit of data Reliability data loss on power failure or system crash physical failure of the storage device Can differentiate storage into: volatile storage :  loses contents when power is switched off non-volatile storage :  Contents persist even when power is switched off.  Includes secondary and tertiary storage, as well as battery-backed up main-memory. 11.3 Database System Concepts - 5 th  Edition
Physical Storage Media Cache  – fastest and most costly form of storage; volatile; managed by the computer system hardware (Note: “Cache” is pronounced as “cash”) Main memory : fast access (10s to 100s of nanoseconds; 1 nanosecond = 10 –9  seconds) generally too small (or too expensive) to store the entire database capacities of up to a few Gigabytes widely used currently Capacities have gone up and per-byte costs have decreased steadily and rapidly (roughly factor of 2 every 2 to 3 years) Volatile  — contents of main memory are usually lost if a power   failure or system crash occurs. 11.4 Database System Concepts - 5 th  Edition
Physical Storage Media (Cont.) Flash memory   Data survives power failure Data can be written at a location only once, but location can be erased and written to again  Can support only a limited number (10K – 1M) of write/erase cycles. Erasing of memory has to be done to an entire bank of memory  Reads are roughly as fast as main memory But writes are slow (few microseconds), erase is slower 11.5 Database System Concepts - 5 th  Edition
Physical Storage Media (Cont.) Flash memory   NOR Flash Fast reads, very slow erase, lower capacity Used to store program code in many embedded devices NAND Flash Page-at-a-time read/write, multi-page erase High capacity (several GB) Widely used as data storage mechanism in portable devices 11.6 Database System Concepts - 5 th  Edition
Physical Storage Media (Cont.) Magnetic-disk Data is stored on spinning disk, and read/written magnetically Primary medium for the long-term storage of data; typically stores entire database. Data must be moved from disk to main memory for access, and written back for storage direct-access  – possible to read data on disk in any order, unlike magnetic tape Survives power failures and system crashes disk failure can destroy data: is rare but does happen 11.7 Database System Concepts - 5 th  Edition
Physical Storage Media (Cont.) Optical storage   non-volatile, data is read optically from a spinning disk using a laser  CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms Write-one, read-many (WORM) optical disks used for archival storage (CD-R, DVD-R, DVD+R) Multiple write versions also available (CD-RW, DVD-RW, DVD+RW, and DVD-RAM) Reads and writes are slower than with magnetic disk  Juke-box  systems, with large numbers of removable disks, a few drives, and a mechanism for automatic loading/unloading of disks available for storing large volumes of data 11.8 Database System Concepts - 5 th  Edition
Physical Storage Media (Cont.) Tape storage   non-volatile, used primarily for backup (to recover from disk failure), and for archival data sequential-access   – much slower than disk  very high capacity (40 to 300 GB tapes available) tape can be removed from drive  storage costs much cheaper than disk, but drives are expensive Tape jukeboxes available for storing massive amounts of data  hundreds of terabytes (1 terabyte = 10 9  bytes) to even a petabyte (1 petabyte = 10 12  bytes) 11.9 Database System Concepts - 5 th  Edition
Storage Hierarchy 11.10 Database System Concepts - 5 th  Edition
Storage Hierarchy (Cont.) primary storage :  Fastest media but volatile (cache, main memory). secondary storage :  next level in hierarchy, non-volatile, moderately fast access time also called  on-line storage   E.g. flash memory, magnetic disks tertiary storage :  lowest level in hierarchy, non-volatile, slow access time also called  off-line storage   E.g. magnetic tape, optical storage 11.11 Database System Concepts - 5 th  Edition
Magnetic Hard Disk Mechanism 11.12 Database System Concepts - 5 th  Edition NOTE: Diagram is schematic, and simplifies the structure of actual disk drives
Magnetic Disks Read-write head   Positioned very close to the platter surface (almost touching it) Reads or writes magnetically encoded information. Surface of platter divided into circular  tracks Over 50K-100K tracks per platter on typical hard disks Each track is divided into  sectors .   Sector size typically 512 bytes Typical sectors per track: 500 (on inner tracks) to 1000 (on outer tracks) To read/write a sector disk arm swings to position head on right track platter spins continually; data is read/written as sector passes under head 11.13 Database System Concepts - 5 th  Edition
Magnetic Disks (Cont.) Head-disk assemblies  multiple disk platters on a single spindle (1 to 5 usually) one head per platter, mounted on a common arm. Cylinder  i   consists of  i th  track of all the platters  Earlier generation disks were susceptible to “head-crashes” leading to loss of all data on disk Current generation disks are less susceptible to such disastrous failures, but individual sectors may get corrupted 11.14 Database System Concepts - 5 th  Edition
Disk Controller Disk controller  – interfaces between the computer system and the disk drive hardware. accepts high-level commands to read or write a sector   initiates actions such as moving the disk arm to the right track and actually reading or writing the data Computes and attaches  checksums  to each sector to verify that data is read back correctly If data is corrupted, with very high probability stored checksum won’t match recomputed checksum Ensures successful writing by reading back sector after writing it Performs  remapping of bad sectors 11.15 Database System Concepts - 5 th  Edition
Disk Subsystem Disk interface standards families ATA  (AT adaptor) range of standards SATA  (Serial ATA)   SCSI  (Small Computer System Interconnect) range of standards Several variants of each standard (different speeds and capabilities) 11.16 Database System Concepts - 5 th  Edition
Performance Measures of Disks Access time  – the time it takes from when a read or write request is issued to when data transfer begins. Consists of:  Seek time  – time it takes to reposition the arm over the correct track.  Average seek time is 1/2 the worst case seek time. Would be 1/3 if all tracks had the same number of sectors, and we ignore the time to start and stop arm movement 4 to 10 milliseconds on typical disks Rotational latency  – time it takes for the sector to be accessed to appear under the head.  Average latency is 1/2 of the worst case latency. 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.) 11.17 Database System Concepts - 5 th  Edition
Performance Measures (Cont.) Data-transfer rate   – the rate at which data can be retrieved from or stored to the disk. 25 to 100 MB per second max rate, lower for inner tracks Multiple disks may share a controller, so rate that controller can handle is also important E.g. ATA-5: 66 MB/sec, SATA: 150 MB/sec, Ultra 320 SCSI: 320 MB/s Fiber Channel (FC2Gb): 256 MB/s 11.18 Database System Concepts - 5 th  Edition
Performance Measures (Cont.) Mean time to failure (MTTF)  – the average time the disk is expected to run continuously without any failure. Typically 3 to 5 years Probability of failure of new disks is quite low, corresponding to a theoretical MTTF of 500,000 to 1,200,000 hours for a new disk E.g., an MTTF of 1,200,000 hours for a new disk means that given 1000 relatively new disks, on an average one will fail every 1200 hours MTTF decreases as disk ages 11.19 Database System Concepts - 5 th  Edition
Optimization of Disk-Block Access Block  – a contiguous sequence of sectors from a single track  data is transferred between disk and main memory in blocks  Typical block sizes today range from 4 to 16 kilobytes Disk-arm-scheduling  algorithms order pending accesses to tracks so that disk arm movement is minimized  elevator algorithm   : move disk arm in one direction (from outer to inner tracks or vice versa), processing next request in that direction, till no more requests in that direction, then reverse direction and repeat 11.20 Database System Concepts - 5 th  Edition
Optimization of Disk Block Access (Cont.) File organization  – optimize block access time by organizing the blocks to correspond to how data will be accessed E.g. Store related information on the same or nearby blocks/cylinders. File systems attempt to allocate contiguous chunks of blocks (e.g. 8 or 16 blocks) to a file Files may get  fragmented  over time E.g. if data is inserted to/deleted from the file Or free blocks on disk are scattered, and newly created file has its blocks scattered over the disk Sequential access to a fragmented file results in increased disk arm movement Some systems have utilities to  defragment  the file system, in order to speed up file access 11.21 Database System Concepts - 5 th  Edition
Nonvolatile write buffers  speed up disk writes by writing blocks to a non-volatile RAM buffer immediately Non-volatile RAM: battery backed up RAM or flash memory Even if power fails, the data is safe and will be written to disk when power returns Controller then writes to disk whenever the disk has no other requests or request has been pending for some time Database operations that require data to be safely stored before continuing can continue without waiting for data to be written to disk Writes can be reordered to minimize disk arm movement Optimization of Disk Block Access (Cont.) 11.22 Database System Concepts - 5 th  Edition
Log disk  – a disk devoted to writing a sequential log of block updates Used exactly like nonvolatile RAM Write to log disk is very fast since no seeks are required No need for special hardware (NV-RAM) File systems typically reorder writes to disk to improve performance Journaling file systems  write data in safe order to NV-RAM or log disk Reordering without journaling: risk of corruption of file system data Optimization of Disk Block Access (Cont.) 11.23 Database System Concepts - 5 th  Edition
RAID RAID: Redundant Arrays of Independent Disks   disk organization techniques that manage a large numbers of disks, providing a view of a single disk of   high capacity  and  high speed  by using multiple disks in parallel, and   high reliability  by storing data redundantly, so that data can be recovered even if a disk fails   The chance that some disk out of a set of  N  disks will fail is much higher than the chance that a specific single disk will fail. E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx. 11 years), will have a system MTTF of 1000 hours (approx. 41 days) 11.24 Database System Concepts - 5 th  Edition
Improvement of Reliability via Redundancy Redundancy  – store extra information that can be used to rebuild information lost in a disk failure E.g.,  Mirroring   (or  shadowing ) Duplicate every disk. Logical disk consists of two physical disks. Every write is carried out on both disks Reads can take place from either disk If one disk in a pair fails, data still available in the other Data loss would occur only if a disk fails, and its mirror disk also fails before the system is repaired Probability of combined event is very small   Except for dependent failure modes such as fire or building collapse or electrical power surges 11.25 Database System Concepts - 5 th  Edition
Improvement of Reliability via Redundancy Mean time to data loss  depends on mean time to failure,  and  mean time to repair E.g. MTTF of 100,000 hours, mean time to repair of 10 hours gives mean time to data loss of 500*10 6  hours (or 57,000 years) for a mirrored pair of disks (ignoring dependent failure modes) 11.26 Database System Concepts - 5 th  Edition
Improvement in Performance via Parallelism Two main goals of parallelism in a disk system:   1. Load balance multiple small accesses to increase throughput 2. Parallelize large accesses to reduce response time. Improve transfer rate by striping data across multiple disks. Bit-level striping  – split the bits of each byte across multiple disks But seek/access time worse than for a single disk Bit level striping is not used much any more Block-level striping   – with  n  disks, block  i  of a file goes to disk ( i  mod  n ) + 1 Requests for different blocks can run in parallel if the blocks reside on different disks A request for a long sequence of blocks can utilize all disks in parallel 11.27 Database System Concepts - 5 th  Edition
RAID Levels RAID organizations, or RAID levels, have differing cost, performance and reliability characteristics RAID Level 0 :  Block striping; non-redundant.   Used in high-performance applications where data lost is not critical.  RAID Level 1 :  Mirrored disks  with block striping Offers best write performance.  Popular for applications such as storing log files in a database system . 11.28 Database System Concepts - 5 th  Edition
RAID Levels (Cont.) RAID Level 2 :  Memory-Style Error-Correcting-Codes  (ECC) with bit striping. RAID Level 3 :  Bit-Interleaved Parity a single parity bit is enough for error correction, not just detection When writing data, corresponding parity bits must also be computed and written to a parity bit disk To recover data in a damaged disk, compute XOR of bits from other disks (including parity bit disk)   11.29 Database System Concepts - 5 th  Edition
RAID Levels (Cont.) RAID Level 3 (Cont.) Faster data transfer than with a single disk, but fewer I/Os per second since every disk has to participate in every I/O.   RAID Level 4 :  Block-Interleaved Parity ; uses block-level striping, and keeps a parity block on a separate disk for corresponding blocks from  N  other disks. When writing data block, corresponding block of parity bits must also be computed and written to parity disk To find value of a damaged block, compute XOR of bits from corresponding blocks (including parity block) from other disks. 11.30 Database System Concepts - 5 th  Edition
RAID Levels (Cont.) RAID Level 4 (Cont.) Provides higher I/O rates for independent block reads than Level 3   block read goes to a single disk, so blocks stored on different disks can be read in parallel Before writing a block, parity data must be computed   Can be done by using old parity block, old value of current block and new value of current block (2 block reads + 2 block writes) Or by recomputing the parity value using the new values of blocks corresponding to the parity block More efficient for writing large amounts of data sequentially Parity block becomes a bottleneck for independent block writes since every block write also writes to parity disk 11.31 Database System Concepts - 5 th  Edition
RAID Levels (Cont.) RAID Level 5 :  Block-Interleaved Distributed Parity ; partitions data and parity among all  N  + 1 disks, rather than storing data in  N  disks and parity in 1 disk. E.g., with 5 disks, parity block for  n th set of blocks is stored on disk ( n mod  5) + 1, with the data blocks stored on the other 4 disks. 11.32 Database System Concepts - 5 th  Edition
RAID Levels (Cont.) RAID Level 5 (Cont.) Higher I/O rates than Level 4.  Block writes occur in parallel if the blocks and their parity blocks are on different disks. Subsumes Level 4: provides same benefits, but avoids bottleneck of parity disk. RAID Level 6 : P+Q Redundancy  scheme; similar to Level 5, but stores extra redundant information to guard against multiple disk failures.  Better reliability than Level 5 at a higher cost; not used as widely.   11.33 Database System Concepts - 5 th  Edition
Choice of RAID Level Factors in choosing RAID level Monetary cost Performance : Number of I/O operations per second, and bandwidth during normal operation Performance during failure Performance during rebuild  of failed disk Including time taken to rebuild failed disk RAID 0 is used only when data safety is not important   E.g. data can be recovered quickly from other sources Level 2 and 4 never used since they are subsumed by 3 and 5 Level 3 is not used since bit-striping forces single block reads to access all disks, wasting disk arm movement Level 6 is rarely used since levels 1 and 5 offer adequate safety for most applications So competition is mainly between 1 and 5 11.34 Database System Concepts - 5 th  Edition
Choice of RAID Level (Cont.) Level 1 provides much better write performance than level 5 Level 5 requires at least 2 block reads and 2 block writes to write a single block, whereas Level 1 only requires 2 block writes Level 1 preferred for high update environments such as log disks Level 1 had higher storage cost than level 5 disk drive capacities increasing rapidly (50%/year) whereas disk access times have decreased much less (x 3 in 10 years) I/O requirements have increased greatly, e.g. for Web servers When enough disks have been bought to satisfy required rate of I/O, they often have spare storage capacity so there is often no extra monetary cost for Level 1! Level 5 is preferred for applications with low update rate, and large amounts of data Level 1 is preferred for all other applications 11.35 Database System Concepts - 5 th  Edition
Hardware Issues Software RAID : RAID implementations done entirely in software, with no special hardware support Hardware RAID : RAID implementations with special hardware Use non-volatile RAM to record writes that are being executed Beware: power failure during write can result in corrupted disk E.g. failure after writing one block but before writing the second in a mirrored system Such corrupted data must be detected when power is restored Recovery from corruption is similar to recovery from failed disk NV-RAM helps to efficiently detected potentially corrupted blocks Otherwise all blocks of disk must be read and compared with mirror/parity block 11.36 Database System Concepts - 5 th  Edition
Hardware Issues (Cont.) Hot swapping : replacement of disk while system is running, without power down Supported by some hardware RAID systems,  reduces time to recovery, and improves availability greatly Many systems maintain  spare disks  which are kept online, and used as replacements for failed disks immediately on detection of failure Reduces time to recovery greatly Many hardware RAID systems ensure that a single point of failure will not stop the functioning of the system by using  Redundant power supplies with battery backup Multiple controllers and multiple interconnections to guard against controller/interconnection failures 11.37 Database System Concepts - 5 th  Edition
RAID Terminology in the Industry RAID terminology not very standard in the industry E.g. Many vendors use RAID 1: for mirroring without striping RAID 10 or RAID 1+0: for mirroring with striping “ Hardware RAID” implementations often just offload RAID processing onto a separate subsystem, but don’t offer NVRAM.  Read the specs carefully! Software RAID supported directly in most operating systems today 11.38 Database System Concepts - 5 th  Edition
Optical Disks Compact disk-read only memory (CD-ROM) Seek time about 100 msec (optical read head is heavier and slower) Higher latency (3000 RPM) and lower data-transfer rates (3-6 MB/s) compared to magnetic disks Digital Video Disk (DVD)   DVD-5 holds 4.7 GB , variants up to 17 GB Slow seek time, for same reasons as CD-ROM   Record once versions (CD-R and DVD-R) 11.39 Database System Concepts - 5 th  Edition
Magnetic Tapes Hold large volumes of data and provide high transfer rates Few GB for DAT (Digital Audio Tape) format, 10-40 GB with DLT (Digital Linear Tape) format, 100 – 400 GB+ with Ultrium format, and 330 GB with Ampex helical scan format Transfer rates from few to 10s of MB/s Currently the cheapest storage medium   Tapes are cheap, but cost of drives is very high Very slow access time in comparison to magnetic disks and optical disks limited to sequential access. Some formats (Accelis) provide faster seek (10s of seconds) at cost of lower capacity Used mainly for backup, for storage of infrequently used information, and as an off-line medium for transferring information from one system to another. Tape jukeboxes used for very large capacity storage (terabyte (10 12  bytes) to petabye (10 15  bytes) 11.40 Database System Concepts - 5 th  Edition
Storage Access A database file is partitioned into fixed-length storage units called  blocks . Blocks are units of both storage allocation and data transfer. Database system seeks to minimize the number of block transfers between the disk and memory. We can reduce the number of disk accesses by keeping as many blocks as possible in main memory. Buffer   – portion of main memory available to store copies of disk blocks. Buffer manager  – subsystem responsible for allocating buffer space in main memory. 11.41 Database System Concepts - 5 th  Edition
Buffer Manager Programs call on the buffer manager when they need a block from disk.  Buffer manager does the following: If the block is already in the buffer, return the address of the block in main memory If the block is not in the buffer Allocate space in the buffer for the block Replacing (throwing out) some other block, if required, to make space for the new block. Replaced block written back to disk only if it was modified since the most recent time that it was written to/fetched from the disk. Read the block from the disk to the buffer, and return the address of the block in main memory to requester.  11.42 Database System Concepts - 5 th  Edition
Buffer-Replacement Policies Most operating systems replace the block  least recently used  ( LRU strategy ) Idea behind LRU – use past pattern of block references as a predictor of future references Queries have well-defined access patterns (such as sequential scans), and a database system can use the information in a user’s query to predict future references LRU can be a bad strategy for certain access patterns involving repeated scans of data e.g. when computing the join of 2 relations r and s by a nested loops  for each tuple  tr  of  r  do  for each tuple  ts  of  s  do  if the tuples  tr  and  ts  match … Mixed strategy with hints on replacement strategy provided by the query optimizer is preferable 11.43 Database System Concepts - 5 th  Edition
Buffer-Replacement Policies (Cont.) Pinned block  – memory block that is not allowed to be written back to disk. Toss-immediate  strategy – frees the space occupied by a block as soon as the final tuple of that block has been processed Most recently used (MRU) strategy  – system must pin the block currently being processed. After the final tuple of that block has been processed, the block is unpinned, and it becomes the most recently used block. Buffer manager can use statistical information regarding the probability that a request will reference a particular relation E.g., the data dictionary is frequently accessed. Heuristic: keep data-dictionary blocks in main memory buffer Buffer managers also support  forced output  of blocks for the purpose of recovery (more in Chapter 17) 11.44 Database System Concepts - 5 th  Edition
File Organization The database is stored as a collection of  files . Each file is a sequence of  records.  A record is a sequence of fields. One approach: assume record size is fixed each file has records of one particular type only  different files are used for different relations This case is easiest to implement; will consider variable length records later. 11.45 Database System Concepts - 5 th  Edition
Fixed-Length Records Simple approach: Store record  i  starting from byte  n  (i –  1), where  n  is the size of each record. Record access is simple but records may cross blocks Modification: do not allow records to cross block boundaries Deletion of record  i:  alternatives : move records  i  + 1, . . .,  n   to  i, . . . , n –  1 move record  n  to  i do not move records, but  link all free records on a free list 11.46 Database System Concepts - 5 th  Edition
Free Lists Store the address of the first deleted record in the file header. Use this first record to store the address of the second deleted record, and so on Can think of these stored addresses as  pointers   since they “point” to the location of a record. More space efficient representation: reuse space for normal attributes of free records to store pointers. (No pointers stored in in-use records.) 11.47 Database System Concepts - 5 th  Edition
Variable-Length Records Variable-length records arise in database systems in several ways: Storage of multiple record types in a file. Record types that allow variable lengths for one or more fields. Record types that allow repeating fields (used in some older data models). 11.48 Database System Concepts - 5 th  Edition
Variable-Length Records: Slotted Page Structure Slotted page  header contains: number of record entries end of free space in the block location and size of each record Records can be moved around within a page to keep them contiguous with no empty space between them; entry in the header must be updated. Pointers should not point directly to record — instead they should point to the entry for the record in header. 11.49 Database System Concepts - 5 th  Edition
Organization of Records in Files Heap   – a record can be placed anywhere in the file where there is space Sequential  – store records in sequential order, based on the value of the search key of each record Hashing  – a hash function computed on some attribute of each record; the result specifies in which block of the file the record should be placed Records of each relation may be stored in a separate file. In a  multitable clustering file organization  records of several different relations can be stored in the same file Motivation: store related records on the same block to minimize I/O 11.50 Database System Concepts - 5 th  Edition
Sequential File Organization Suitable for applications that require sequential processing of the entire file  The records in the file are ordered by a  search-key 11.51 Database System Concepts - 5 th  Edition
Sequential File Organization (Cont.) Deletion – use pointer chains Insertion –locate the position where the record is to be inserted if there is free space insert there  if no free space, insert the record in an  overflow block In either case, pointer chain must be updated Need to reorganize the file from time to time to restore sequential order 11.52 Database System Concepts - 5 th  Edition
Multitable Clustering File Organization (cont.) Store several relations in one file using a  multitable clustering   file organization  Multitable clustering organization of  customer  and  depositor : 11.53 Database System Concepts - 5 th  Edition good for queries involving  depositor customer , and for queries involving one single customer and his accounts bad for queries involving only customer
Data Dictionary Storage Information about relations names of relations names and types of attributes of each relation names and definitions of views integrity constraints User and accounting information, including passwords Statistical and descriptive data number of tuples in each relation Physical file organization information How relation is stored (sequential/hash/…) Physical location of relation  Information about indices (Chapter 12)  11.54 Database System Concepts - 5 th  Edition Data dictionary  (also called  system catalog ) stores  metadata : that is, data about data, such as
Data Dictionary Storage (Cont.) Catalog structure Relational representation on disk specialized data structures designed for efficient access, in memory A possible catalog representation: 11.55 Database System Concepts - 5 th  Edition Relation_metadata =  ( relation_name , number_of_attributes,  storage_organization, location ) Attribute_metadata =  ( relation_name, attribute_name ,   domain_type,  position, length ) User_metadata =  ( user_name , encrypted_password, group ) Index_metadata =  ( relation_name, index_name ,   index_type,  index_attributes ) View_metadata =  ( view_name , definition )
Extra Slides Database System Concepts, 5th Ed . ©Silberschatz, Korth and Sudarshan See  www.db-book.com  for conditions on re-use
Record Representation Records with fixed length fields are easy to represent Similar to records (structs) in programming languages Extensions to represent null values E.g. a bitmap indicating which attributes are null Variable length fields can be represented by a pair (offset, length)  offset: the location within the record, length: field length.  All fields start at predefined location, but extra indirection required for variable length fields 11.57 Database System Concepts - 5 th  Edition Example record structure of  account  record account_number branch_name balance Perryridge A-102 400 10 000 null-bitmap
End of Chapter Database System Concepts, 5th Ed . ©Silberschatz, Korth and Sudarshan See  www.db-book.com  for conditions on re-use
File Containing  account  Records 11.59 Database System Concepts - 5 th  Edition
File of Figure 11.6, with Record 2 Deleted and All Records Moved 11.60 Database System Concepts - 5 th  Edition
File of Figure 11.6, With Record 2 deleted and Final Record Moved 11.61 Database System Concepts - 5 th  Edition
Byte-String Representation of Variable-Length Records 11.62 Database System Concepts - 5 th  Edition
Clustering File Structure 11.63 Database System Concepts - 5 th  Edition
Clustering File Structure With Pointer Chains 11.64 Database System Concepts - 5 th  Edition
The  depositor  Relation 11.65 Database System Concepts - 5 th  Edition
The  customer  Relation 11.66 Database System Concepts - 5 th  Edition
Clustering File Structure 11.67 Database System Concepts - 5 th  Edition
11.68 Database System Concepts - 5 th  Edition
Figure 11.4 11.69 Database System Concepts - 5 th  Edition
Figure 11.7 11.70 Database System Concepts - 5 th  Edition
Figure 11.8 11.71 Database System Concepts - 5 th  Edition
Figure 11.20 11.72 Database System Concepts - 5 th  Edition
Byte-String Representation of Variable-Length Records 11.73 Database System Concepts - 5 th  Edition Byte string representation Attach an  end-of-record  () control character to the end of each record Difficulty with deletion Difficulty with growth
Fixed-Length Representation Use one or more fixed length records:  reserved space pointers Reserved space  – can use fixed-length records of a known maximum length; unused space in shorter records filled with a null or end-of-record symbol. 11.74 Database System Concepts - 5 th  Edition
Pointer Method Pointer method   A variable-length record is represented by a list of fixed-length records, chained together via pointers. Can be used even if the maximum record length is not known 11.75 Database System Concepts - 5 th  Edition
Pointer Method (Cont.) Disadvantage to pointer structure; space is wasted in all records except the first in a a chain. Solution is to allow two kinds of block in file: Anchor block  – contains the first records of chain Overflow block  – contains records other than those that are the first records of chairs. 11.76 Database System Concepts - 5 th  Edition
Mapping of Objects to Files Mapping objects to files is similar to mapping tuples to files in a relational system; object data can be stored using file structures. Objects in O-O databases may lack uniformity and may be very large; such objects have to managed differently from records in a relational system. Set fields with a small number of elements may be implemented using data structures such as linked lists.  Set fields with a larger number of elements may be implemented as separate relations in the database. Set fields can also be eliminated at the storage level by normalization. Similar to conversion of multivalued attributes of E-R diagrams to relations 11.77 Database System Concepts - 5 th  Edition
Mapping of Objects to Files (Cont.) Objects are identified by an object identifier (OID); the storage system needs a mechanism to locate an object given its OID (this action is called  dereferencing ). logical identifiers  do not directly specify an object’s physical location; must maintain an index that maps an OID to the object’s actual location. physical identifiers  encode the location of the object so the object can be found directly. Physical OIDs typically have the following parts: 1. a volume or file identifier 2. a page identifier within the volume or file 3. an offset within the page 11.78 Database System Concepts - 5 th  Edition
Management of Persistent Pointers Physical OIDs may be a  unique identifier . This identifier is stored in the object also and is used to detect references via dangling pointers.  11.79 Database System Concepts - 5 th  Edition
Management of Persistent Pointers (Cont.) Implement persistent pointers using OIDs; persistent pointers are substantially longer than are in-memory pointers  Pointer swizzling cuts down on cost of locating persistent objects already in-memory. Software swizzling (swizzling on pointer deference) When a persistent pointer is first dereferenced, the pointer is  swizzled  (replaced by an in-memory pointer) after the object is located in memory. Subsequent dereferences of of the same pointer become cheap. The physical location of an object in memory must not change if swizzled pointers pont to it; the solution is to pin pages in memory When an object is written back to disk, any swizzled pointers it contains need to be  unswizzled . 11.80 Database System Concepts - 5 th  Edition
Hardware Swizzling With hardware swizzling, persistent pointers in objects need the same amount of space as in-memory pointers — extra storage external to the object is used to store rest of pointer information. Uses virtual memory translation mechanism to efficiently and transparently convert between persistent pointers and in-memory pointers. All persistent pointers in a page are swizzled when the page is first read in.  thus programmers have to work with just one type of pointer, i.e., in-memory pointer. some of the swizzled pointers may point to virtual memory addresses that are currently not allocated any real memory (and do not contain valid data)  11.81 Database System Concepts - 5 th  Edition
Hardware Swizzling Persistent pointer is conceptually split into two parts: a page identifier, and an offset within the page. The page identifier in a pointer is a short indirect pointer: Each page has a translation table that provides a mapping from the short page identifiers to full database page identifiers. Translation table for a page is small (at most 1024 pointers in a 4096 byte page with 4 byte pointer) Multiple pointers in page to the same page share same entry in the translation table. 11.82 Database System Concepts - 5 th  Edition
Hardware Swizzling (Cont.) Page image before swizzling (page located on disk) 11.83 Database System Concepts - 5 th  Edition
Hardware Swizzling (Cont.) When system loads a page into memory the persistent pointers in the page are  swizzled  as described below Persistent pointers in each object in the page are located using object type information For each persistent pointer (p i , o i ) find its full page ID P i  If P i  does not already have a virtual memory page allocated to it, allocate a virtual memory page to P i  and read-protect the page Note: there need not be any physical space (whether in memory or on disk swap-space) allocated for the virtual memory page at this point. Space can be allocated later if (and when) Pi is accessed. In this case read-protection is not required. Accessing a memory location in the page in the will result in a segmentation violation, which is handled as described later  Let v i  be the virtual page allocated to P i  (either earlier or above) Replace (p i , o i ) by (v i , o i )  Replace each entry (p i , P i ) in the translation table, by (v i , P i )  11.84 Database System Concepts - 5 th  Edition
Hardware Swizzling (Cont.) When an in-memory pointer is dereferenced, if the operating system detects the page it points to has not yet been allocated storage, or is read-protected, a  segmentation violation  occurs. The mmap() call in Unix is used to specify a function to be invoked on segmentation violation The function does the following when it is invoked Allocate storage (swap-space) for the page containing the referenced address, if storage has not been allocated earlier. Turn off read-protection Read in the page from disk Perform pointer swizzling for each persistent pointer in the page, as described earlier 11.85 Database System Concepts - 5 th  Edition
Hardware Swizzling (Cont.) Page with short page identifier 2395 was allocated address 5001. Observe change in pointers and translation table. Page with short page identifier 4867 has been allocated address 4867.  No  change in pointer and translation table. 11.86 Database System Concepts - 5 th  Edition Page image after swizzling
Hardware Swizzling (Cont.) After swizzling, all short page identifiers point to virtual memory addresses allocated for the corresponding pages functions accessing the objects are not even aware that it has persistent pointers, and do not need to be changed in any way! can reuse existing code and libraries that use in-memory pointers After this, the pointer dereference that triggered the swizzling can continue Optimizations: If all pages are allocated the same address as in the short page identifier, no changes required in the page! No need for deswizzling — swizzled page can be saved as-is to disk A set of pages (segment) can share one translation table. Pages can still be swizzled as and when fetched (old copy of translation table is needed). A process should not access more pages than size of virtual memory — reuse of virtual memory addresses for other pages is expensive 11.87 Database System Concepts - 5 th  Edition
Disk versus Memory Structure of Objects The format in which objects are stored in memory may be different from the formal in which they are stored on disk in the database. Reasons are: software swizzling – structure of persistent and in-memory pointers are different database accessible from different machines, with different data representations Make the physical representation of objects in the database independent of the machine and the compiler. Can transparently convert from disk representation to form required on the specific machine, language, and compiler, when the object (or page) is brought into memory.  11.88 Database System Concepts - 5 th  Edition
Large Objects Large objects :  binary large objects (blobs)  and  character large objects (clobs) Examples include:  text documents graphical data such as images and computer aided designs audio and video data Large objects may need to be stored in a contiguous sequence of bytes when brought into memory. If an object is bigger than a page, contiguous pages of the buffer pool must be allocated to store it. May be preferable to disallow direct access to data, and only allow access through a file-system-like API, to remove need for contiguous storage. 11.89 Database System Concepts - 5 th  Edition
Modifying Large Objects If the application requires insert/delete of bytes from specified regions of an object: B + -tree file organization (described later in Chapter 12) can be modified to represent large objects Each leaf page of the tree stores between half and 1 page worth of data from the object Special-purpose application programs outside the database are used to manipulate large objects: Text data treated as a byte string manipulated by editors and formatters. Graphical data and audio/video data is typically created and displayed by separate application checkout/checkin  method for concurrency control and creation of versions 11.90 Database System Concepts - 5 th  Edition

More Related Content

PPT
db
PPTX
Storage structure1
PPT
Chapter 12 - Mass Storage Systems
PPT
storage and file structure
PPT
Ch10
PPTX
Mass storage systemsos
PDF
Storage and File Structure in DBMS
PPTX
Massstorage
db
Storage structure1
Chapter 12 - Mass Storage Systems
storage and file structure
Ch10
Mass storage systemsos
Storage and File Structure in DBMS
Massstorage

What's hot (18)

PPT
Disk structure
PPT
storage & file strucure in dbms
DOCX
Mass storage structurefinal
PPT
PPTX
Mass storage structure
PPT
Ch11 - Silberschatz
PPTX
Mass storage device
PPTX
Mass Storage Structure
PPT
DB_ch11
PPTX
Overview of physical storage media
PPT
PPT
PDF
Mass Storage Devices
PPTX
Operating Systems: Device Management
PPT
Swap-space Management
PPT
Disk scheduling
PPT
Disk management
Disk structure
storage & file strucure in dbms
Mass storage structurefinal
Mass storage structure
Ch11 - Silberschatz
Mass storage device
Mass Storage Structure
DB_ch11
Overview of physical storage media
Mass Storage Devices
Operating Systems: Device Management
Swap-space Management
Disk scheduling
Disk management
Ad

Viewers also liked (20)

PPTX
Big in memory file system
PPT
VNSISPL_DBMS_Concepts_ch5
PPT
VNSISPL_DBMS_Concepts_ch14
PPT
VNSISPL_DBMS_Concepts_ch11
PPT
VNSISPL_DBMS_Concepts_ch6
PPT
VNSISPL_DBMS_Concepts_ch17
PPT
Introduction To DBMS
PPT
VNSISPL_DBMS_Concepts_appA
PPT
VNSISPL_DBMS_Concepts_ch8
PPT
Relational Model
PPT
VNSISPL_DBMS_Concepts_ch22
PPT
Ch 1-final-file organization from korth
PDF
2 database system concepts and architecture
PPTX
Operating system memory management
PPT
Indexing and hashing
PPTX
Operating System-Memory Management
PDF
Memory management
Big in memory file system
VNSISPL_DBMS_Concepts_ch5
VNSISPL_DBMS_Concepts_ch14
VNSISPL_DBMS_Concepts_ch11
VNSISPL_DBMS_Concepts_ch6
VNSISPL_DBMS_Concepts_ch17
Introduction To DBMS
VNSISPL_DBMS_Concepts_appA
VNSISPL_DBMS_Concepts_ch8
Relational Model
VNSISPL_DBMS_Concepts_ch22
Ch 1-final-file organization from korth
2 database system concepts and architecture
Operating system memory management
Indexing and hashing
Operating System-Memory Management
Memory management
Ad

Similar to ch11 (20)

PPT
Storage and file structure.ppt
PPT
PPT
11. Storage and File Structure in DBMS
PPT
Storage and File Structure in DBMT ch10.ppt
PPT
Unit 4 DBMS.ppt
PPT
FILE STRUCTURE IN DBMS
PDF
DownloadClassSessionFile (44).pdf
PPTX
ch12 database management system storage.pptx
PDF
4_5837027281599466545_220608_094042.pdf
PPT
Magnetic disk - Krishna Geetha.ppt
PDF
19IS305_U4_LP10_LM10-22-23.pdf
PPT
Secondary storage devices
PPTX
Secondary storage devices
PPT
MDFH_Session6 (1)_hayes _ chapter 6 SE 222
PPTX
04.01 file organization
PDF
Secondary storage tutorial
PPTX
UNIT III.pptx
PPTX
Ch-04 (Comp) - Storage Devices.pptx important
Storage and file structure.ppt
11. Storage and File Structure in DBMS
Storage and File Structure in DBMT ch10.ppt
Unit 4 DBMS.ppt
FILE STRUCTURE IN DBMS
DownloadClassSessionFile (44).pdf
ch12 database management system storage.pptx
4_5837027281599466545_220608_094042.pdf
Magnetic disk - Krishna Geetha.ppt
19IS305_U4_LP10_LM10-22-23.pdf
Secondary storage devices
Secondary storage devices
MDFH_Session6 (1)_hayes _ chapter 6 SE 222
04.01 file organization
Secondary storage tutorial
UNIT III.pptx
Ch-04 (Comp) - Storage Devices.pptx important

More from KITE www.kitecolleges.com (20)

PPT
DISTRIBUTED INTERACTIVE VIRTUAL ENVIRONMENT
PPT
BrainFingerprintingpresentation
PPT
holographic versatile disc
PPT
Intro Expert Systems test-me.co.uk

Recently uploaded (20)

PPTX
Climate Change and Its Global Impact.pptx
PDF
M.Tech in Aerospace Engineering | BIT Mesra
PPTX
Integrated Management of Neonatal and Childhood Illnesses (IMNCI) – Unit IV |...
PPTX
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI Syllabus.pdf
PDF
African Communication Research: A review
PDF
0520_Scheme_of_Work_(for_examination_from_2021).pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
PUBH1000 - Module 6: Global Health Tute Slides
PDF
Civil Department's presentation Your score increases as you pick a category
PDF
Everyday Spelling and Grammar by Kathi Wyldeck
PPT
REGULATION OF RESPIRATION lecture note 200L [Autosaved]-1-1.ppt
PPTX
Thinking Routines and Learning Engagements.pptx
PDF
Laparoscopic Colorectal Surgery at WLH Hospital
PDF
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2015).pdf
PDF
Journal of Dental Science - UDMY (2021).pdf
PPTX
2025 High Blood Pressure Guideline Slide Set.pptx
PDF
Compact First Student's Book Cambridge Official
PDF
semiconductor packaging in vlsi design fab
PPTX
Macbeth play - analysis .pptx english lit
Climate Change and Its Global Impact.pptx
M.Tech in Aerospace Engineering | BIT Mesra
Integrated Management of Neonatal and Childhood Illnesses (IMNCI) – Unit IV |...
BSCE 2 NIGHT (CHAPTER 2) just cases.pptx
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI Syllabus.pdf
African Communication Research: A review
0520_Scheme_of_Work_(for_examination_from_2021).pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PUBH1000 - Module 6: Global Health Tute Slides
Civil Department's presentation Your score increases as you pick a category
Everyday Spelling and Grammar by Kathi Wyldeck
REGULATION OF RESPIRATION lecture note 200L [Autosaved]-1-1.ppt
Thinking Routines and Learning Engagements.pptx
Laparoscopic Colorectal Surgery at WLH Hospital
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2015).pdf
Journal of Dental Science - UDMY (2021).pdf
2025 High Blood Pressure Guideline Slide Set.pptx
Compact First Student's Book Cambridge Official
semiconductor packaging in vlsi design fab
Macbeth play - analysis .pptx english lit

ch11

  • 1. Chapter 11: Storage and File Structure Database System Concepts, 5th Ed . ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use Rev. Aug 1, 2008
  • 2. Chapter 11: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files Data-Dictionary Storage 11.2 Database System Concepts - 5 th Edition
  • 3. Classification of Physical Storage Media Speed with which data can be accessed Cost per unit of data Reliability data loss on power failure or system crash physical failure of the storage device Can differentiate storage into: volatile storage : loses contents when power is switched off non-volatile storage : Contents persist even when power is switched off. Includes secondary and tertiary storage, as well as battery-backed up main-memory. 11.3 Database System Concepts - 5 th Edition
  • 4. Physical Storage Media Cache – fastest and most costly form of storage; volatile; managed by the computer system hardware (Note: “Cache” is pronounced as “cash”) Main memory : fast access (10s to 100s of nanoseconds; 1 nanosecond = 10 –9 seconds) generally too small (or too expensive) to store the entire database capacities of up to a few Gigabytes widely used currently Capacities have gone up and per-byte costs have decreased steadily and rapidly (roughly factor of 2 every 2 to 3 years) Volatile — contents of main memory are usually lost if a power failure or system crash occurs. 11.4 Database System Concepts - 5 th Edition
  • 5. Physical Storage Media (Cont.) Flash memory Data survives power failure Data can be written at a location only once, but location can be erased and written to again Can support only a limited number (10K – 1M) of write/erase cycles. Erasing of memory has to be done to an entire bank of memory Reads are roughly as fast as main memory But writes are slow (few microseconds), erase is slower 11.5 Database System Concepts - 5 th Edition
  • 6. Physical Storage Media (Cont.) Flash memory NOR Flash Fast reads, very slow erase, lower capacity Used to store program code in many embedded devices NAND Flash Page-at-a-time read/write, multi-page erase High capacity (several GB) Widely used as data storage mechanism in portable devices 11.6 Database System Concepts - 5 th Edition
  • 7. Physical Storage Media (Cont.) Magnetic-disk Data is stored on spinning disk, and read/written magnetically Primary medium for the long-term storage of data; typically stores entire database. Data must be moved from disk to main memory for access, and written back for storage direct-access – possible to read data on disk in any order, unlike magnetic tape Survives power failures and system crashes disk failure can destroy data: is rare but does happen 11.7 Database System Concepts - 5 th Edition
  • 8. Physical Storage Media (Cont.) Optical storage non-volatile, data is read optically from a spinning disk using a laser CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms Write-one, read-many (WORM) optical disks used for archival storage (CD-R, DVD-R, DVD+R) Multiple write versions also available (CD-RW, DVD-RW, DVD+RW, and DVD-RAM) Reads and writes are slower than with magnetic disk Juke-box systems, with large numbers of removable disks, a few drives, and a mechanism for automatic loading/unloading of disks available for storing large volumes of data 11.8 Database System Concepts - 5 th Edition
  • 9. Physical Storage Media (Cont.) Tape storage non-volatile, used primarily for backup (to recover from disk failure), and for archival data sequential-access – much slower than disk very high capacity (40 to 300 GB tapes available) tape can be removed from drive  storage costs much cheaper than disk, but drives are expensive Tape jukeboxes available for storing massive amounts of data hundreds of terabytes (1 terabyte = 10 9 bytes) to even a petabyte (1 petabyte = 10 12 bytes) 11.9 Database System Concepts - 5 th Edition
  • 10. Storage Hierarchy 11.10 Database System Concepts - 5 th Edition
  • 11. Storage Hierarchy (Cont.) primary storage : Fastest media but volatile (cache, main memory). secondary storage : next level in hierarchy, non-volatile, moderately fast access time also called on-line storage E.g. flash memory, magnetic disks tertiary storage : lowest level in hierarchy, non-volatile, slow access time also called off-line storage E.g. magnetic tape, optical storage 11.11 Database System Concepts - 5 th Edition
  • 12. Magnetic Hard Disk Mechanism 11.12 Database System Concepts - 5 th Edition NOTE: Diagram is schematic, and simplifies the structure of actual disk drives
  • 13. Magnetic Disks Read-write head Positioned very close to the platter surface (almost touching it) Reads or writes magnetically encoded information. Surface of platter divided into circular tracks Over 50K-100K tracks per platter on typical hard disks Each track is divided into sectors . Sector size typically 512 bytes Typical sectors per track: 500 (on inner tracks) to 1000 (on outer tracks) To read/write a sector disk arm swings to position head on right track platter spins continually; data is read/written as sector passes under head 11.13 Database System Concepts - 5 th Edition
  • 14. Magnetic Disks (Cont.) Head-disk assemblies multiple disk platters on a single spindle (1 to 5 usually) one head per platter, mounted on a common arm. Cylinder i consists of i th track of all the platters Earlier generation disks were susceptible to “head-crashes” leading to loss of all data on disk Current generation disks are less susceptible to such disastrous failures, but individual sectors may get corrupted 11.14 Database System Concepts - 5 th Edition
  • 15. Disk Controller Disk controller – interfaces between the computer system and the disk drive hardware. accepts high-level commands to read or write a sector initiates actions such as moving the disk arm to the right track and actually reading or writing the data Computes and attaches checksums to each sector to verify that data is read back correctly If data is corrupted, with very high probability stored checksum won’t match recomputed checksum Ensures successful writing by reading back sector after writing it Performs remapping of bad sectors 11.15 Database System Concepts - 5 th Edition
  • 16. Disk Subsystem Disk interface standards families ATA (AT adaptor) range of standards SATA (Serial ATA) SCSI (Small Computer System Interconnect) range of standards Several variants of each standard (different speeds and capabilities) 11.16 Database System Concepts - 5 th Edition
  • 17. Performance Measures of Disks Access time – the time it takes from when a read or write request is issued to when data transfer begins. Consists of: Seek time – time it takes to reposition the arm over the correct track. Average seek time is 1/2 the worst case seek time. Would be 1/3 if all tracks had the same number of sectors, and we ignore the time to start and stop arm movement 4 to 10 milliseconds on typical disks Rotational latency – time it takes for the sector to be accessed to appear under the head. Average latency is 1/2 of the worst case latency. 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.) 11.17 Database System Concepts - 5 th Edition
  • 18. Performance Measures (Cont.) Data-transfer rate – the rate at which data can be retrieved from or stored to the disk. 25 to 100 MB per second max rate, lower for inner tracks Multiple disks may share a controller, so rate that controller can handle is also important E.g. ATA-5: 66 MB/sec, SATA: 150 MB/sec, Ultra 320 SCSI: 320 MB/s Fiber Channel (FC2Gb): 256 MB/s 11.18 Database System Concepts - 5 th Edition
  • 19. Performance Measures (Cont.) Mean time to failure (MTTF) – the average time the disk is expected to run continuously without any failure. Typically 3 to 5 years Probability of failure of new disks is quite low, corresponding to a theoretical MTTF of 500,000 to 1,200,000 hours for a new disk E.g., an MTTF of 1,200,000 hours for a new disk means that given 1000 relatively new disks, on an average one will fail every 1200 hours MTTF decreases as disk ages 11.19 Database System Concepts - 5 th Edition
  • 20. Optimization of Disk-Block Access Block – a contiguous sequence of sectors from a single track data is transferred between disk and main memory in blocks Typical block sizes today range from 4 to 16 kilobytes Disk-arm-scheduling algorithms order pending accesses to tracks so that disk arm movement is minimized elevator algorithm : move disk arm in one direction (from outer to inner tracks or vice versa), processing next request in that direction, till no more requests in that direction, then reverse direction and repeat 11.20 Database System Concepts - 5 th Edition
  • 21. Optimization of Disk Block Access (Cont.) File organization – optimize block access time by organizing the blocks to correspond to how data will be accessed E.g. Store related information on the same or nearby blocks/cylinders. File systems attempt to allocate contiguous chunks of blocks (e.g. 8 or 16 blocks) to a file Files may get fragmented over time E.g. if data is inserted to/deleted from the file Or free blocks on disk are scattered, and newly created file has its blocks scattered over the disk Sequential access to a fragmented file results in increased disk arm movement Some systems have utilities to defragment the file system, in order to speed up file access 11.21 Database System Concepts - 5 th Edition
  • 22. Nonvolatile write buffers speed up disk writes by writing blocks to a non-volatile RAM buffer immediately Non-volatile RAM: battery backed up RAM or flash memory Even if power fails, the data is safe and will be written to disk when power returns Controller then writes to disk whenever the disk has no other requests or request has been pending for some time Database operations that require data to be safely stored before continuing can continue without waiting for data to be written to disk Writes can be reordered to minimize disk arm movement Optimization of Disk Block Access (Cont.) 11.22 Database System Concepts - 5 th Edition
  • 23. Log disk – a disk devoted to writing a sequential log of block updates Used exactly like nonvolatile RAM Write to log disk is very fast since no seeks are required No need for special hardware (NV-RAM) File systems typically reorder writes to disk to improve performance Journaling file systems write data in safe order to NV-RAM or log disk Reordering without journaling: risk of corruption of file system data Optimization of Disk Block Access (Cont.) 11.23 Database System Concepts - 5 th Edition
  • 24. RAID RAID: Redundant Arrays of Independent Disks disk organization techniques that manage a large numbers of disks, providing a view of a single disk of high capacity and high speed by using multiple disks in parallel, and high reliability by storing data redundantly, so that data can be recovered even if a disk fails The chance that some disk out of a set of N disks will fail is much higher than the chance that a specific single disk will fail. E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx. 11 years), will have a system MTTF of 1000 hours (approx. 41 days) 11.24 Database System Concepts - 5 th Edition
  • 25. Improvement of Reliability via Redundancy Redundancy – store extra information that can be used to rebuild information lost in a disk failure E.g., Mirroring (or shadowing ) Duplicate every disk. Logical disk consists of two physical disks. Every write is carried out on both disks Reads can take place from either disk If one disk in a pair fails, data still available in the other Data loss would occur only if a disk fails, and its mirror disk also fails before the system is repaired Probability of combined event is very small Except for dependent failure modes such as fire or building collapse or electrical power surges 11.25 Database System Concepts - 5 th Edition
  • 26. Improvement of Reliability via Redundancy Mean time to data loss depends on mean time to failure, and mean time to repair E.g. MTTF of 100,000 hours, mean time to repair of 10 hours gives mean time to data loss of 500*10 6 hours (or 57,000 years) for a mirrored pair of disks (ignoring dependent failure modes) 11.26 Database System Concepts - 5 th Edition
  • 27. Improvement in Performance via Parallelism Two main goals of parallelism in a disk system: 1. Load balance multiple small accesses to increase throughput 2. Parallelize large accesses to reduce response time. Improve transfer rate by striping data across multiple disks. Bit-level striping – split the bits of each byte across multiple disks But seek/access time worse than for a single disk Bit level striping is not used much any more Block-level striping – with n disks, block i of a file goes to disk ( i mod n ) + 1 Requests for different blocks can run in parallel if the blocks reside on different disks A request for a long sequence of blocks can utilize all disks in parallel 11.27 Database System Concepts - 5 th Edition
  • 28. RAID Levels RAID organizations, or RAID levels, have differing cost, performance and reliability characteristics RAID Level 0 : Block striping; non-redundant. Used in high-performance applications where data lost is not critical. RAID Level 1 : Mirrored disks with block striping Offers best write performance. Popular for applications such as storing log files in a database system . 11.28 Database System Concepts - 5 th Edition
  • 29. RAID Levels (Cont.) RAID Level 2 : Memory-Style Error-Correcting-Codes (ECC) with bit striping. RAID Level 3 : Bit-Interleaved Parity a single parity bit is enough for error correction, not just detection When writing data, corresponding parity bits must also be computed and written to a parity bit disk To recover data in a damaged disk, compute XOR of bits from other disks (including parity bit disk) 11.29 Database System Concepts - 5 th Edition
  • 30. RAID Levels (Cont.) RAID Level 3 (Cont.) Faster data transfer than with a single disk, but fewer I/Os per second since every disk has to participate in every I/O. RAID Level 4 : Block-Interleaved Parity ; uses block-level striping, and keeps a parity block on a separate disk for corresponding blocks from N other disks. When writing data block, corresponding block of parity bits must also be computed and written to parity disk To find value of a damaged block, compute XOR of bits from corresponding blocks (including parity block) from other disks. 11.30 Database System Concepts - 5 th Edition
  • 31. RAID Levels (Cont.) RAID Level 4 (Cont.) Provides higher I/O rates for independent block reads than Level 3 block read goes to a single disk, so blocks stored on different disks can be read in parallel Before writing a block, parity data must be computed Can be done by using old parity block, old value of current block and new value of current block (2 block reads + 2 block writes) Or by recomputing the parity value using the new values of blocks corresponding to the parity block More efficient for writing large amounts of data sequentially Parity block becomes a bottleneck for independent block writes since every block write also writes to parity disk 11.31 Database System Concepts - 5 th Edition
  • 32. RAID Levels (Cont.) RAID Level 5 : Block-Interleaved Distributed Parity ; partitions data and parity among all N + 1 disks, rather than storing data in N disks and parity in 1 disk. E.g., with 5 disks, parity block for n th set of blocks is stored on disk ( n mod 5) + 1, with the data blocks stored on the other 4 disks. 11.32 Database System Concepts - 5 th Edition
  • 33. RAID Levels (Cont.) RAID Level 5 (Cont.) Higher I/O rates than Level 4. Block writes occur in parallel if the blocks and their parity blocks are on different disks. Subsumes Level 4: provides same benefits, but avoids bottleneck of parity disk. RAID Level 6 : P+Q Redundancy scheme; similar to Level 5, but stores extra redundant information to guard against multiple disk failures. Better reliability than Level 5 at a higher cost; not used as widely. 11.33 Database System Concepts - 5 th Edition
  • 34. Choice of RAID Level Factors in choosing RAID level Monetary cost Performance : Number of I/O operations per second, and bandwidth during normal operation Performance during failure Performance during rebuild of failed disk Including time taken to rebuild failed disk RAID 0 is used only when data safety is not important E.g. data can be recovered quickly from other sources Level 2 and 4 never used since they are subsumed by 3 and 5 Level 3 is not used since bit-striping forces single block reads to access all disks, wasting disk arm movement Level 6 is rarely used since levels 1 and 5 offer adequate safety for most applications So competition is mainly between 1 and 5 11.34 Database System Concepts - 5 th Edition
  • 35. Choice of RAID Level (Cont.) Level 1 provides much better write performance than level 5 Level 5 requires at least 2 block reads and 2 block writes to write a single block, whereas Level 1 only requires 2 block writes Level 1 preferred for high update environments such as log disks Level 1 had higher storage cost than level 5 disk drive capacities increasing rapidly (50%/year) whereas disk access times have decreased much less (x 3 in 10 years) I/O requirements have increased greatly, e.g. for Web servers When enough disks have been bought to satisfy required rate of I/O, they often have spare storage capacity so there is often no extra monetary cost for Level 1! Level 5 is preferred for applications with low update rate, and large amounts of data Level 1 is preferred for all other applications 11.35 Database System Concepts - 5 th Edition
  • 36. Hardware Issues Software RAID : RAID implementations done entirely in software, with no special hardware support Hardware RAID : RAID implementations with special hardware Use non-volatile RAM to record writes that are being executed Beware: power failure during write can result in corrupted disk E.g. failure after writing one block but before writing the second in a mirrored system Such corrupted data must be detected when power is restored Recovery from corruption is similar to recovery from failed disk NV-RAM helps to efficiently detected potentially corrupted blocks Otherwise all blocks of disk must be read and compared with mirror/parity block 11.36 Database System Concepts - 5 th Edition
  • 37. Hardware Issues (Cont.) Hot swapping : replacement of disk while system is running, without power down Supported by some hardware RAID systems, reduces time to recovery, and improves availability greatly Many systems maintain spare disks which are kept online, and used as replacements for failed disks immediately on detection of failure Reduces time to recovery greatly Many hardware RAID systems ensure that a single point of failure will not stop the functioning of the system by using Redundant power supplies with battery backup Multiple controllers and multiple interconnections to guard against controller/interconnection failures 11.37 Database System Concepts - 5 th Edition
  • 38. RAID Terminology in the Industry RAID terminology not very standard in the industry E.g. Many vendors use RAID 1: for mirroring without striping RAID 10 or RAID 1+0: for mirroring with striping “ Hardware RAID” implementations often just offload RAID processing onto a separate subsystem, but don’t offer NVRAM. Read the specs carefully! Software RAID supported directly in most operating systems today 11.38 Database System Concepts - 5 th Edition
  • 39. Optical Disks Compact disk-read only memory (CD-ROM) Seek time about 100 msec (optical read head is heavier and slower) Higher latency (3000 RPM) and lower data-transfer rates (3-6 MB/s) compared to magnetic disks Digital Video Disk (DVD) DVD-5 holds 4.7 GB , variants up to 17 GB Slow seek time, for same reasons as CD-ROM Record once versions (CD-R and DVD-R) 11.39 Database System Concepts - 5 th Edition
  • 40. Magnetic Tapes Hold large volumes of data and provide high transfer rates Few GB for DAT (Digital Audio Tape) format, 10-40 GB with DLT (Digital Linear Tape) format, 100 – 400 GB+ with Ultrium format, and 330 GB with Ampex helical scan format Transfer rates from few to 10s of MB/s Currently the cheapest storage medium Tapes are cheap, but cost of drives is very high Very slow access time in comparison to magnetic disks and optical disks limited to sequential access. Some formats (Accelis) provide faster seek (10s of seconds) at cost of lower capacity Used mainly for backup, for storage of infrequently used information, and as an off-line medium for transferring information from one system to another. Tape jukeboxes used for very large capacity storage (terabyte (10 12 bytes) to petabye (10 15 bytes) 11.40 Database System Concepts - 5 th Edition
  • 41. Storage Access A database file is partitioned into fixed-length storage units called blocks . Blocks are units of both storage allocation and data transfer. Database system seeks to minimize the number of block transfers between the disk and memory. We can reduce the number of disk accesses by keeping as many blocks as possible in main memory. Buffer – portion of main memory available to store copies of disk blocks. Buffer manager – subsystem responsible for allocating buffer space in main memory. 11.41 Database System Concepts - 5 th Edition
  • 42. Buffer Manager Programs call on the buffer manager when they need a block from disk. Buffer manager does the following: If the block is already in the buffer, return the address of the block in main memory If the block is not in the buffer Allocate space in the buffer for the block Replacing (throwing out) some other block, if required, to make space for the new block. Replaced block written back to disk only if it was modified since the most recent time that it was written to/fetched from the disk. Read the block from the disk to the buffer, and return the address of the block in main memory to requester. 11.42 Database System Concepts - 5 th Edition
  • 43. Buffer-Replacement Policies Most operating systems replace the block least recently used ( LRU strategy ) Idea behind LRU – use past pattern of block references as a predictor of future references Queries have well-defined access patterns (such as sequential scans), and a database system can use the information in a user’s query to predict future references LRU can be a bad strategy for certain access patterns involving repeated scans of data e.g. when computing the join of 2 relations r and s by a nested loops for each tuple tr of r do for each tuple ts of s do if the tuples tr and ts match … Mixed strategy with hints on replacement strategy provided by the query optimizer is preferable 11.43 Database System Concepts - 5 th Edition
  • 44. Buffer-Replacement Policies (Cont.) Pinned block – memory block that is not allowed to be written back to disk. Toss-immediate strategy – frees the space occupied by a block as soon as the final tuple of that block has been processed Most recently used (MRU) strategy – system must pin the block currently being processed. After the final tuple of that block has been processed, the block is unpinned, and it becomes the most recently used block. Buffer manager can use statistical information regarding the probability that a request will reference a particular relation E.g., the data dictionary is frequently accessed. Heuristic: keep data-dictionary blocks in main memory buffer Buffer managers also support forced output of blocks for the purpose of recovery (more in Chapter 17) 11.44 Database System Concepts - 5 th Edition
  • 45. File Organization The database is stored as a collection of files . Each file is a sequence of records. A record is a sequence of fields. One approach: assume record size is fixed each file has records of one particular type only different files are used for different relations This case is easiest to implement; will consider variable length records later. 11.45 Database System Concepts - 5 th Edition
  • 46. Fixed-Length Records Simple approach: Store record i starting from byte n  (i – 1), where n is the size of each record. Record access is simple but records may cross blocks Modification: do not allow records to cross block boundaries Deletion of record i: alternatives : move records i + 1, . . ., n to i, . . . , n – 1 move record n to i do not move records, but link all free records on a free list 11.46 Database System Concepts - 5 th Edition
  • 47. Free Lists Store the address of the first deleted record in the file header. Use this first record to store the address of the second deleted record, and so on Can think of these stored addresses as pointers since they “point” to the location of a record. More space efficient representation: reuse space for normal attributes of free records to store pointers. (No pointers stored in in-use records.) 11.47 Database System Concepts - 5 th Edition
  • 48. Variable-Length Records Variable-length records arise in database systems in several ways: Storage of multiple record types in a file. Record types that allow variable lengths for one or more fields. Record types that allow repeating fields (used in some older data models). 11.48 Database System Concepts - 5 th Edition
  • 49. Variable-Length Records: Slotted Page Structure Slotted page header contains: number of record entries end of free space in the block location and size of each record Records can be moved around within a page to keep them contiguous with no empty space between them; entry in the header must be updated. Pointers should not point directly to record — instead they should point to the entry for the record in header. 11.49 Database System Concepts - 5 th Edition
  • 50. Organization of Records in Files Heap – a record can be placed anywhere in the file where there is space Sequential – store records in sequential order, based on the value of the search key of each record Hashing – a hash function computed on some attribute of each record; the result specifies in which block of the file the record should be placed Records of each relation may be stored in a separate file. In a multitable clustering file organization records of several different relations can be stored in the same file Motivation: store related records on the same block to minimize I/O 11.50 Database System Concepts - 5 th Edition
  • 51. Sequential File Organization Suitable for applications that require sequential processing of the entire file The records in the file are ordered by a search-key 11.51 Database System Concepts - 5 th Edition
  • 52. Sequential File Organization (Cont.) Deletion – use pointer chains Insertion –locate the position where the record is to be inserted if there is free space insert there if no free space, insert the record in an overflow block In either case, pointer chain must be updated Need to reorganize the file from time to time to restore sequential order 11.52 Database System Concepts - 5 th Edition
  • 53. Multitable Clustering File Organization (cont.) Store several relations in one file using a multitable clustering file organization Multitable clustering organization of customer and depositor : 11.53 Database System Concepts - 5 th Edition good for queries involving depositor customer , and for queries involving one single customer and his accounts bad for queries involving only customer
  • 54. Data Dictionary Storage Information about relations names of relations names and types of attributes of each relation names and definitions of views integrity constraints User and accounting information, including passwords Statistical and descriptive data number of tuples in each relation Physical file organization information How relation is stored (sequential/hash/…) Physical location of relation Information about indices (Chapter 12) 11.54 Database System Concepts - 5 th Edition Data dictionary (also called system catalog ) stores metadata : that is, data about data, such as
  • 55. Data Dictionary Storage (Cont.) Catalog structure Relational representation on disk specialized data structures designed for efficient access, in memory A possible catalog representation: 11.55 Database System Concepts - 5 th Edition Relation_metadata = ( relation_name , number_of_attributes, storage_organization, location ) Attribute_metadata = ( relation_name, attribute_name , domain_type, position, length ) User_metadata = ( user_name , encrypted_password, group ) Index_metadata = ( relation_name, index_name , index_type, index_attributes ) View_metadata = ( view_name , definition )
  • 56. Extra Slides Database System Concepts, 5th Ed . ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use
  • 57. Record Representation Records with fixed length fields are easy to represent Similar to records (structs) in programming languages Extensions to represent null values E.g. a bitmap indicating which attributes are null Variable length fields can be represented by a pair (offset, length) offset: the location within the record, length: field length. All fields start at predefined location, but extra indirection required for variable length fields 11.57 Database System Concepts - 5 th Edition Example record structure of account record account_number branch_name balance Perryridge A-102 400 10 000 null-bitmap
  • 58. End of Chapter Database System Concepts, 5th Ed . ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use
  • 59. File Containing account Records 11.59 Database System Concepts - 5 th Edition
  • 60. File of Figure 11.6, with Record 2 Deleted and All Records Moved 11.60 Database System Concepts - 5 th Edition
  • 61. File of Figure 11.6, With Record 2 deleted and Final Record Moved 11.61 Database System Concepts - 5 th Edition
  • 62. Byte-String Representation of Variable-Length Records 11.62 Database System Concepts - 5 th Edition
  • 63. Clustering File Structure 11.63 Database System Concepts - 5 th Edition
  • 64. Clustering File Structure With Pointer Chains 11.64 Database System Concepts - 5 th Edition
  • 65. The depositor Relation 11.65 Database System Concepts - 5 th Edition
  • 66. The customer Relation 11.66 Database System Concepts - 5 th Edition
  • 67. Clustering File Structure 11.67 Database System Concepts - 5 th Edition
  • 68. 11.68 Database System Concepts - 5 th Edition
  • 69. Figure 11.4 11.69 Database System Concepts - 5 th Edition
  • 70. Figure 11.7 11.70 Database System Concepts - 5 th Edition
  • 71. Figure 11.8 11.71 Database System Concepts - 5 th Edition
  • 72. Figure 11.20 11.72 Database System Concepts - 5 th Edition
  • 73. Byte-String Representation of Variable-Length Records 11.73 Database System Concepts - 5 th Edition Byte string representation Attach an end-of-record () control character to the end of each record Difficulty with deletion Difficulty with growth
  • 74. Fixed-Length Representation Use one or more fixed length records: reserved space pointers Reserved space – can use fixed-length records of a known maximum length; unused space in shorter records filled with a null or end-of-record symbol. 11.74 Database System Concepts - 5 th Edition
  • 75. Pointer Method Pointer method A variable-length record is represented by a list of fixed-length records, chained together via pointers. Can be used even if the maximum record length is not known 11.75 Database System Concepts - 5 th Edition
  • 76. Pointer Method (Cont.) Disadvantage to pointer structure; space is wasted in all records except the first in a a chain. Solution is to allow two kinds of block in file: Anchor block – contains the first records of chain Overflow block – contains records other than those that are the first records of chairs. 11.76 Database System Concepts - 5 th Edition
  • 77. Mapping of Objects to Files Mapping objects to files is similar to mapping tuples to files in a relational system; object data can be stored using file structures. Objects in O-O databases may lack uniformity and may be very large; such objects have to managed differently from records in a relational system. Set fields with a small number of elements may be implemented using data structures such as linked lists. Set fields with a larger number of elements may be implemented as separate relations in the database. Set fields can also be eliminated at the storage level by normalization. Similar to conversion of multivalued attributes of E-R diagrams to relations 11.77 Database System Concepts - 5 th Edition
  • 78. Mapping of Objects to Files (Cont.) Objects are identified by an object identifier (OID); the storage system needs a mechanism to locate an object given its OID (this action is called dereferencing ). logical identifiers do not directly specify an object’s physical location; must maintain an index that maps an OID to the object’s actual location. physical identifiers encode the location of the object so the object can be found directly. Physical OIDs typically have the following parts: 1. a volume or file identifier 2. a page identifier within the volume or file 3. an offset within the page 11.78 Database System Concepts - 5 th Edition
  • 79. Management of Persistent Pointers Physical OIDs may be a unique identifier . This identifier is stored in the object also and is used to detect references via dangling pointers. 11.79 Database System Concepts - 5 th Edition
  • 80. Management of Persistent Pointers (Cont.) Implement persistent pointers using OIDs; persistent pointers are substantially longer than are in-memory pointers Pointer swizzling cuts down on cost of locating persistent objects already in-memory. Software swizzling (swizzling on pointer deference) When a persistent pointer is first dereferenced, the pointer is swizzled (replaced by an in-memory pointer) after the object is located in memory. Subsequent dereferences of of the same pointer become cheap. The physical location of an object in memory must not change if swizzled pointers pont to it; the solution is to pin pages in memory When an object is written back to disk, any swizzled pointers it contains need to be unswizzled . 11.80 Database System Concepts - 5 th Edition
  • 81. Hardware Swizzling With hardware swizzling, persistent pointers in objects need the same amount of space as in-memory pointers — extra storage external to the object is used to store rest of pointer information. Uses virtual memory translation mechanism to efficiently and transparently convert between persistent pointers and in-memory pointers. All persistent pointers in a page are swizzled when the page is first read in. thus programmers have to work with just one type of pointer, i.e., in-memory pointer. some of the swizzled pointers may point to virtual memory addresses that are currently not allocated any real memory (and do not contain valid data) 11.81 Database System Concepts - 5 th Edition
  • 82. Hardware Swizzling Persistent pointer is conceptually split into two parts: a page identifier, and an offset within the page. The page identifier in a pointer is a short indirect pointer: Each page has a translation table that provides a mapping from the short page identifiers to full database page identifiers. Translation table for a page is small (at most 1024 pointers in a 4096 byte page with 4 byte pointer) Multiple pointers in page to the same page share same entry in the translation table. 11.82 Database System Concepts - 5 th Edition
  • 83. Hardware Swizzling (Cont.) Page image before swizzling (page located on disk) 11.83 Database System Concepts - 5 th Edition
  • 84. Hardware Swizzling (Cont.) When system loads a page into memory the persistent pointers in the page are swizzled as described below Persistent pointers in each object in the page are located using object type information For each persistent pointer (p i , o i ) find its full page ID P i If P i does not already have a virtual memory page allocated to it, allocate a virtual memory page to P i and read-protect the page Note: there need not be any physical space (whether in memory or on disk swap-space) allocated for the virtual memory page at this point. Space can be allocated later if (and when) Pi is accessed. In this case read-protection is not required. Accessing a memory location in the page in the will result in a segmentation violation, which is handled as described later Let v i be the virtual page allocated to P i (either earlier or above) Replace (p i , o i ) by (v i , o i ) Replace each entry (p i , P i ) in the translation table, by (v i , P i ) 11.84 Database System Concepts - 5 th Edition
  • 85. Hardware Swizzling (Cont.) When an in-memory pointer is dereferenced, if the operating system detects the page it points to has not yet been allocated storage, or is read-protected, a segmentation violation occurs. The mmap() call in Unix is used to specify a function to be invoked on segmentation violation The function does the following when it is invoked Allocate storage (swap-space) for the page containing the referenced address, if storage has not been allocated earlier. Turn off read-protection Read in the page from disk Perform pointer swizzling for each persistent pointer in the page, as described earlier 11.85 Database System Concepts - 5 th Edition
  • 86. Hardware Swizzling (Cont.) Page with short page identifier 2395 was allocated address 5001. Observe change in pointers and translation table. Page with short page identifier 4867 has been allocated address 4867. No change in pointer and translation table. 11.86 Database System Concepts - 5 th Edition Page image after swizzling
  • 87. Hardware Swizzling (Cont.) After swizzling, all short page identifiers point to virtual memory addresses allocated for the corresponding pages functions accessing the objects are not even aware that it has persistent pointers, and do not need to be changed in any way! can reuse existing code and libraries that use in-memory pointers After this, the pointer dereference that triggered the swizzling can continue Optimizations: If all pages are allocated the same address as in the short page identifier, no changes required in the page! No need for deswizzling — swizzled page can be saved as-is to disk A set of pages (segment) can share one translation table. Pages can still be swizzled as and when fetched (old copy of translation table is needed). A process should not access more pages than size of virtual memory — reuse of virtual memory addresses for other pages is expensive 11.87 Database System Concepts - 5 th Edition
  • 88. Disk versus Memory Structure of Objects The format in which objects are stored in memory may be different from the formal in which they are stored on disk in the database. Reasons are: software swizzling – structure of persistent and in-memory pointers are different database accessible from different machines, with different data representations Make the physical representation of objects in the database independent of the machine and the compiler. Can transparently convert from disk representation to form required on the specific machine, language, and compiler, when the object (or page) is brought into memory. 11.88 Database System Concepts - 5 th Edition
  • 89. Large Objects Large objects : binary large objects (blobs) and character large objects (clobs) Examples include: text documents graphical data such as images and computer aided designs audio and video data Large objects may need to be stored in a contiguous sequence of bytes when brought into memory. If an object is bigger than a page, contiguous pages of the buffer pool must be allocated to store it. May be preferable to disallow direct access to data, and only allow access through a file-system-like API, to remove need for contiguous storage. 11.89 Database System Concepts - 5 th Edition
  • 90. Modifying Large Objects If the application requires insert/delete of bytes from specified regions of an object: B + -tree file organization (described later in Chapter 12) can be modified to represent large objects Each leaf page of the tree stores between half and 1 page worth of data from the object Special-purpose application programs outside the database are used to manipulate large objects: Text data treated as a byte string manipulated by editors and formatters. Graphical data and audio/video data is typically created and displayed by separate application checkout/checkin method for concurrency control and creation of versions 11.90 Database System Concepts - 5 th Edition