SlideShare a Scribd company logo
Ch. 4 Boolean Algebra and Logic Simplification Boolean Operations and Expressions Laws and Rules of Boolean Algebra Boolean Analysis of Logic Circuits Simplification Using Boolean Algebra Standard Forms of Boolean Expressions Truth Table and Karnaugh Map Programmable Logic: PALs and GALs Boolean Expressions with VHDL
Introduction Boolean Algebra George Boole(English mathematician), 1854 “ An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of  Logic  and Probabilities” Boolean Algebra  {(1,0), Var, (NOT, AND, OR), Thms} Mathematical tool to expression and analyze  digital (logic) circuits Claude Shannon, the first to apply Boole’s work, 1938 “ A Symbolic Analysis of Relay and Switching Circuits”  at MIT  This chapter covers Boolean algebra, Boolean expression and its evaluation and simplification, and VHDL program
Boolean functions : NOT, AND, OR,    exclusive OR(XOR) : odd function   exclusive NOR(XNOR) : even function(equivalence) Basic Functions
AND Z=X    Y  or Z=XY  Z=1 if and only if X=1 and Y=1 , otherwise Z=0 OR Z=X + Y Z=1 if X=1 or if Y=1, or both X=1and Y=1.  Z=0 if and only if X=0 and Y=0 NOT Z=X   or Z=1 if X=0, Z=0 if X=1 Basic Functions ( 계속 )
Basic Functions ( 계속 )
Boolean Operations and Expressions Boolean Addition Logical OR operation Ex 4-1) Determine the values of A, B, C, and D that make the sum term A+B’+C+D’ Sol) all literals must be ‘0’ for the sum term to be ‘0’   A+B’+C+D’=0+1’+0+1’=0   A=0, B=1, C=0, and D=1 Boolean Multiplication Logical AND operation Ex 4-2) Determine the values of A, B, C, and D for AB’CD’=1 Sol) all literals must be ‘1’ for the product term to be ‘1’   AB’CD’=10’10’=1   A=1, B=0, C=1, and D=0
Basic Identities of Boolean Algebra The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
Laws of Boolean Algebra Commutative Law the order of literals does not matter A + B = B + A A B = B A
Associative Law the grouping of literals does not matter A + (B + C) = (A + B) + C  (=A+B+C) A(BC) = (AB)C  (=ABC) Laws of Boolean Algebra ( 계속 )
Distributive Law : A(B + C) = AB + AC Laws of Boolean Algebra ( 계속 ) A B C X Y X=Y
(A+B)(C+D) = AC + AD + BC + BD Laws of Boolean Algebra ( 계속 ) A B C D X Y X=Y
A+0=A In math if you add 0 you have changed nothing in Boolean Algebra ORing with 0 changes nothing   A X X=A+0=A Rules of Boolean Algebra
A+1=1 ORing with 1 must give a 1 since if any input is 1 an OR gate will give a 1 Rules of Boolean Algebra ( 계속 ) A X X=A+1=1
A•0=0 In math if 0 is multiplied with anything you get 0. If you AND anything with 0 you get 0 Rules of Boolean Algebra ( 계속 ) A X X=A0 = 0
A•1 =A ANDing anything with 1 will yield the anything Rules of Boolean Algebra ( 계속 ) A X X=A1=A A
A+A = A ORing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=A+A =A
A+A’=1 Either A or A’ must be 1 so A + A’ =1 Rules of Boolean Algebra ( 계속 ) A A’ X X=+A’=1
A•A = A ANDing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=AA=A
A•A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the inputs must be 0. Rules of Boolean Algebra ( 계속 ) A A’ X X=AA’=0
A = (A’)’ If you not something twice you are back to the beginning   Rules of Boolean Algebra ( 계속 ) A X X=(A’)’=A
Rules of Boolean Algebra ( 계속 ) A B X A + AB = A
A + A’B = A + B   If A is 1 the output is 1  If A is 0 the output is B Rules of Boolean Algebra ( 계속 ) A B X Y X=Y
Rules of Boolean Algebra ( 계속 ) A B C X Y (A + B)(A + C) = A + BC
DeMorgan’s Theorem F  (A,A  ,   , + , 1,0)  =  F(A  , A, + ,   ,0,1) (A • B)’ = A’ + B’  and (A + B)’ = A’ • B’ DeMorgan’s theorem  will help to simplify digital circuits using NORs and NANDs his theorem states DeMorgan’s Theorems
 
Look at (A +B +C + D)’ = A’ • B’ • C’ • D’
Ex 4-3) Apply DeMorgan’s theorems to (XYZ)’ and (X+Y+Z)’ Sol) (XYZ)’=X’+Y’+Z’  and (X+Y+Z)’=X’Y’Z’ Ex 4-5) Apply DeMorgan’s theorems to  (a) ((A+B+C)D)’  (b) (ABC+DEF)’  (c) (AB’+C’D+EF)’ Sol) (a) ((A+B+C)D)’= (A+B+C)’+D’=A’B’C’+D’ (b) (ABC+DEF)’=(ABC)’(DEF)’=(A’+B’+C’)(D’+E’+F’) (c) (AB’+C’D+EF)’=(AB’)’(C’D)’(EF)’=(A’+B)(C+D’)(E’+F’)
Boolean Analysis of Logic Circuits Boolean Expression for a Logic Circuit Figure 4-16  A logic circuit showing the development of the Boolean expression for the output.
Constructing a Truth Table for a Logic Circuit Convert the expression into the min-terms containing all the input literals Get the numbers from the min-terms  Putting ‘1’s in the rows corresponding to the min-terms and ‘0’s  in the remains Ex) A(B+CD)= AB(C+C’) (D+D’)  +A(B+B’)CD = ABC(D+D’) +ABC’(D+D’)  +ABCD+AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ + ABCD +AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ +AB’CD =m11+m12+m13+m14+m15=  (11,12,13,14,15)
Truth Table from Logic Circuit A(B+CD)=m11+m12+m13+m14+m15 =  (11,12,13,14,15)  Output Input 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 A(B+CD) D C B A
Ex 4-8) Using Boolean algebra, simplify this expression AB+A(B+C)+B(B+C) Sol) AB+AB+AC+BB+BC =B(1+A+A+C)+AC= B+AC Simplification Using Boolean Algebra
Ex 4-9) Simplify the following Boolean expression (AB’(C+BD)+A’B’)C Sol) (AB’C+ A B’B D +A’B’)C=A B’CC +A’ B’C =(A+A’)B’C=B’C Ex 4-10) Simplify the following Boolean expression A’ BC +A B’C’ +A’ B’C’ +AB’C+A BC Sol) (A+A’) BC +(A+A’) B’C’ +AB’C=BC+ B’ C’+A B’ C  =BC+B’(C’+AC)=BC+B’(C’+A)=BC+B’C’+AB’ Ex 4-11) Simplify the following Boolean expression (AB +AC)’+A’B’C Sol) (AB)’(AC)’+A’B’C=(A’+ B’)(A’+C’)+ A’ B’C =A’+A’B’ +A’C’+B’C+A’B’C =A’(1+B’+C’+B’C)+B’C=A’+B’C’
Standard Forms of Boolean Expressions   The Sum-of-Products(SOP) Form Ex) AB+ABC,  ABC+CDE+B’CD’ The Product-of-Sums(POS) Form Ex) (A+B)(A+B+C),  (A+B+C)(C+D+E)(B’+C+D’) Principle of Duality : SOP    POS Domain of a Boolean Expression The set of variables contained in the expression Ex) A’B+AB’C : the domain is {A, B, C}
Implementation of a SOP Expression AND-OR logic Conversion of General Expression to SOP Form A(B+CD)=AB +ACD Ex 4-12) Convert each of the following expressions to SOP form: (a) AB+B(CD+EF)  (b) (A+B)(B+C+D) Sol) (a) AB+B(CD+EF)=AB+BCD+BEF   (b) (A+B)(B+C+D)=AB+AC+AD+ BB+BC+BD    =B(1+A+C+D)+ AC+AD=B+AC+AD
Standard SOP Form (Canonical SOP Form) For all the missing variables, apply  (x+x’)=1  to the AND terms of the expression List all the min-terms in forms of the complete set of variables in ascending order Ex 4-13) Convert the following expression into standard SOP form:  AB’C+A’B’+ABC’D Sol) domain={A,B,C,D}, AB’C(D’+D)+A’B’(C’+C)(D’+D)+ABC’D =AB’CD’+AB’CD+A’B’C’D’+A’B’C’D+A’B’CD’+A’B’CD+ABC’D =1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 =   (0,1,2,3,10,11,13)
Product-of-Sums Form Implementation of a POS Expression OR-AND logic
Standard POS Form (Canonical POS Form) For all the missing variables, apply  (x’x)=0  to the OR terms of the expression List all the max-terms in forms of the complete set of variables in ascending order Ex 4-15) Convert the following expression into standard POS form:  (A+B’+C)(B’+C+D’)(A+B’+C’+D) Sol) domain={A,B,C,D},  (A+B’+C)(B’+C+D’)(A+B’+C’+D)  =(A+B’+C+D’D)(A’A+B’+C+D’)(A+B’+C’+D)  = (A+B’+C+D’) (A+B’+C+D) (A’+B’+C+D’) (A+B’+C+D’)(A+B’+C’+D)=(0100) )(0101)(0110)(1101)=   (4,5,6,13)
Converting Standard SOP to Standard POS Step 1. Evaluate each product term in the SOP expression. Determine the binary numbers that represent the product terms Step 2. Determine all of the binary numbers not included in the evaluation in Step 1  Step 3. Write in equivalent sum term for each binary number Step 2 and expression in POS form Ex 4-17) Convert the following SOP to POS Sol) SOP= A’B’C’+A’BC’+A’BC+AB’C+ABC=0+2+3+5+7  =  (0,2,3,5,7)   POS=(1)(4)(6) =   (1, 4, 6)  (=(A+B+C’)(A’+B+C)(A’+B’+C))
Boolean Expressions and Truth Tables Converting SOP Expressions to Truth Table Format Ex 4-18) A’B’C+AB’C’+ABC =  (1,4,7)  ABC 1 1  1  1 0 1  1  0 0 1  0  1 AB’C’ 1 1  0  0 0 0  1  1 0 0  1  0 A’B’C 1 0  0  1 0 0  0  0 Product Term Output X Inputs A  B  C
Converting POS Expressions to Truth Table Format Ex 4-19) (A+B+C)(A+B’+C)(A+B’+C’)(A’+B+C’)(A’+B’+C)  = (000)(010)(011)(101)(110) =   (0,2,3,5,6)  1 1  1  1 A’+B’+C 0 1  1  0 A’+B+C’ 0 1  0  1 1 1  0  0 A+B’+C’ 0 0  1  1 A+B’+C 0 0  1  0 1 0  0  1 A+B+C 0 0  0  0 Sum Term Output X Inputs A  B  C
Ex 4-20) Determine standard SOP and POS from the truth table Sol) (a) Standard SOP F=A’BC+AB’C’+ABC’+ABC (b) Standard POS F=(A+B+C)(A+B+C’)(A+B’+C) (A’+B+C’) 1 1  1  1 1 1  1  0 0 1  0  1 1 1  0  0 1 0  1  1 0 0  1  0 0 0  0  1 0 0  0  0 Output X Inputs A  B  C
Boolean Expression Truth Table Logic Diagram
Karnaugh Map Simplification methods Boolean algebra(algebraic method) Karnaugh map(map method)) Quine-McCluskey(tabular method) XY+XY  =X(Y+Y  )=X
 
Three- and Four-input Kanaugh maps Gray code
 
 
Gray code sequence generation
F(X,Y,Z)=  m(0,1,2,6) =(XY  +YZ)  =X’Y’ + YZ’
Example) F(X,Y,Z)=  m(2,3,4,5) =X  Y+XY  0  1  3  2 4  5  7  6
Example)  F(X,Y,Z)=  m(0,2,4,6) = X  Z  +XZ    =Z  (X  +X)=Z 
Four-Variable Map 16 minterms : m 0  ~ m 15  Rectangle group  2-squares(minterms) : 3-literals product term 4-squares : 2-literals product term 8-squares : 1-literals product term 16-squares : logic 1
 
 
F(W, X,Y,Z)=  m(0,2,7,8,9,10,11) = WX’ + X’Z’ +  W’XYZ
Karnaugh Map SOP Minimization Mapping a Standard SOP Expression
Ex 4-21)     Ex 4-22)
Mapping a Nonstandard SOP Expression Numerical Expression of a Nonstandard Product Term Ex 4-23)  A’+AB’+ABC’ A’ AB’ ABC’ 0 00  10 0 110 0 01   10 1 0 10 0 11
Ex 4-24) B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD B’C’  AB’   ABC’  AB’CD’  A’B’C’D  AB’CD 0000  1000  1100  1010  0001  1011 0001  1001  1101 1000  1010 1001  1011
Karnaugh Map Simplification of SOP Expressions Group 2 n  adjacent cells including the largest possible number of 1s in a rectangle or square shape, 1<=n Get the groups containing all 1s on the map for the expression Determine the minimum SOP expression form map
Ex 4-26)  F=B+A’C+AC’D
Ex 4-27)  (a) AB+BC+A’B’C’  (b) B’+AC+A’C’    (c) A’C’+A’B+AB’D  (d) D’+BC’+AB’C
Ex 4-28) Minimize the following expression AB’C+A’BC+A’B’C+A’B’C’+AB’C’ Sol) B’+A’C
Ex 4-29) Minimize the following expression B’C’D’ +A’BC’D’+ABC’D’+A’B’CD+AB’CD+A’B’CD’+A’BCD’ +ABCD’+AB’CD’ Sol) D’+B’C
Mapping Directly from a Truth Table
Don’t Care Conditions it really does not matter since they will never occur(its output is either ‘0’ or ‘1’) The don’t care terms can be used to advantage on the Karnaugh map
Karnaugh Map POS Minimization Use the  Duality Principle F(A,A  ,   , + , 1,0)     F * (A,A  , + ,   ,0,1)  SOP    POS
Ex 4-30) (A’+B’+C+D)(A’+B+C’+D’)(A+B+C’+D) (A’+B’+C’+D’)(A+B+C’+D’) Sol)
Ex 4-31) (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C) Sol) (0+0+0)(0+0+1)(0+1+0)(0+1+1)(1+1+0)=A(B’+C)   AC+AB’=A(B’+C)
Ex 4-32)  (B+C+D) (A+B+C’+D)(A’+B+C+D’)(A+B’+C+D)(A’+B’+C+D) Sol)  (B+C+D)=(A’A+B+C+D)=(A’+B+C+D)(A+B+C+D) (1+0+0+0)(0+0+0+0)(0+0+1+0)(1+0+0+1)(0+1+0+0)(1+1+0+0)   F=(C+D)(A’+B+C)(A+B+D)
Converting Between POS and SOP Using the K-map Ex 4-33) (A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’) (A’+B+C+D’)(A+B+C’+D) Sol)
 
Five/Six –Variable K-Maps Five Variable K-Map : {A,B,C,D,E} 0  1  3  2  4  5  7  6 12  13  15  14 8  9  11  10 16  17  19  18 20  21  23  22 28  29  31  30 24  25  27  26 00  01  11  10 00  01  11  10 BC DE A=0 A=1
Six Variable K-Map : {A,B,C,D,E,F} 0  1  3  2  4  5  7  6 12  13  15  14 8  9  11  10 16  17  19  18 20  21  23  22 28  29  31  30 24  25  27  26 00  01  11  10 00  01  11  10 CD EF AB 32  33  35  34 36  37  39  38 44  45  47  46 40  41  43  42 48  49  51  50 52  53  55  54 60  61  62  63 56  57  59  58 00 10   01 11
Ex 4-34) Sol) A’D’E’+B’C’D’+BCD+ACDE
Programmable Logic: PALs and  GALs Basic PAL Operation Programmable array of AND gates Fixed OR gate
Implementing a Sum-of-Product Expression
 
Ex 4-35) Show how a PAL is programmed for the following function : X=AB’C+A’BC’+A’B’+AC Sol)
PAL Block Diagram
PAL Output Combinational Logic X  0=X X  1=X’
A Specific PAL Figure 4-50  Block diagram of the  PAL16L8 .
Basic GAL Operation Reprogrammable AND array Electrically Erasable CMOS(E 2 CMOS) technology
Figure 4-52  GAL implementation of a sum-of-products expression.
Ex 4-36) Show how a GAL is programmed for the function: X=A’BC’+A’BC+BC+AB’ Sol)
The GAL Block Diagram OLMCs(Output Logic Macrocells) OR array and programmable output logic Typically m and n >= 8
 
GAL20V8 High Performance E2CMOS PLD Generic Array Logic™
Boolean Expressions with VHDL Boolean Algebra in VHDL Programming VHDL Optimization Ex 4-37) Write a VHDL grogram for the following function:  X=(AC+(BC’)’+D)’+((BC)’)’ -- Program  X=(AC+(BC’)’+D)’+((BC)’)’ entity alogicft is port(A, B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<=not((A and C) or not(B and not C) or D) or not(not B  and C); end architecture expaft;
--  Program  X=(AC+(BC’)’+D)’+((BC)’)’=(A’+C’)(BC’)D’+BC  --  =A’BC’D’+BC’D’+BC=(A’+1)BC’D’+BC =  BC’D’+BC entity alogicft is port(B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<= (B and not C and not D) or (B and C); end architecture expaft;
Levels of Abstraction for sequential logic circuits VHDL (1) Behavioral approach : state diagram or truth table (2) Data flow approach : Boolean expression or function (3) Structure approach : logic diagram or schematic describing logic function
Digital System Application : 7-Segment LED Driver Seven-Segment LED driver
A  B  C  D 0  1  3  2  4  5  7  6 13  15  14 8  9  11  10 g  = m(2,3,4,5,6,8,9) =A+BC’+B’C+CD’ CD AB
Figure 4-59  Karnaugh map minimization of the segment- a  logic expression.
Figure 4-60  The minimum logic implementation for segment  a  of the 7-segment display.
--  Program  7-segment driver  entity sevensegdrv is port(A, B, C, D: in bit; a,b,c,d,e,f,g: out bit); end entity sevensegdrv; architecture segment of sevensegdrv is begin a<= B or D or (A and C) or (not A and not C); -- B +D+AC+A’C’ • • •  • • •  • • •  g<= A or B and C’ or not B and C or C and not D; -- A+BC’+B’C+CD’ end architecture segment; VHDL for 7-Segment Driver
Summary Gate symbols Duality Principle F(A,A  ,   , + , 1,0)     F * (A,A  , + ,   ,0,1)  DeMorgan’s Theorem F  (A,A  ,   , + , 1,0)  =  F(A  , A, + ,   ,0,1)
The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
Sum-of-Product(SOP) form    Product-of-Sums(POS) form Standard(canonical) SOP form    Standard POS form Universal gates: NAND, NOR Don’t care conditions Karnaugh map(3, 4, 5, 6 variables) PLDs: PAL, GAL VHDL for logic expressions
Boolean Expression Truth Table Logic Diagram VHDL (HDL)
End of Ch. 4

More Related Content

What's hot (20)

DOCX
Basic structure of c programming
TejaswiB4
 
PDF
Multiplexer and Demultiplexer.pdf
sudarmani5694
 
PPTX
Presentation on C programming language
Ashmita Tuition Center
 
PPTX
BOOLEAN ALGEBRA & LOGIC GATE
Ideal Eyes Business College
 
PPTX
Ceis114 final joshua_brown
JoshuaBrown233
 
PPT
C presentation
APSMIND TECHNOLOGY PVT LTD.
 
PPTX
Peephole Optimization
United International University
 
PPTX
Sequential and combinational alu
Piyush Rochwani
 
PPTX
Principal Sources of Optimization in compiler design
LogsAk
 
PPTX
Don't care conditions
Grishma Maravia
 
PPTX
Nand and nor
Zahida Pervaiz
 
PPTX
Python presentation
gaganapponix
 
PPTX
applications of arduino
shubhamw25
 
DOC
Digital Comprator
suraj829
 
PPTX
process control block
Vikas SHRIVASTAVA
 
PPTX
Basic theorems and properties of boolean algebra
Hanu Kavi
 
PPTX
Simplification of Boolean Functions
Sikder Tahsin Al-Amin
 
PPTX
Combinational Circuits & Sequential Circuits
gourav kottawar
 
PPTX
Introduction to Dynamic Programming, Principle of Optimality
Bhavin Darji
 
PPS
Functions Of Operating System
Dr.Suresh Isave
 
Basic structure of c programming
TejaswiB4
 
Multiplexer and Demultiplexer.pdf
sudarmani5694
 
Presentation on C programming language
Ashmita Tuition Center
 
BOOLEAN ALGEBRA & LOGIC GATE
Ideal Eyes Business College
 
Ceis114 final joshua_brown
JoshuaBrown233
 
Peephole Optimization
United International University
 
Sequential and combinational alu
Piyush Rochwani
 
Principal Sources of Optimization in compiler design
LogsAk
 
Don't care conditions
Grishma Maravia
 
Nand and nor
Zahida Pervaiz
 
Python presentation
gaganapponix
 
applications of arduino
shubhamw25
 
Digital Comprator
suraj829
 
process control block
Vikas SHRIVASTAVA
 
Basic theorems and properties of boolean algebra
Hanu Kavi
 
Simplification of Boolean Functions
Sikder Tahsin Al-Amin
 
Combinational Circuits & Sequential Circuits
gourav kottawar
 
Introduction to Dynamic Programming, Principle of Optimality
Bhavin Darji
 
Functions Of Operating System
Dr.Suresh Isave
 

Similar to Ch4 Boolean Algebra And Logic Simplication1 (20)

PPT
Boolean algebra
praveenkaundal
 
PPT
07 boolean algebra
Sohail Akbar Goheer
 
PDF
Unit-2 ppt.pdf introduction to it technology
PDineshReddy3
 
PPT
9402730.ppt
qquwandiq19
 
PPT
Best Explanation about De Morgan's Law and Components
AssadLeo1
 
PPT
Digital logic design lecture 06
FarhatUllah27
 
PPTX
Digital-Logic40124sequential circuits logic gatepptx
ssuser6feece1
 
PPT
Introduction to Boolean Algebra class XI CBSE.ppt
monicathakkar2
 
PPT
Introduction-to-Boolean-Algebra.ppt
Sanjay446332
 
PPTX
session 3 - Boolean Functions Minimization.pptx
NagaiKumaresan1
 
PPT
Introduction-to-Boolean- Algebra.ppt
shradhashilwant
 
PPT
Boolean algebra
Ganesh Mummidi
 
PPT
Boolean Algebra DLD
Rokonuzzaman Rony
 
PPT
boolean algebra and logic simplification
Unsa Shakir
 
PPTX
PPT 1.pptx
ShrutiSharma485933
 
PDF
Unit 2 Boolean Algebra and Logic Gates.pdf
ShirazHusain4
 
PPTX
IS 151 Lecture 5
wajanga
 
DOCX
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra .docx
jack60216
 
PPTX
B sc cs i bo-de u-ii logic gates
Rai University
 
PDF
Digital electronics lesson 2
Sukriti Dhang
 
Boolean algebra
praveenkaundal
 
07 boolean algebra
Sohail Akbar Goheer
 
Unit-2 ppt.pdf introduction to it technology
PDineshReddy3
 
9402730.ppt
qquwandiq19
 
Best Explanation about De Morgan's Law and Components
AssadLeo1
 
Digital logic design lecture 06
FarhatUllah27
 
Digital-Logic40124sequential circuits logic gatepptx
ssuser6feece1
 
Introduction to Boolean Algebra class XI CBSE.ppt
monicathakkar2
 
Introduction-to-Boolean-Algebra.ppt
Sanjay446332
 
session 3 - Boolean Functions Minimization.pptx
NagaiKumaresan1
 
Introduction-to-Boolean- Algebra.ppt
shradhashilwant
 
Boolean algebra
Ganesh Mummidi
 
Boolean Algebra DLD
Rokonuzzaman Rony
 
boolean algebra and logic simplification
Unsa Shakir
 
PPT 1.pptx
ShrutiSharma485933
 
Unit 2 Boolean Algebra and Logic Gates.pdf
ShirazHusain4
 
IS 151 Lecture 5
wajanga
 
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra .docx
jack60216
 
B sc cs i bo-de u-ii logic gates
Rai University
 
Digital electronics lesson 2
Sukriti Dhang
 
Ad

Recently uploaded (20)

PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
PDF
From Code to Challenge: Crafting Skill-Based Games That Engage and Reward
aiyshauae
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
PDF
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
From Code to Challenge: Crafting Skill-Based Games That Engage and Reward
aiyshauae
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
Ad

Ch4 Boolean Algebra And Logic Simplication1

  • 1. Ch. 4 Boolean Algebra and Logic Simplification Boolean Operations and Expressions Laws and Rules of Boolean Algebra Boolean Analysis of Logic Circuits Simplification Using Boolean Algebra Standard Forms of Boolean Expressions Truth Table and Karnaugh Map Programmable Logic: PALs and GALs Boolean Expressions with VHDL
  • 2. Introduction Boolean Algebra George Boole(English mathematician), 1854 “ An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities” Boolean Algebra {(1,0), Var, (NOT, AND, OR), Thms} Mathematical tool to expression and analyze digital (logic) circuits Claude Shannon, the first to apply Boole’s work, 1938 “ A Symbolic Analysis of Relay and Switching Circuits” at MIT This chapter covers Boolean algebra, Boolean expression and its evaluation and simplification, and VHDL program
  • 3. Boolean functions : NOT, AND, OR, exclusive OR(XOR) : odd function exclusive NOR(XNOR) : even function(equivalence) Basic Functions
  • 4. AND Z=X  Y or Z=XY Z=1 if and only if X=1 and Y=1 , otherwise Z=0 OR Z=X + Y Z=1 if X=1 or if Y=1, or both X=1and Y=1. Z=0 if and only if X=0 and Y=0 NOT Z=X  or Z=1 if X=0, Z=0 if X=1 Basic Functions ( 계속 )
  • 5. Basic Functions ( 계속 )
  • 6. Boolean Operations and Expressions Boolean Addition Logical OR operation Ex 4-1) Determine the values of A, B, C, and D that make the sum term A+B’+C+D’ Sol) all literals must be ‘0’ for the sum term to be ‘0’ A+B’+C+D’=0+1’+0+1’=0  A=0, B=1, C=0, and D=1 Boolean Multiplication Logical AND operation Ex 4-2) Determine the values of A, B, C, and D for AB’CD’=1 Sol) all literals must be ‘1’ for the product term to be ‘1’ AB’CD’=10’10’=1  A=1, B=0, C=1, and D=0
  • 7. Basic Identities of Boolean Algebra The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
  • 8. Laws of Boolean Algebra Commutative Law the order of literals does not matter A + B = B + A A B = B A
  • 9. Associative Law the grouping of literals does not matter A + (B + C) = (A + B) + C (=A+B+C) A(BC) = (AB)C (=ABC) Laws of Boolean Algebra ( 계속 )
  • 10. Distributive Law : A(B + C) = AB + AC Laws of Boolean Algebra ( 계속 ) A B C X Y X=Y
  • 11. (A+B)(C+D) = AC + AD + BC + BD Laws of Boolean Algebra ( 계속 ) A B C D X Y X=Y
  • 12. A+0=A In math if you add 0 you have changed nothing in Boolean Algebra ORing with 0 changes nothing A X X=A+0=A Rules of Boolean Algebra
  • 13. A+1=1 ORing with 1 must give a 1 since if any input is 1 an OR gate will give a 1 Rules of Boolean Algebra ( 계속 ) A X X=A+1=1
  • 14. A•0=0 In math if 0 is multiplied with anything you get 0. If you AND anything with 0 you get 0 Rules of Boolean Algebra ( 계속 ) A X X=A0 = 0
  • 15. A•1 =A ANDing anything with 1 will yield the anything Rules of Boolean Algebra ( 계속 ) A X X=A1=A A
  • 16. A+A = A ORing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=A+A =A
  • 17. A+A’=1 Either A or A’ must be 1 so A + A’ =1 Rules of Boolean Algebra ( 계속 ) A A’ X X=+A’=1
  • 18. A•A = A ANDing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=AA=A
  • 19. A•A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the inputs must be 0. Rules of Boolean Algebra ( 계속 ) A A’ X X=AA’=0
  • 20. A = (A’)’ If you not something twice you are back to the beginning Rules of Boolean Algebra ( 계속 ) A X X=(A’)’=A
  • 21. Rules of Boolean Algebra ( 계속 ) A B X A + AB = A
  • 22. A + A’B = A + B If A is 1 the output is 1 If A is 0 the output is B Rules of Boolean Algebra ( 계속 ) A B X Y X=Y
  • 23. Rules of Boolean Algebra ( 계속 ) A B C X Y (A + B)(A + C) = A + BC
  • 24. DeMorgan’s Theorem F  (A,A  ,  , + , 1,0) = F(A  , A, + ,  ,0,1) (A • B)’ = A’ + B’ and (A + B)’ = A’ • B’ DeMorgan’s theorem will help to simplify digital circuits using NORs and NANDs his theorem states DeMorgan’s Theorems
  • 25.  
  • 26. Look at (A +B +C + D)’ = A’ • B’ • C’ • D’
  • 27. Ex 4-3) Apply DeMorgan’s theorems to (XYZ)’ and (X+Y+Z)’ Sol) (XYZ)’=X’+Y’+Z’ and (X+Y+Z)’=X’Y’Z’ Ex 4-5) Apply DeMorgan’s theorems to (a) ((A+B+C)D)’ (b) (ABC+DEF)’ (c) (AB’+C’D+EF)’ Sol) (a) ((A+B+C)D)’= (A+B+C)’+D’=A’B’C’+D’ (b) (ABC+DEF)’=(ABC)’(DEF)’=(A’+B’+C’)(D’+E’+F’) (c) (AB’+C’D+EF)’=(AB’)’(C’D)’(EF)’=(A’+B)(C+D’)(E’+F’)
  • 28. Boolean Analysis of Logic Circuits Boolean Expression for a Logic Circuit Figure 4-16 A logic circuit showing the development of the Boolean expression for the output.
  • 29. Constructing a Truth Table for a Logic Circuit Convert the expression into the min-terms containing all the input literals Get the numbers from the min-terms Putting ‘1’s in the rows corresponding to the min-terms and ‘0’s in the remains Ex) A(B+CD)= AB(C+C’) (D+D’) +A(B+B’)CD = ABC(D+D’) +ABC’(D+D’) +ABCD+AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ + ABCD +AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ +AB’CD =m11+m12+m13+m14+m15=  (11,12,13,14,15)
  • 30. Truth Table from Logic Circuit A(B+CD)=m11+m12+m13+m14+m15 =  (11,12,13,14,15) Output Input 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 A(B+CD) D C B A
  • 31. Ex 4-8) Using Boolean algebra, simplify this expression AB+A(B+C)+B(B+C) Sol) AB+AB+AC+BB+BC =B(1+A+A+C)+AC= B+AC Simplification Using Boolean Algebra
  • 32. Ex 4-9) Simplify the following Boolean expression (AB’(C+BD)+A’B’)C Sol) (AB’C+ A B’B D +A’B’)C=A B’CC +A’ B’C =(A+A’)B’C=B’C Ex 4-10) Simplify the following Boolean expression A’ BC +A B’C’ +A’ B’C’ +AB’C+A BC Sol) (A+A’) BC +(A+A’) B’C’ +AB’C=BC+ B’ C’+A B’ C =BC+B’(C’+AC)=BC+B’(C’+A)=BC+B’C’+AB’ Ex 4-11) Simplify the following Boolean expression (AB +AC)’+A’B’C Sol) (AB)’(AC)’+A’B’C=(A’+ B’)(A’+C’)+ A’ B’C =A’+A’B’ +A’C’+B’C+A’B’C =A’(1+B’+C’+B’C)+B’C=A’+B’C’
  • 33. Standard Forms of Boolean Expressions The Sum-of-Products(SOP) Form Ex) AB+ABC, ABC+CDE+B’CD’ The Product-of-Sums(POS) Form Ex) (A+B)(A+B+C), (A+B+C)(C+D+E)(B’+C+D’) Principle of Duality : SOP  POS Domain of a Boolean Expression The set of variables contained in the expression Ex) A’B+AB’C : the domain is {A, B, C}
  • 34. Implementation of a SOP Expression AND-OR logic Conversion of General Expression to SOP Form A(B+CD)=AB +ACD Ex 4-12) Convert each of the following expressions to SOP form: (a) AB+B(CD+EF) (b) (A+B)(B+C+D) Sol) (a) AB+B(CD+EF)=AB+BCD+BEF (b) (A+B)(B+C+D)=AB+AC+AD+ BB+BC+BD =B(1+A+C+D)+ AC+AD=B+AC+AD
  • 35. Standard SOP Form (Canonical SOP Form) For all the missing variables, apply (x+x’)=1 to the AND terms of the expression List all the min-terms in forms of the complete set of variables in ascending order Ex 4-13) Convert the following expression into standard SOP form: AB’C+A’B’+ABC’D Sol) domain={A,B,C,D}, AB’C(D’+D)+A’B’(C’+C)(D’+D)+ABC’D =AB’CD’+AB’CD+A’B’C’D’+A’B’C’D+A’B’CD’+A’B’CD+ABC’D =1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 =  (0,1,2,3,10,11,13)
  • 36. Product-of-Sums Form Implementation of a POS Expression OR-AND logic
  • 37. Standard POS Form (Canonical POS Form) For all the missing variables, apply (x’x)=0 to the OR terms of the expression List all the max-terms in forms of the complete set of variables in ascending order Ex 4-15) Convert the following expression into standard POS form: (A+B’+C)(B’+C+D’)(A+B’+C’+D) Sol) domain={A,B,C,D}, (A+B’+C)(B’+C+D’)(A+B’+C’+D) =(A+B’+C+D’D)(A’A+B’+C+D’)(A+B’+C’+D) = (A+B’+C+D’) (A+B’+C+D) (A’+B’+C+D’) (A+B’+C+D’)(A+B’+C’+D)=(0100) )(0101)(0110)(1101)=  (4,5,6,13)
  • 38. Converting Standard SOP to Standard POS Step 1. Evaluate each product term in the SOP expression. Determine the binary numbers that represent the product terms Step 2. Determine all of the binary numbers not included in the evaluation in Step 1 Step 3. Write in equivalent sum term for each binary number Step 2 and expression in POS form Ex 4-17) Convert the following SOP to POS Sol) SOP= A’B’C’+A’BC’+A’BC+AB’C+ABC=0+2+3+5+7 =  (0,2,3,5,7) POS=(1)(4)(6) =  (1, 4, 6) (=(A+B+C’)(A’+B+C)(A’+B’+C))
  • 39. Boolean Expressions and Truth Tables Converting SOP Expressions to Truth Table Format Ex 4-18) A’B’C+AB’C’+ABC =  (1,4,7) ABC 1 1 1 1 0 1 1 0 0 1 0 1 AB’C’ 1 1 0 0 0 0 1 1 0 0 1 0 A’B’C 1 0 0 1 0 0 0 0 Product Term Output X Inputs A B C
  • 40. Converting POS Expressions to Truth Table Format Ex 4-19) (A+B+C)(A+B’+C)(A+B’+C’)(A’+B+C’)(A’+B’+C) = (000)(010)(011)(101)(110) =  (0,2,3,5,6) 1 1 1 1 A’+B’+C 0 1 1 0 A’+B+C’ 0 1 0 1 1 1 0 0 A+B’+C’ 0 0 1 1 A+B’+C 0 0 1 0 1 0 0 1 A+B+C 0 0 0 0 Sum Term Output X Inputs A B C
  • 41. Ex 4-20) Determine standard SOP and POS from the truth table Sol) (a) Standard SOP F=A’BC+AB’C’+ABC’+ABC (b) Standard POS F=(A+B+C)(A+B+C’)(A+B’+C) (A’+B+C’) 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 Output X Inputs A B C
  • 42. Boolean Expression Truth Table Logic Diagram
  • 43. Karnaugh Map Simplification methods Boolean algebra(algebraic method) Karnaugh map(map method)) Quine-McCluskey(tabular method) XY+XY  =X(Y+Y  )=X
  • 44.  
  • 45. Three- and Four-input Kanaugh maps Gray code
  • 46.  
  • 47.  
  • 48. Gray code sequence generation
  • 49. F(X,Y,Z)=  m(0,1,2,6) =(XY  +YZ)  =X’Y’ + YZ’
  • 50. Example) F(X,Y,Z)=  m(2,3,4,5) =X  Y+XY  0 1 3 2 4 5 7 6
  • 51. Example) F(X,Y,Z)=  m(0,2,4,6) = X  Z  +XZ  =Z  (X  +X)=Z 
  • 52. Four-Variable Map 16 minterms : m 0 ~ m 15 Rectangle group 2-squares(minterms) : 3-literals product term 4-squares : 2-literals product term 8-squares : 1-literals product term 16-squares : logic 1
  • 53.  
  • 54.  
  • 55. F(W, X,Y,Z)=  m(0,2,7,8,9,10,11) = WX’ + X’Z’ + W’XYZ
  • 56. Karnaugh Map SOP Minimization Mapping a Standard SOP Expression
  • 57. Ex 4-21) Ex 4-22)
  • 58. Mapping a Nonstandard SOP Expression Numerical Expression of a Nonstandard Product Term Ex 4-23) A’+AB’+ABC’ A’ AB’ ABC’ 0 00 10 0 110 0 01 10 1 0 10 0 11
  • 59. Ex 4-24) B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD B’C’ AB’ ABC’ AB’CD’ A’B’C’D AB’CD 0000 1000 1100 1010 0001 1011 0001 1001 1101 1000 1010 1001 1011
  • 60. Karnaugh Map Simplification of SOP Expressions Group 2 n adjacent cells including the largest possible number of 1s in a rectangle or square shape, 1<=n Get the groups containing all 1s on the map for the expression Determine the minimum SOP expression form map
  • 61. Ex 4-26) F=B+A’C+AC’D
  • 62. Ex 4-27) (a) AB+BC+A’B’C’ (b) B’+AC+A’C’ (c) A’C’+A’B+AB’D (d) D’+BC’+AB’C
  • 63. Ex 4-28) Minimize the following expression AB’C+A’BC+A’B’C+A’B’C’+AB’C’ Sol) B’+A’C
  • 64. Ex 4-29) Minimize the following expression B’C’D’ +A’BC’D’+ABC’D’+A’B’CD+AB’CD+A’B’CD’+A’BCD’ +ABCD’+AB’CD’ Sol) D’+B’C
  • 65. Mapping Directly from a Truth Table
  • 66. Don’t Care Conditions it really does not matter since they will never occur(its output is either ‘0’ or ‘1’) The don’t care terms can be used to advantage on the Karnaugh map
  • 67. Karnaugh Map POS Minimization Use the Duality Principle F(A,A  ,  , + , 1,0)  F * (A,A  , + ,  ,0,1) SOP  POS
  • 68. Ex 4-30) (A’+B’+C+D)(A’+B+C’+D’)(A+B+C’+D) (A’+B’+C’+D’)(A+B+C’+D’) Sol)
  • 69. Ex 4-31) (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C) Sol) (0+0+0)(0+0+1)(0+1+0)(0+1+1)(1+1+0)=A(B’+C) AC+AB’=A(B’+C)
  • 70. Ex 4-32) (B+C+D) (A+B+C’+D)(A’+B+C+D’)(A+B’+C+D)(A’+B’+C+D) Sol) (B+C+D)=(A’A+B+C+D)=(A’+B+C+D)(A+B+C+D) (1+0+0+0)(0+0+0+0)(0+0+1+0)(1+0+0+1)(0+1+0+0)(1+1+0+0) F=(C+D)(A’+B+C)(A+B+D)
  • 71. Converting Between POS and SOP Using the K-map Ex 4-33) (A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’) (A’+B+C+D’)(A+B+C’+D) Sol)
  • 72.  
  • 73. Five/Six –Variable K-Maps Five Variable K-Map : {A,B,C,D,E} 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10 16 17 19 18 20 21 23 22 28 29 31 30 24 25 27 26 00 01 11 10 00 01 11 10 BC DE A=0 A=1
  • 74. Six Variable K-Map : {A,B,C,D,E,F} 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10 16 17 19 18 20 21 23 22 28 29 31 30 24 25 27 26 00 01 11 10 00 01 11 10 CD EF AB 32 33 35 34 36 37 39 38 44 45 47 46 40 41 43 42 48 49 51 50 52 53 55 54 60 61 62 63 56 57 59 58 00 10 01 11
  • 75. Ex 4-34) Sol) A’D’E’+B’C’D’+BCD+ACDE
  • 76. Programmable Logic: PALs and GALs Basic PAL Operation Programmable array of AND gates Fixed OR gate
  • 78.  
  • 79. Ex 4-35) Show how a PAL is programmed for the following function : X=AB’C+A’BC’+A’B’+AC Sol)
  • 81. PAL Output Combinational Logic X  0=X X  1=X’
  • 82. A Specific PAL Figure 4-50 Block diagram of the PAL16L8 .
  • 83. Basic GAL Operation Reprogrammable AND array Electrically Erasable CMOS(E 2 CMOS) technology
  • 84. Figure 4-52 GAL implementation of a sum-of-products expression.
  • 85. Ex 4-36) Show how a GAL is programmed for the function: X=A’BC’+A’BC+BC+AB’ Sol)
  • 86. The GAL Block Diagram OLMCs(Output Logic Macrocells) OR array and programmable output logic Typically m and n >= 8
  • 87.  
  • 88. GAL20V8 High Performance E2CMOS PLD Generic Array Logic™
  • 89. Boolean Expressions with VHDL Boolean Algebra in VHDL Programming VHDL Optimization Ex 4-37) Write a VHDL grogram for the following function: X=(AC+(BC’)’+D)’+((BC)’)’ -- Program X=(AC+(BC’)’+D)’+((BC)’)’ entity alogicft is port(A, B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<=not((A and C) or not(B and not C) or D) or not(not B and C); end architecture expaft;
  • 90. -- Program X=(AC+(BC’)’+D)’+((BC)’)’=(A’+C’)(BC’)D’+BC -- =A’BC’D’+BC’D’+BC=(A’+1)BC’D’+BC = BC’D’+BC entity alogicft is port(B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<= (B and not C and not D) or (B and C); end architecture expaft;
  • 91. Levels of Abstraction for sequential logic circuits VHDL (1) Behavioral approach : state diagram or truth table (2) Data flow approach : Boolean expression or function (3) Structure approach : logic diagram or schematic describing logic function
  • 92. Digital System Application : 7-Segment LED Driver Seven-Segment LED driver
  • 93. A B C D 0 1 3 2 4 5 7 6 13 15 14 8 9 11 10 g = m(2,3,4,5,6,8,9) =A+BC’+B’C+CD’ CD AB
  • 94. Figure 4-59 Karnaugh map minimization of the segment- a logic expression.
  • 95. Figure 4-60 The minimum logic implementation for segment a of the 7-segment display.
  • 96. -- Program 7-segment driver entity sevensegdrv is port(A, B, C, D: in bit; a,b,c,d,e,f,g: out bit); end entity sevensegdrv; architecture segment of sevensegdrv is begin a<= B or D or (A and C) or (not A and not C); -- B +D+AC+A’C’ • • • • • • • • • g<= A or B and C’ or not B and C or C and not D; -- A+BC’+B’C+CD’ end architecture segment; VHDL for 7-Segment Driver
  • 97. Summary Gate symbols Duality Principle F(A,A  ,  , + , 1,0)  F * (A,A  , + ,  ,0,1) DeMorgan’s Theorem F  (A,A  ,  , + , 1,0) = F(A  , A, + ,  ,0,1)
  • 98. The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
  • 99. Sum-of-Product(SOP) form  Product-of-Sums(POS) form Standard(canonical) SOP form  Standard POS form Universal gates: NAND, NOR Don’t care conditions Karnaugh map(3, 4, 5, 6 variables) PLDs: PAL, GAL VHDL for logic expressions
  • 100. Boolean Expression Truth Table Logic Diagram VHDL (HDL)