次世代 への挑戦
と 時代の次へ
Mar. 22nd , 2019
森 正弥 Masaya Mori
楽天株式会社 執行役員
楽天技術研究所 代表
2
雑談
• ElMo のような大量データに基づく成果も確かに続いてい
るが、Deep Learning と BigData だけの世界は終わり、次
世代AI への胎動が始まっている
• DQN
• Generative Adverasiral Network
• Transfer Learning、Data Augmentation
• BERT、BackTranslation
3
Trend of Deep Learning and Bigdata is coming to an end.
New paradigm is emerging.
4
• ~ Dec. 2017:
• Google
• ~ Aug. 2018:
• DeepL.com (they didn’t use Bigdata)
• ~ Now:
• Facebook AI Research
5
スコア
出展:Google AI Blog https://ai.googleblog.com/2017/08/transformer-novel-neural-
network.html (アクセス日 2019/03/26)
Transformer の高スコア、しかし、Back Translation Model はこれをや
すやすとこえた。
6
Deep
learning
Small Dataset
Big Dataset
Great AI
Deep
learning
So so AI
Other Dataset
2nd Deep
Learning
Other so so AI
Connect
&
Loop
Learning
Super AI
Interactive
Loop
7
• GAN, Adversarial Network
• AlphaGo Zero (Deep RL)
• AICO (ad banner generator & CTR predictor)
• Predictive Learning
Real
Example
Generated
Example
Generator
Noise
Source
Discriminator
GAN Real
Fake
8
A Variety of
Dataset
Just bigdata
9
Under one Vision
10
Other projects will be organized under one vision.
Pitari
AIris
RCP
Creative
AI
Projects for the platform
Fraud
Detection
Data-based
Trading
Delivery
Optimization
Language
Learning
Next Candidates
11
Core Algorithms
12
Machine translation
Voice recognition
Automatic Speech Recognition for Product Voice Search
Product Data science
Sentiment Analysis
+
Category Grocery & food
Subcategory Wine 我们真的很有诚意
了。
你说我一个老总都
亲自跑了好几趟了。
Machine
translation
13
Machine translation
Automatic Speech Recognition for Product Voice Search
Product Data science
Sentiment Analysis
+
Category Grocery & food
Subcategory Wine 我们真的很有诚意
了。
你说我一个老总都
亲自跑了好几趟了。
Machine
translationAI organizing Chaotic Data AI understanding multi-languages
AI understanding speechAI understanding Voice of Customers
Voice recognition
14
RIT Machine Translation matches Human Translation
Rated by bi-lingual speakers on
a 5-point scale for adequacy
and fluency
RIT
Human
Google
for English to Spanish / Portuguese / French / Polish / German / Italian
And, we‘re starting English to Japanese.
15
Face recognition
Contents Generation (Creative AI)
Gender, Age, Emotion Recognition
Product Recognition
16
Face recognition Gender, Age, Emotion Recognition
Product Recognition
AI understanding Face AI understanding User visually
AI understanding Object visuallyAI generating Digital Contents
Contents Generation (Creative AI)
17
SNEAKER SALE Up to 30% off
Generation Prediction
30
Sneaker Sale
Up to
OFF
%
Sneaker
up to 30% off
Sale
Sneaker
up to 30% off
Sale
30
Sneaker Sale
Up to
OFF
%
Image Segmentation
Images
Text
Styles
Assisting Graphic
Design Process
18
Mature-Level
At leveraging Deep Learning
Vision
Voice
(ASR)
Language
Voice
(TTS)
Big Gap, but bridgingSome Gap
The strategies of each Program Management are different.
19
More Advanced Technologies
20
Data Augmentation
Transfer Learning
21
Artificially increase the volume of the training dataset to improve accuracy. It is good for when data is
insufficient, quality is low, or data is imbalanced to a specific category.
Small Dataset
Small Dataset Big Dataset
Data
Augmentation
Data is enough
Accuracy is increased
Data is insufficient
22
Data augmentation example :
• Shifting vertical/horizontally
• Invert vertically/horizontally
• Enlarging/Minimizing
• Rotating
• Tilting vertically/horizontally
• Cropping
• Changing contrast
Method Sample Image
*Google Website (Machine Learning Crash Course)
23
Data augmentation example :
• Mixup is combination of two
training data
Method Sample Image
*C. Summers et al., "Improved Mixed-Example Data Augmentation", 2018
24
A model developed for a task is reused as the starting point for a model on a second task. By
transferring, we can get improved result with small dataset.
Concept Use Cases
Big Dataset
Small Dataset
Pre-Training
Re-Training
Output
Transfer
Autonomous cars
 Realization of automatic cars by deep learning
*Preferred Research (https://research.preferred.jp/2016/01/ces2016/)
43cm
20
cm
(ex. Flower image)
(ex. Animal image)
TOYOTA / Preferred Networks
25
With a pretrained model with Japan`s Ichiba data, transfer learning can help extract prospective
customer, product recommendation and purchase prediction in US market .
Japan EC data
US EC data
Pre-Training
Transfer
・User purchase history
・Browsing history
・Review
・Advertisement click count
・Product search history…
Prediction (in US market)
・Prospective customer extraction
・Product recommendation
・Purchase prediction …
Re-Training
26
Ensemble Learning
Multi-modal Learning
Reinforcement Learning
Meta Learning
27
Ensemble learning method is techniques that create multiple models and then combine them to improve
prediction accuracy.
Concept Use Cases
 Predict demand forecast with high accuracy by using
multiple learning model.
Manufacturer
*FUJITSU website “FUJITSU Business Application Operational Data Management & Analytics”
Prediction accuracyModel B
Output
Model C
Model A
Ensemble
Normal Output
Model FUJITSU
Predict demand
forecast
28
Predict USD/JPY, NK225 and JGB on daily or weekly basis from past data by using machine learning.
Ensemble learning is used as a method, and accuracy is improved.
Index
・・・
Model B
Model C
Model A
Past Data Future Prediction
Accuracy
Ensemble
learning
Nikkei
225
Bond
Currency
Index
・・・
Nikkei
225
Bond
Currency
Input Machine Learning Output
Predict price
29
Classify product catalog by using machine learning.
Ensemble learning is used as a method, and accuracy is improved.
Product catalog data Classification (Taxonomy)
Input Output
・Title
・Product description etc.
Model B
Model C
Model A
Accuracy
Ensemble
learning
(XGBoost)
Machine Learning
30
Detect merchants which can repay money from EC data with machine learning.
Ensemble learning is used as a method, and accuracy is improved.
EC data Credibility Score
Input Output
Tons of inputs
• Can repay
• Cannot repay
Judge
MerchantsModel B
Model C
Model A
Accuracy
Ensemble
learning
Machine Learning
30
Sneaker Sale
Up to
OFF
%
31
Multi-modal learning is a model to learn from multiple data source(text, image, voice, etc.).
It is expected to high accuracy than model which learn from single source
Concept
Text
Voice
Image
Multi-modal
learning
 Increase accuracy of fraud item detection by using
multimodal model : image, product name, description and
price.
EC
Robotics
 Develop ASVR(Audio-Visual Speech Recognition), which
has high noise-robust with combination of sound and video
signals,
Use Cases
*Waseda University, Ogata tetsuya (https://pdf.gakkai-web.net/gakkai/ieice/icd/html/2017/view/I_01_02.pdf)
*Mercari, Engineering Blog “https://tech.mercari.com/entry/2018/04/24/164919”,
Text
Multi-
modal
source
Single
source
Voice
Image
(Video)+
Honda Research Institute
Mercari
Image Text
(Product name, Description etc. )
+
32
Item Genre Classification : with Multi-modal learning
Classifier based on
CNN/RNN
Final Result
Text Data
• Item Title
• Item Description
Image Data
LSTM
CNN
33
Reinforcement Learning is machine learning on how software agents to take action in environment to maximize
some notion of reward. Agents find optimal action model through trial and error.
Software
Agents
User etc.
Action Feedback
Concept Use Cases
Find optimal action model
 Alibaba has adopted reinforcement learning to
improve commodity search
EC
Tech
 DeepMind’s AlphaGo beat champion in Go game.
*Sigmoidal (https://sigmoidal.io/alphago-how-it-uses-reinforcement-learning-to-beat-go-masters/)
*Analytics India Magazine (https://www.analyticsindiamag.com/how-alibaba-is-applying-virtual-taobao-to-simulate-e-commerce-environment/)
Google
Alibaba
34
100%
50%
0%
Time
Trials
100%
50%
0%
Time
Trials
A
B
C
A wins!
A
B
C
Automatically
A / B Test BANDIT
100%
50%
0%
Time
Trials
A wins
A
B
C
Automatically+Dynamic
Dynamic BANDIT
B wins
A wins!
Static
Environment change
Evolution!
35
Example (Human case)
Skill of riding bicycle
= Stand up + Ascend or descend a staircase etc.
Meta learning is approach of learning to learn.
It learn a variety of tasks from small amounts of data by utilizing past learning.
• Learn task quickly from small amounts of data
by utilizing past learning
• Meta learning is deep learning
algorithm close to human
*Nikkei X TECH (https://tech.nikkeibp.co.jp/dm/atcl/mag/15/00189/00003/)
楽天技術研究所の次世代AI 技術への挑戦

More Related Content

PPTX
楽天市場データ + 機械学習を用いた予測事例の紹介 梅田卓志/楽天株式会社
PPTX
MLOps入門
PDF
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
PDF
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
PDF
マッチングサービスにおけるKPIの話
PDF
アジャイル開発はWhyから始まる
PDF
NLP2023 緊急パネル:ChatGPTで自然言語処理は終わるのか? 説明スライド
PPTX
プロジェクトマネージャのための機械学習工学入門
楽天市場データ + 機械学習を用いた予測事例の紹介 梅田卓志/楽天株式会社
MLOps入門
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
マッチングサービスにおけるKPIの話
アジャイル開発はWhyから始まる
NLP2023 緊急パネル:ChatGPTで自然言語処理は終わるのか? 説明スライド
プロジェクトマネージャのための機械学習工学入門

What's hot (20)

PDF
時系列解析の使い方 - TokyoWebMining #17
PPTX
MLOpsはバズワード
PDF
機械学習デザインパターン Machine Learning Design Patterns
PDF
ChatGPT 人間のフィードバックから強化学習した対話AI
PDF
自然言語処理によるテキストデータ処理
PDF
【メタサーベイ】Video Transformer
PDF
CV分野におけるサーベイ方法
PDF
グラフデータベースは如何に自然言語を理解するか?
PDF
あなたはPO?PM?PdM?PjM?
PDF
全社のデータ活用を一段階上げる取り組み
PDF
大規模データに基づく自然言語処理
PDF
Python で OAuth2 をつかってみよう!
PDF
見やすいプレゼン資料の作り方 - リニューアル増量版
PPTX
グラフ構造のデータモデルをPower BIで可視化してみた
PDF
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
ODP
Javaでつくる本格形態素解析器
PDF
自然言語処理で読み解く金融文書
PDF
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
PDF
リーンスタートアップにおける良い仮説、悪い仮説
PPTX
情報検索とゼロショット学習
時系列解析の使い方 - TokyoWebMining #17
MLOpsはバズワード
機械学習デザインパターン Machine Learning Design Patterns
ChatGPT 人間のフィードバックから強化学習した対話AI
自然言語処理によるテキストデータ処理
【メタサーベイ】Video Transformer
CV分野におけるサーベイ方法
グラフデータベースは如何に自然言語を理解するか?
あなたはPO?PM?PdM?PjM?
全社のデータ活用を一段階上げる取り組み
大規模データに基づく自然言語処理
Python で OAuth2 をつかってみよう!
見やすいプレゼン資料の作り方 - リニューアル増量版
グラフ構造のデータモデルをPower BIで可視化してみた
SSII2020TS: Event-Based Camera の基礎と ニューラルネットワークによる信号処理 〜 生き物のように「変化」を捉えるビジョンセ...
Javaでつくる本格形態素解析器
自然言語処理で読み解く金融文書
[DL輪読会]Fast and Slow Learning of Recurrent Independent Mechanisms
リーンスタートアップにおける良い仮説、悪い仮説
情報検索とゼロショット学習
Ad

Similar to 楽天技術研究所の次世代AI 技術への挑戦 (20)

PDF
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
PDF
Deep learning for e-commerce: current status and future prospects
PDF
Mastering Advanced Deep Learning Techniques | IABAC
PDF
Lecture 11 - Advance Learning Techniques
PDF
The Evolution of AutoML
PPTX
Artificial intelligence
PPTX
Meta-Learning Presentation
PDF
AI in the Financial Services Industry
PPTX
Weed Detection and Identification using Deep learning Techniques
PDF
Deep learning
PDF
Think Big | Enterprise Artificial Intelligence
PDF
Machine Learning Deep Learning AI and Data Science
PDF
Mastering Advanced Deep Learning Techniques
PDF
Main principles of Data Science and Machine Learning
PDF
Smart Data Webinar: Machine Learning Update
PDF
Model Evaluation in the land of Deep Learning
PPTX
OPEN SOURCE MODELS IN ARTIFICIAL INTELLIGENCE
DOCX
Title_ Deep Learning Explained_ What You Should Be Aware of in Data Science a...
PDF
AI is moving from its academic roots to the forefront of business and industry
PPTX
Artificial intelligence ( AI ) | Guide
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
Deep learning for e-commerce: current status and future prospects
Mastering Advanced Deep Learning Techniques | IABAC
Lecture 11 - Advance Learning Techniques
The Evolution of AutoML
Artificial intelligence
Meta-Learning Presentation
AI in the Financial Services Industry
Weed Detection and Identification using Deep learning Techniques
Deep learning
Think Big | Enterprise Artificial Intelligence
Machine Learning Deep Learning AI and Data Science
Mastering Advanced Deep Learning Techniques
Main principles of Data Science and Machine Learning
Smart Data Webinar: Machine Learning Update
Model Evaluation in the land of Deep Learning
OPEN SOURCE MODELS IN ARTIFICIAL INTELLIGENCE
Title_ Deep Learning Explained_ What You Should Be Aware of in Data Science a...
AI is moving from its academic roots to the forefront of business and industry
Artificial intelligence ( AI ) | Guide
Ad

More from Rakuten Group, Inc. (20)

PDF
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
PPTX
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
PDF
楽天における安全な秘匿情報管理への道のり
PDF
What Makes Software Green?
PDF
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
PDF
DataSkillCultureを浸透させる楽天の取り組み
PDF
大規模なリアルタイム監視の導入と展開
PDF
楽天における大規模データベースの運用
PDF
楽天サービスを支えるネットワークインフラストラクチャー
PDF
楽天の規模とクラウドプラットフォーム統括部の役割
PDF
Rakuten Services and Infrastructure Team.pdf
PDF
The Data Platform Administration Handling the 100 PB.pdf
PDF
Supporting Internal Customers as Technical Account Managers.pdf
PDF
Making Cloud Native CI_CD Services.pdf
PDF
How We Defined Our Own Cloud.pdf
PDF
Travel & Leisure Platform Department's tech info
PDF
Travel & Leisure Platform Department's tech info
PDF
OWASPTop10_Introduction
PDF
Introduction of GORA API Group technology
PDF
100PBを越えるデータプラットフォームの実情
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
楽天における安全な秘匿情報管理への道のり
What Makes Software Green?
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
DataSkillCultureを浸透させる楽天の取り組み
大規模なリアルタイム監視の導入と展開
楽天における大規模データベースの運用
楽天サービスを支えるネットワークインフラストラクチャー
楽天の規模とクラウドプラットフォーム統括部の役割
Rakuten Services and Infrastructure Team.pdf
The Data Platform Administration Handling the 100 PB.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Making Cloud Native CI_CD Services.pdf
How We Defined Our Own Cloud.pdf
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
OWASPTop10_Introduction
Introduction of GORA API Group technology
100PBを越えるデータプラットフォームの実情

Recently uploaded (20)

PDF
SaaS reusability assessment using machine learning techniques
PDF
Human Computer Interaction Miterm Lesson
PDF
zbrain.ai-Scope Key Metrics Configuration and Best Practices.pdf
PDF
IT-ITes Industry bjjbnkmkhkhknbmhkhmjhjkhj
PPTX
Information-Technology-in-Human-Society.pptx
PPTX
Build automations faster and more reliably with UiPath ScreenPlay
PDF
Connector Corner: Transform Unstructured Documents with Agentic Automation
PDF
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
PPTX
Report in SIP_Distance_Learning_Technology_Impact.pptx
PDF
substrate PowerPoint Presentation basic one
PPTX
Blending method and technology for hydrogen.pptx
PDF
The AI Revolution in Customer Service - 2025
PDF
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
PDF
NewMind AI Weekly Chronicles – August ’25 Week IV
PDF
giants, standing on the shoulders of - by Daniel Stenberg
PDF
NewMind AI Journal Monthly Chronicles - August 2025
PDF
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
PDF
Examining Bias in AI Generated News Content.pdf
PDF
CEH Module 2 Footprinting CEH V13, concepts
PDF
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
SaaS reusability assessment using machine learning techniques
Human Computer Interaction Miterm Lesson
zbrain.ai-Scope Key Metrics Configuration and Best Practices.pdf
IT-ITes Industry bjjbnkmkhkhknbmhkhmjhjkhj
Information-Technology-in-Human-Society.pptx
Build automations faster and more reliably with UiPath ScreenPlay
Connector Corner: Transform Unstructured Documents with Agentic Automation
Transform-Your-Supply-Chain-with-AI-Driven-Quality-Engineering.pdf
Report in SIP_Distance_Learning_Technology_Impact.pptx
substrate PowerPoint Presentation basic one
Blending method and technology for hydrogen.pptx
The AI Revolution in Customer Service - 2025
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
NewMind AI Weekly Chronicles – August ’25 Week IV
giants, standing on the shoulders of - by Daniel Stenberg
NewMind AI Journal Monthly Chronicles - August 2025
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
Examining Bias in AI Generated News Content.pdf
CEH Module 2 Footprinting CEH V13, concepts
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf

楽天技術研究所の次世代AI 技術への挑戦

  • 1. 次世代 への挑戦 と 時代の次へ Mar. 22nd , 2019 森 正弥 Masaya Mori 楽天株式会社 執行役員 楽天技術研究所 代表
  • 2. 2 雑談 • ElMo のような大量データに基づく成果も確かに続いてい るが、Deep Learning と BigData だけの世界は終わり、次 世代AI への胎動が始まっている • DQN • Generative Adverasiral Network • Transfer Learning、Data Augmentation • BERT、BackTranslation
  • 3. 3 Trend of Deep Learning and Bigdata is coming to an end. New paradigm is emerging.
  • 4. 4 • ~ Dec. 2017: • Google • ~ Aug. 2018: • DeepL.com (they didn’t use Bigdata) • ~ Now: • Facebook AI Research
  • 5. 5 スコア 出展:Google AI Blog https://ai.googleblog.com/2017/08/transformer-novel-neural- network.html (アクセス日 2019/03/26) Transformer の高スコア、しかし、Back Translation Model はこれをや すやすとこえた。
  • 6. 6 Deep learning Small Dataset Big Dataset Great AI Deep learning So so AI Other Dataset 2nd Deep Learning Other so so AI Connect & Loop Learning Super AI Interactive Loop
  • 7. 7 • GAN, Adversarial Network • AlphaGo Zero (Deep RL) • AICO (ad banner generator & CTR predictor) • Predictive Learning Real Example Generated Example Generator Noise Source Discriminator GAN Real Fake
  • 10. 10 Other projects will be organized under one vision. Pitari AIris RCP Creative AI Projects for the platform Fraud Detection Data-based Trading Delivery Optimization Language Learning Next Candidates
  • 12. 12 Machine translation Voice recognition Automatic Speech Recognition for Product Voice Search Product Data science Sentiment Analysis + Category Grocery & food Subcategory Wine 我们真的很有诚意 了。 你说我一个老总都 亲自跑了好几趟了。 Machine translation
  • 13. 13 Machine translation Automatic Speech Recognition for Product Voice Search Product Data science Sentiment Analysis + Category Grocery & food Subcategory Wine 我们真的很有诚意 了。 你说我一个老总都 亲自跑了好几趟了。 Machine translationAI organizing Chaotic Data AI understanding multi-languages AI understanding speechAI understanding Voice of Customers Voice recognition
  • 14. 14 RIT Machine Translation matches Human Translation Rated by bi-lingual speakers on a 5-point scale for adequacy and fluency RIT Human Google for English to Spanish / Portuguese / French / Polish / German / Italian And, we‘re starting English to Japanese.
  • 15. 15 Face recognition Contents Generation (Creative AI) Gender, Age, Emotion Recognition Product Recognition
  • 16. 16 Face recognition Gender, Age, Emotion Recognition Product Recognition AI understanding Face AI understanding User visually AI understanding Object visuallyAI generating Digital Contents Contents Generation (Creative AI)
  • 17. 17 SNEAKER SALE Up to 30% off Generation Prediction 30 Sneaker Sale Up to OFF % Sneaker up to 30% off Sale Sneaker up to 30% off Sale 30 Sneaker Sale Up to OFF % Image Segmentation Images Text Styles Assisting Graphic Design Process
  • 18. 18 Mature-Level At leveraging Deep Learning Vision Voice (ASR) Language Voice (TTS) Big Gap, but bridgingSome Gap The strategies of each Program Management are different.
  • 21. 21 Artificially increase the volume of the training dataset to improve accuracy. It is good for when data is insufficient, quality is low, or data is imbalanced to a specific category. Small Dataset Small Dataset Big Dataset Data Augmentation Data is enough Accuracy is increased Data is insufficient
  • 22. 22 Data augmentation example : • Shifting vertical/horizontally • Invert vertically/horizontally • Enlarging/Minimizing • Rotating • Tilting vertically/horizontally • Cropping • Changing contrast Method Sample Image *Google Website (Machine Learning Crash Course)
  • 23. 23 Data augmentation example : • Mixup is combination of two training data Method Sample Image *C. Summers et al., "Improved Mixed-Example Data Augmentation", 2018
  • 24. 24 A model developed for a task is reused as the starting point for a model on a second task. By transferring, we can get improved result with small dataset. Concept Use Cases Big Dataset Small Dataset Pre-Training Re-Training Output Transfer Autonomous cars  Realization of automatic cars by deep learning *Preferred Research (https://research.preferred.jp/2016/01/ces2016/) 43cm 20 cm (ex. Flower image) (ex. Animal image) TOYOTA / Preferred Networks
  • 25. 25 With a pretrained model with Japan`s Ichiba data, transfer learning can help extract prospective customer, product recommendation and purchase prediction in US market . Japan EC data US EC data Pre-Training Transfer ・User purchase history ・Browsing history ・Review ・Advertisement click count ・Product search history… Prediction (in US market) ・Prospective customer extraction ・Product recommendation ・Purchase prediction … Re-Training
  • 27. 27 Ensemble learning method is techniques that create multiple models and then combine them to improve prediction accuracy. Concept Use Cases  Predict demand forecast with high accuracy by using multiple learning model. Manufacturer *FUJITSU website “FUJITSU Business Application Operational Data Management & Analytics” Prediction accuracyModel B Output Model C Model A Ensemble Normal Output Model FUJITSU Predict demand forecast
  • 28. 28 Predict USD/JPY, NK225 and JGB on daily or weekly basis from past data by using machine learning. Ensemble learning is used as a method, and accuracy is improved. Index ・・・ Model B Model C Model A Past Data Future Prediction Accuracy Ensemble learning Nikkei 225 Bond Currency Index ・・・ Nikkei 225 Bond Currency Input Machine Learning Output Predict price
  • 29. 29 Classify product catalog by using machine learning. Ensemble learning is used as a method, and accuracy is improved. Product catalog data Classification (Taxonomy) Input Output ・Title ・Product description etc. Model B Model C Model A Accuracy Ensemble learning (XGBoost) Machine Learning
  • 30. 30 Detect merchants which can repay money from EC data with machine learning. Ensemble learning is used as a method, and accuracy is improved. EC data Credibility Score Input Output Tons of inputs • Can repay • Cannot repay Judge MerchantsModel B Model C Model A Accuracy Ensemble learning Machine Learning 30 Sneaker Sale Up to OFF %
  • 31. 31 Multi-modal learning is a model to learn from multiple data source(text, image, voice, etc.). It is expected to high accuracy than model which learn from single source Concept Text Voice Image Multi-modal learning  Increase accuracy of fraud item detection by using multimodal model : image, product name, description and price. EC Robotics  Develop ASVR(Audio-Visual Speech Recognition), which has high noise-robust with combination of sound and video signals, Use Cases *Waseda University, Ogata tetsuya (https://pdf.gakkai-web.net/gakkai/ieice/icd/html/2017/view/I_01_02.pdf) *Mercari, Engineering Blog “https://tech.mercari.com/entry/2018/04/24/164919”, Text Multi- modal source Single source Voice Image (Video)+ Honda Research Institute Mercari Image Text (Product name, Description etc. ) +
  • 32. 32 Item Genre Classification : with Multi-modal learning Classifier based on CNN/RNN Final Result Text Data • Item Title • Item Description Image Data LSTM CNN
  • 33. 33 Reinforcement Learning is machine learning on how software agents to take action in environment to maximize some notion of reward. Agents find optimal action model through trial and error. Software Agents User etc. Action Feedback Concept Use Cases Find optimal action model  Alibaba has adopted reinforcement learning to improve commodity search EC Tech  DeepMind’s AlphaGo beat champion in Go game. *Sigmoidal (https://sigmoidal.io/alphago-how-it-uses-reinforcement-learning-to-beat-go-masters/) *Analytics India Magazine (https://www.analyticsindiamag.com/how-alibaba-is-applying-virtual-taobao-to-simulate-e-commerce-environment/) Google Alibaba
  • 34. 34 100% 50% 0% Time Trials 100% 50% 0% Time Trials A B C A wins! A B C Automatically A / B Test BANDIT 100% 50% 0% Time Trials A wins A B C Automatically+Dynamic Dynamic BANDIT B wins A wins! Static Environment change Evolution!
  • 35. 35 Example (Human case) Skill of riding bicycle = Stand up + Ascend or descend a staircase etc. Meta learning is approach of learning to learn. It learn a variety of tasks from small amounts of data by utilizing past learning. • Learn task quickly from small amounts of data by utilizing past learning • Meta learning is deep learning algorithm close to human *Nikkei X TECH (https://tech.nikkeibp.co.jp/dm/atcl/mag/15/00189/00003/)