SlideShare a Scribd company logo
CHAPTER 1: BINARY SYSTEMS 
 DIGITAL COMPUTER & DIGITAL SYSTEMS 
 BINARY NUMBERS 
 NUMBER BASE CONVERSION 
 COMPLEMENTS 
 SIGNED BINARY NUMBERS 
 BINARY CODES 
 BINARY STORAGE ELEMENTS 
0 / 45
Digital Systems 
Discrete Data 
● Examples: 
♦ 26 letters of the alphabet (A, B … etc) 
♦ 10 decimal digits (0, 1, 2 … etc) 
● Combine together 
Analog Discrete 
♦ Words are made of letters (University … etc) 
♦ Numbers are made of digits (4241 … etc) 
Binary System 
● Only ‘0’ and ‘1’ digits 
● Can be easily implemented in electronic circuits 
1 / 45
Decimal Number System 
Base (also called radix) = 10 
● 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } 
Digit Position 
● Integer & fraction 
Digit Weight 
● Weight = (Base) Position 
Magnitude 
● Sum of “Digit x Weight” 
Formal Notation 
2 1 0 -1 -2 
5 1 2 7 4 
100 10 1 0.1 0.01 
500 10 2 0.7 0.04 
d2*B2+d1*B1+d0*B0+d-1*B-1+d-2*B-2 
2 / 45 
(512.74)10
Octal Number System 
Base = 8 
● 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 } 
Weights 
● Weight = (Base) Position 
Magnitude 
● Sum of “Digit x Weight” 
Formal Notation 
64 8 1 1/8 1/64 
5 1 2 7 4 
2 1 0 -1 -2 
5 *82+1 *81+2 *80+7 *8-1+4 *8-2 
3 / 45 
=(330.9375)10 
(512.74)8
Binary Number System 
Base = 2 
● 2 digits { 0, 1 }, called binary digits or “bits” 
Weights 
● Weight = (Base) Position 
Magnitude 
● Sum of “Bit x Weight” 
Formal Notation 
1 *22+0 *21+1 *20+0 *2-1+1 *2-2 
Groups of bits 4 bits = Nibble 
8 bits = Byte 
4 2 1 1/2 1/4 
1 0 1 0 1 
2 1 0 -1 -2 
4 / 45 
=(5.25)10 
(101.01)2 
1 0 1 1 
1 1 0 0 0 1 0 1
Hexadecimal Number System 
Base = 16 
● 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F } 
Weights 
● Weight = (Base) Position 
Magnitude 
● Sum of “Digit x Weight” 
Formal Notation 
256 16 1 1/16 1/256 
1 E 5 7 A 
2 1 0 -1 -2 
1 *162+14 *161+5 *160+7 *16-1+10 *16-2 
5 / 45 
=(485.4765625)10 
(1E5.7A)16
The Power of 2 
6 / 45 
n 2n 
0 20=1 
1 21=2 
2 22=4 
3 23=8 
4 24=16 
5 25=32 
6 26=64 
7 27=128 
n 2n 
8 28=256 
9 29=512 
10 210=1024 
11 211=2048 
12 212=4096 
20 220=1M 
30 230=1G 
40 240=1T 
Kilo 
Mega 
Giga 
Tera
Addition 
Decimal Addition 
7 / 45 
1 1 Carry 
5 5 
+ 5 5 
1 1 0 
= Ten ≥ Base 
 Subtract a Base
Binary Addition 
Column Addition 
8 / 45 
1 1 1 1 0 1 
+ 1 0 1 1 1 
1 0 1 0 1 0 0 
≥ (2)10 
1 1 1 1 1 1 
= 61 
= 23 
= 84
Binary Subtraction 
Borrow a “Base” when needed 
9 / 45 
0 0 0 
0 0 1 1 0 1 
− 1 0 1 1 1 
0 1 1 0 1 1 0 
= (10)2 
2 
2 
2 2 
1 
1 
= 77 
= 23 
= 54
Binary Multiplication 
Bit by bit 
10 / 45 
1 0 1 1 1 
1 0 1 0 
0 0 0 0 0 
1 0 1 1 1 
0 0 0 0 0 
x 
1 0 1 1 1 
1 1 1 0 0 1 1 0
Number Base Conversions 
11 / 45 
Decimal 
(Base 10) 
Octal 
(Base 8) 
Binary 
(Base 2) 
Hexadecimal 
(Base 16) 
Evaluate 
Magnitude 
Evaluate 
Magnitude 
Evaluate 
Magnitude
Decimal (Integer) to Binary Conversion 
Divide the number by the ‘Base’ (=2) 
Take the remainder (either 0 or 1) as a coefficient 
Take the quotient and repeat the division 
12 / 45 
Example: (13)10 
Quotient Remainder Coefficient 
13/ 2 = 6 1 a0 = 1 
6 / 2 = 3 0 a1 = 0 
3 / 2 = 1 1 a2 = 1 
1 / 2 = 0 1 a3 = 1 
Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2 
MSB LSB
Decimal (Fraction) to Binary Conversion 
Multiply the number by the ‘Base’ (=2) 
Take the integer (either 0 or 1) as a coefficient 
Take the resultant fraction and repeat the division 
13 / 45 
Example: (0.625)10 
Integer Fraction Coefficient 
a-1 = 1 
0.625 * 2 = 1 . 25 
0.25 * 2 = 0 . 5 a-2 = 0 
0.5 * 2 = 1 . 0 a-3 = 1 
Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2 
MSB LSB
Decimal to Octal Conversion 
14 / 45 
Example: (175)10 
Quotient Remainder Coefficient 
175 / 8 = 21 7 a0 = 7 
21 / 8 = 2 5 a1 = 5 
2 / 8 = 0 2 a2 = 2 
Answer: (175)10 = (a2 a1 a0)8 = (257)8 
Example: (0.3125)10 
Integer Fraction Coefficient 
a-1 = 2 
0.3125 * 8 = 2 . 5 
0.5 * 8 = 4 . 0 a-2 = 4 
Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8
Binary − Octal Conversion 
8 = 23 
Each group of 3 bits represents 
an octal digit 
Octal Binary 
0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 
15 / 45 
Example: 
Assume Zeros 
( 1 0 1 1 0 . 0 1 )2 
( 2 6 . 2 )8 
Works both ways (Binary to Octal & Octal to Binary)
Binary − Hexadecimal Conversion 
16 = 24 
Each group of 4 bits represents 
a hexadecimal digit 
Hex Binary 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 
A 1 0 1 0 
B 1 0 1 1 
C 1 1 0 0 
D 1 1 0 1 
E 1 1 1 0 
F 1 1 1 1 
16 / 45 
Example: 
Assume Zeros 
( 1 0 1 1 0 . 0 1 )2 
( 1 6 . 4 )16 
Works both ways (Binary to Hex & Hex to Binary)
Octal − Hexadecimal Conversion 
Convert to Binary as an intermediate step 
17 / 45 
Example: 
( 2 6 . 2 )8 
( 0 1 0 1 1 0 . 0 1 0 )2 
( 1 6 . 4 )16 
Assume Zeros 
Assume Zeros 
Works both ways (Octal to Hex & Hex to Octal)
Decimal, Binary, Octal and Hexadecimal 
18 / 45 
Decimal Binary Octal Hex 
00 0000 00 0 
01 0001 01 1 
02 0010 02 2 
03 0011 03 3 
04 0100 04 4 
05 0101 05 5 
06 0110 06 6 
07 0111 07 7 
08 1000 10 8 
09 1001 11 9 
10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F
Complements 
1’s Complement (Diminished Radix Complement) 
● All ‘0’s become ‘1’s 
● All ‘1’s become ‘0’s 
Example (10110000)2 
 (01001111)2 
If you add a number and its 1’s complement … 
19 / 45 
1 0 1 1 0 0 0 0 
+ 0 1 0 0 1 1 1 1 
1 1 1 1 1 1 1 1
Complements 
2’s Complement (Radix Complement) 
● Take 1’s complement then add 1 
● Toggle all bits to the left of the first ‘1’ from the right 
Example: 
Number: 
1’s Comp.: 
20 / 45 
1 0 1 1 0 0 0 0 
0 1 0 0 1 1 1 1 
+ 1 
0 1 0 1 0 0 0 0 
OR 
1 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 0
Negative Numbers 
Computers Represent Information in ‘0’s and ‘1’s 
● ‘+’ and ‘−’ signs have to be represented in ‘0’s and ‘1’s 
3 Systems 
● Signed Magnitude 
● 1’s Complement 
● 2’s Complement 
All three use the left-most bit to represent the sign: 
♦ ‘0’  positive 
♦ ‘1’  negative 
21 / 45
Signed Magnitude Representation 
Magnitude is magnitude, does not change with sign 
S Magnitude (Binary) 
(+3)10 
 ( 0 0 1 1 )2 
(−3)10 
 ( 1 0 1 1 )2 
Sign Magnitude 
Can’t include the sign bit in ‘Addition’ 
22 / 45 
0 0 1 1  (+3)10 
+ 1 0 1 1  (−3)10 
1 1 1 0  (−6)10
1’s Complement Representation 
Positive numbers are represented in “Binary” 
Negative numbers are represented in “1’s Comp.” 
(+3)10 
 (0 011)2 
(−3)10 
 (1 100)2 
There are 2 representations for ‘0’ 
(+0)10 
 (0 000)2 
(−0)10 
 (1 111)2 
23 / 45 
0 Magnitude (Binary) 
1 Code (1’s Comp.)
1’s Complement Range 
4-Bit Representation 
24 = 16 Combinations 
− 7 ≤ Number ≤ + 7 
−23+1 ≤ Number ≤ +23 − 1 
n-Bit Representation 
−2n−1+1 ≤ Number ≤ +2n−1 − 1 
24 / 45 
Decimal 1’s Comp. 
+ 7 0 1 1 1 
+ 6 0 1 1 0 
+ 5 0 1 0 1 
+ 4 0 1 0 0 
+ 3 0 0 1 1 
+ 2 0 0 1 0 
+ 1 0 0 0 1 
+ 0 0 0 0 0 
− 0 1 1 1 1 
− 1 1 1 1 0 
− 2 1 1 0 1 
− 3 1 1 0 0 
− 4 1 0 1 1 
− 5 1 0 1 0 
− 6 1 0 0 1 
− 7 1 0 0 0
2’s Complement Representation 
Positive numbers are represented in “Binary” 
Negative numbers are represented in “2’s Comp.” 
(+3)10 
 (0 011)2 
(−3)10 
 (1 101)2 
There is 1 representation for ‘0’ 
(+0)10 
 (0 000)2 
(−0)10 
 (0 000)2 
25 / 45 
0 Magnitude (Binary) 
1 Code (2’s Comp.) 
1’s Comp. 1 1 1 1 
+ 1 
1 0 0 0 0
2’s Complement Range 
4-Bit Representation 
24 = 16 Combinations 
− 8 ≤ Number ≤ + 7 
−23 ≤ Number ≤ + 23 − 1 
n-Bit Representation 
−2n−1 ≤ Number ≤ + 2n−1 − 1 
Decimal 2’s Comp. 
26 / 45 
+ 7 0 1 1 1 
+ 6 0 1 1 0 
+ 5 0 1 0 1 
+ 4 0 1 0 0 
+ 3 0 0 1 1 
+ 2 0 0 1 0 
+ 1 0 0 0 1 
+ 0 0 0 0 0 
− 1 1 1 1 1 
− 2 1 1 1 0 
− 3 1 1 0 1 
− 4 1 1 0 0 
− 5 1 0 1 1 
− 6 1 0 1 0 
− 7 1 0 0 1 
− 8 1 0 0 0
Number Representations 
4-Bit Example 
27 / 45 
Unsigned 
Binary 
Signed 
Magnitude 
1’s Comp. 2’s Comp. 
Range 0 ≤ N ≤ 15 -7 ≤ N ≤ +7 -7 ≤ N ≤ +7 -8 ≤ N ≤ +7 
Positive 
0 0 0 
Binary Binary Binary Binary 
Negative X 
1 1 1 
Binary 1’s Comp. 2’s Comp.
Binary Subtraction Using 1’s Comp. Addition 
Change “Subtraction” to “Addition” 
If “Carry” = 1 
then add it to the 
LSB, and the result 
is positive 
(in Binary) 
If “Carry” = 0 
then the result 
is negative 
(in 1’s Comp.) 
(5)10 – (6)10 
(+5)10 + (-6)10 
28 / 45 
(5)10 – (1)10 
(+5)10 + (-1)10 
0 1 0 1 
+ 1 1 1 0 
0 0 1 1 
+ 
0 1 0 0 
0 1 0 1 
+ 1 0 0 1 
0 1 1 1 0 
1 1 1 0 
+ 4 − 1 
1
Binary Subtraction Using 2’s Comp. Addition 
Change “Subtraction” to “Addition” 
If “Carry” = 1 
ignore it, and the 
result is positive 
(in Binary) 
If “Carry” = 0 
then the result 
is negative 
(in 2’s Comp.) 
(5)10 – (6)10 
(+5)10 + (-6)10 
29 / 45 
(5)10 – (1)10 
(+5)10 + (-1)10 
0 1 0 1 
+ 1 1 1 1 
1 0 1 0 0 
0 1 0 1 
+ 1 0 1 0 
0 1 1 1 1 
+ 4 − 1
Binary Codes 
Group of n bits 
● Up to 2n combinations 
● Each combination represents an element of information 
Binary Coded Decimal (BCD) 
● Each Decimal Digit is represented 
by 4 bits 
● (0 – 9)  Valid combinations 
● (10 – 15)  Invalid combinations 
30 / 45 
Decimal BCD 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1
BCD Addition 
One decimal digit + one decimal digit 
● If the result is 1 decimal digit ( ≤ 9 ), then it is a simple 
binary addition 
Example: 
● If the result is two decimal digits ( ≥ 10 ), then binary 
addition gives invalid combinations 
Example: 
31 / 45 
5 
+ 3 
8 
0 1 0 1 
+ 0 0 1 1 
1 0 0 0 
5 
+ 5 
1 0 
0 1 0 1 
+ 0 1 0 1 
0 0 0 1 0 0 0 0 1 0 1 0
BCD Addition 
If the binary result 
is greater than 9, 
correct the result by 
adding 6 
32 / 45 
5 
+ 5 
1 0 
0 1 0 1 
+ 0 1 0 1 
1 0 1 0 
+ 0 1 1 0 
0 0 0 1 0 0 0 0 
Two Decimal Digits 
Multiple Decimal Digits 
3 5 1 
0 0 1 1 0 1 0 1 0 0 0 1
Gray Code 
 One bit changes from 
one code to the next 
code 
 Different than Binary 
Binary 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
33 / 45 
Decimal Gray 
00 0000 
01 0001 
02 0011 
03 0010 
04 0110 
05 0111 
06 0101 
07 0100 
08 1100 
09 1101 
10 1111 
11 1110 
12 1010 
13 1011 
14 1001 
15 1000
ASCII Code 
American Standard Code for Information Interchange 
34 / 45 
Info 7-bit Code 
A 1000001 
B 1000010 
... 
... 
Z 1011010 
a 1100001 
b 1100010 
... 
... 
z 1111010 
@ 1000000 
? 0111111 
+ 0101011
Error Detecting Codes 
Parity 
One bit added to a group of bits to make the total number 
of ‘1’s (including the parity bit) even or odd 
● Even 
● Odd 
1 0 1 1 1 0 1 0 0 0 0 0 1 
0 0 1 1 1 1 1 0 0 0 0 0 1 
Good for checking single-bit errors 
35 / 45 
4-bit Example 7-bit Example
Binary Logic 
Operators 
● NOT 
If ‘x’ = 0 then NOT ‘x’ = 1 
If ‘x’ = 1 then NOT ‘x’ = 0 
● AND 
If ‘x’ = 1 AND ‘y’ = 1 then ‘z’ = 1 
Otherwise ‘z’ = 0 
● OR 
If ‘x’ = 1 OR ‘y’ = 1 then ‘z’ = 1 
Otherwise ‘z’ = 0 
36 / 45
Binary Logic 
 Truth Tables, Boolean Expressions, and Logic Gates 
z = x • y = x y z = x + y z = x = x’ 
xy 
AND OR NOT 
z 
37 / 45 
x y z 
0 0 0 
0 1 0 
1 0 0 
1 1 1 
x y z 
0 0 0 
0 1 1 
1 0 1 
1 1 1 
x z 
0 1 
1 0 
xy 
z 
x z
Logic Signals 
Binary ‘0’ is represented 
by a “low” voltage 
(range of voltages) 
Binary ‘1’ is represented 
by a “high” voltage 
(range of voltages) 
The “voltage ranges” guard 
against noise 
38 / 45 
Example of binary signals
Switching Circuits 
39 / 45 
AND OR
Homework 
Mano 
● Chapter 1 
Write your family name in 
ASCII with odd parity 
Decode the following ASCII 
♦ 1-2 
♦ 1-7 
string (with MSB = parity): 
♦ 1-9 
11000011 01101111 11101101 
♦ 1-10 
11110000 11000000 01010000 
♦ 1-11 
01010011 01010101 11010100 
♦ 1-16 
Is the parity even or odd? 
♦ 1-18 
♦ 1-20 
♦ 1-24(a) 
♦ 1-29 40 / 45
Homework 
Mano 
41 / 45 
1-2 What is the exact number of bytes in a system that 
contains (a) 32K byte, (b) 64M byte, and (c) 6.4G byte? 
1-7 Express the following numbers in decimal: (10110.0101)2, 
(16.5)16, and (26.24)8. 
1-9 Convert the hexadecimal number 68BE to binary and 
then from binary convert it to octal. 
1-10 Convert the decimal number 345 to binary in two ways: 
(a) convert directly to binary, (b) convert first to 
hexadecimal, then from hexadecimal to binary. Which 
method is faster?
Homework 
42 / 45 
1-11 Do the following conversion problems: 
(a) Convert decimal 34.4375 to binary. 
(b) Calculate the binary equivalent of 1/3 out to 8 places. 
Then convert from binary to decimal. How close is the 
result to 1/3? 
(c) Convert the binary result in (b) into hexadecimal. 
Then convert the result to decimal. Is the answer the 
same? 
1-16 Obtain the 1’s and 2’s complements of the following 
binary numbers: 
(a) 11101010 (b) 01111110 (c) 00000001 (d) 10000000 
(e) 00000000
Homework 
43 / 45 
1-18 Perform subtraction on the following unsigned binary 
numbers using the 2’s-complement of the subtrahend. 
Where the result should be negative, 2’s complement it 
and affix a minus sign. 
(a) 11011 – 11001 (b) 110100 – 10101 (c) 1011 – 110000 
(d) 101010 – 101011 
1-20 Convert decimal +61 and +27 to binary using the signed- 
2’s complement representation and enough digits to 
accommodate the numbers. Then perform the binary 
equivalent of (+27) + (– 61), (–27) + (+61) and 
(–27) + (–61). Convert the answers back to decimal and 
verify that they are correct.
Homework 
44 / 45 
1-24 Represent decimal number 6027 in (a) BCD 
1-29 The following is a string of ASCII characters whose bit 
patterns have been converted into hexadecimal for 
compactness: 4A EF 68 6E 20 C4 EF E5. Of the 8 
bits in each pair digit, the leftmost is a parity bit. The 
remaining bits are the ASCII code. 
(a) Convert to bit form and decode the ASCII 
(b) Determine the parity used: odd or even.

More Related Content

What's hot (20)

PPTX
Register transfer language
Sanjeev Patel
 
PPTX
Register transfer and micro-operation
Nikhil Pandit
 
PPTX
Bcd
Talha Fazal
 
PPT
Control Memory
mahesh kumar prajapat
 
PPTX
Peephole optimization techniques in compiler design
Anul Chaudhary
 
PPT
Instruction codes and computer registers
Sanjeev Patel
 
PDF
Displacement addressing
Rajon
 
PPTX
Arithmetic micro operations
lavanya marichamy
 
PPT
Instruction Set Architecture (ISA)
Gaditek
 
PPT
Types of instructions
ihsanjamil
 
PPT
Type Checking(Compiler Design) #ShareThisIfYouLike
United International University
 
PPTX
Micro program example
rajshreemuthiah
 
PPTX
Instruction Execution Cycle
utsav_shah
 
PPT
Parallel processing
rajshreemuthiah
 
PPT
Instruction format
Sanjeev Patel
 
PPSX
Fixed point and floating-point numbers
MOHAN MOHAN
 
PPTX
Instruction pipeline: Computer Architecture
InteX Research Lab
 
PPTX
Instruction format
chauhankapil
 
PPTX
Computer architecture virtual memory
Mazin Alwaaly
 
DOCX
Amdahl`s law -Processor performance
COMSATS Institute of Information Technology
 
Register transfer language
Sanjeev Patel
 
Register transfer and micro-operation
Nikhil Pandit
 
Control Memory
mahesh kumar prajapat
 
Peephole optimization techniques in compiler design
Anul Chaudhary
 
Instruction codes and computer registers
Sanjeev Patel
 
Displacement addressing
Rajon
 
Arithmetic micro operations
lavanya marichamy
 
Instruction Set Architecture (ISA)
Gaditek
 
Types of instructions
ihsanjamil
 
Type Checking(Compiler Design) #ShareThisIfYouLike
United International University
 
Micro program example
rajshreemuthiah
 
Instruction Execution Cycle
utsav_shah
 
Parallel processing
rajshreemuthiah
 
Instruction format
Sanjeev Patel
 
Fixed point and floating-point numbers
MOHAN MOHAN
 
Instruction pipeline: Computer Architecture
InteX Research Lab
 
Instruction format
chauhankapil
 
Computer architecture virtual memory
Mazin Alwaaly
 
Amdahl`s law -Processor performance
COMSATS Institute of Information Technology
 

Similar to Digital and Logic Design Chapter 1 binary_systems (20)

PPTX
Unit 1 PDF.pptx
ChandraV13
 
PPT
45196656565656565656565656565656565656566.ppt
Harshal Vaidya
 
PDF
unit-i-number-systems.pdf
RameshK531901
 
PPT
ENG241-Week1-NumberSystemsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bao201875
 
PPT
Number_System and Boolean Algebra in Digital System Design
Deepika rani sona
 
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
TMaungLwin
 
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
TMaungLwin
 
PDF
Chapter 1 digital systems and binary numbers
Mohammad Bashartullah
 
PPTX
Chapter 1 digital design.pptx
AliaaTarek5
 
PPTX
digital-systems-and-binary-numbers1.pptx
RameshK531901
 
PPTX
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
Surendra Loya
 
PPT
Number system on various number tyoes decimal
NamanArora441283
 
PPT
ch3a-binary-numbers.ppt
MUNAZARAZZAQELEA
 
PPT
ch3a-binary-numbers.ppt
Suganthi Vasanth Raj
 
PPT
mmmmmmmmmmmmmmmmmmmmmmbinary-numbers.ppt
AdityaGupta221734
 
PPT
ch3a-binary-numbers.ppt
RAJKUMARP63
 
PPT
ch3a-binary-numbers.ppt
ssuser52a19e
 
PPT
binary-numbers.ppt
MarlonMagtibay2
 
PPT
ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt
anilmallah76
 
PPT
Review on Number Systems: Decimal, Binary, and Hexadecimal
UtkirjonUbaydullaev1
 
Unit 1 PDF.pptx
ChandraV13
 
45196656565656565656565656565656565656566.ppt
Harshal Vaidya
 
unit-i-number-systems.pdf
RameshK531901
 
ENG241-Week1-NumberSystemsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bao201875
 
Number_System and Boolean Algebra in Digital System Design
Deepika rani sona
 
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
TMaungLwin
 
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
TMaungLwin
 
Chapter 1 digital systems and binary numbers
Mohammad Bashartullah
 
Chapter 1 digital design.pptx
AliaaTarek5
 
digital-systems-and-binary-numbers1.pptx
RameshK531901
 
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
Surendra Loya
 
Number system on various number tyoes decimal
NamanArora441283
 
ch3a-binary-numbers.ppt
MUNAZARAZZAQELEA
 
ch3a-binary-numbers.ppt
Suganthi Vasanth Raj
 
mmmmmmmmmmmmmmmmmmmmmmbinary-numbers.ppt
AdityaGupta221734
 
ch3a-binary-numbers.ppt
RAJKUMARP63
 
ch3a-binary-numbers.ppt
ssuser52a19e
 
binary-numbers.ppt
MarlonMagtibay2
 
ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt
anilmallah76
 
Review on Number Systems: Decimal, Binary, and Hexadecimal
UtkirjonUbaydullaev1
 
Ad

More from Imran Waris (12)

PPTX
Lec12
Imran Waris
 
PPTX
Lec8
Imran Waris
 
PPTX
Lec7
Imran Waris
 
PPTX
Lec6
Imran Waris
 
PPTX
Lec5
Imran Waris
 
PPTX
Lec4
Imran Waris
 
PPTX
Communication
Imran Waris
 
PPTX
Nonverbal communication
Imran Waris
 
PDF
digital logic design Chapter 2 boolean_algebra_&_logic_gates
Imran Waris
 
DOC
Micro soft word,excel notes
Imran Waris
 
PPT
Introduction to Operating Systems
Imran Waris
 
PPT
Computer concepts
Imran Waris
 
Communication
Imran Waris
 
Nonverbal communication
Imran Waris
 
digital logic design Chapter 2 boolean_algebra_&_logic_gates
Imran Waris
 
Micro soft word,excel notes
Imran Waris
 
Introduction to Operating Systems
Imran Waris
 
Computer concepts
Imran Waris
 
Ad

Recently uploaded (20)

PPTX
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
PPTX
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
PDF
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
PPTX
ROLE OF ANTIOXIDANT IN EYE HEALTH MANAGEMENT.pptx
Subham Panja
 
PPTX
LEGAL ASPECTS OF PSYCHIATRUC NURSING.pptx
PoojaSen20
 
PPTX
SCHOOL-BASED SEXUAL HARASSMENT PREVENTION AND RESPONSE WORKSHOP
komlalokoe
 
PPTX
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
PPTX
How to Manage Promotions in Odoo 18 Sales
Celine George
 
PDF
Zoology (Animal Physiology) practical Manual
raviralanaresh2
 
PPTX
Nutri-QUIZ-Bee-Elementary.pptx...................
ferdinandsanbuenaven
 
PPTX
How to Configure Prepayments in Odoo 18 Sales
Celine George
 
PPSX
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
PDF
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
PPTX
How to Create Rental Orders in Odoo 18 Rental
Celine George
 
PDF
1, 2, 3… E MAIS UM CICLO CHEGA AO FIM!.pdf
Colégio Santa Teresinha
 
PPTX
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
PPTX
Presentation: Climate Citizenship Digital Education
Karl Donert
 
PPTX
HEAD INJURY IN CHILDREN: NURSING MANAGEMENGT.pptx
PRADEEP ABOTHU
 
PDF
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
PPTX
How to Manage Access Rights & User Types in Odoo 18
Celine George
 
HYDROCEPHALUS: NURSING MANAGEMENT .pptx
PRADEEP ABOTHU
 
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
ROLE OF ANTIOXIDANT IN EYE HEALTH MANAGEMENT.pptx
Subham Panja
 
LEGAL ASPECTS OF PSYCHIATRUC NURSING.pptx
PoojaSen20
 
SCHOOL-BASED SEXUAL HARASSMENT PREVENTION AND RESPONSE WORKSHOP
komlalokoe
 
2025 Winter SWAYAM NPTEL & A Student.pptx
Utsav Yagnik
 
How to Manage Promotions in Odoo 18 Sales
Celine George
 
Zoology (Animal Physiology) practical Manual
raviralanaresh2
 
Nutri-QUIZ-Bee-Elementary.pptx...................
ferdinandsanbuenaven
 
How to Configure Prepayments in Odoo 18 Sales
Celine George
 
HEALTH ASSESSMENT (Community Health Nursing) - GNM 1st Year
Priyanshu Anand
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
How to Create Rental Orders in Odoo 18 Rental
Celine George
 
1, 2, 3… E MAIS UM CICLO CHEGA AO FIM!.pdf
Colégio Santa Teresinha
 
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
Presentation: Climate Citizenship Digital Education
Karl Donert
 
HEAD INJURY IN CHILDREN: NURSING MANAGEMENGT.pptx
PRADEEP ABOTHU
 
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
How to Manage Access Rights & User Types in Odoo 18
Celine George
 

Digital and Logic Design Chapter 1 binary_systems

  • 1. CHAPTER 1: BINARY SYSTEMS  DIGITAL COMPUTER & DIGITAL SYSTEMS  BINARY NUMBERS  NUMBER BASE CONVERSION  COMPLEMENTS  SIGNED BINARY NUMBERS  BINARY CODES  BINARY STORAGE ELEMENTS 0 / 45
  • 2. Digital Systems Discrete Data ● Examples: ♦ 26 letters of the alphabet (A, B … etc) ♦ 10 decimal digits (0, 1, 2 … etc) ● Combine together Analog Discrete ♦ Words are made of letters (University … etc) ♦ Numbers are made of digits (4241 … etc) Binary System ● Only ‘0’ and ‘1’ digits ● Can be easily implemented in electronic circuits 1 / 45
  • 3. Decimal Number System Base (also called radix) = 10 ● 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } Digit Position ● Integer & fraction Digit Weight ● Weight = (Base) Position Magnitude ● Sum of “Digit x Weight” Formal Notation 2 1 0 -1 -2 5 1 2 7 4 100 10 1 0.1 0.01 500 10 2 0.7 0.04 d2*B2+d1*B1+d0*B0+d-1*B-1+d-2*B-2 2 / 45 (512.74)10
  • 4. Octal Number System Base = 8 ● 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 } Weights ● Weight = (Base) Position Magnitude ● Sum of “Digit x Weight” Formal Notation 64 8 1 1/8 1/64 5 1 2 7 4 2 1 0 -1 -2 5 *82+1 *81+2 *80+7 *8-1+4 *8-2 3 / 45 =(330.9375)10 (512.74)8
  • 5. Binary Number System Base = 2 ● 2 digits { 0, 1 }, called binary digits or “bits” Weights ● Weight = (Base) Position Magnitude ● Sum of “Bit x Weight” Formal Notation 1 *22+0 *21+1 *20+0 *2-1+1 *2-2 Groups of bits 4 bits = Nibble 8 bits = Byte 4 2 1 1/2 1/4 1 0 1 0 1 2 1 0 -1 -2 4 / 45 =(5.25)10 (101.01)2 1 0 1 1 1 1 0 0 0 1 0 1
  • 6. Hexadecimal Number System Base = 16 ● 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F } Weights ● Weight = (Base) Position Magnitude ● Sum of “Digit x Weight” Formal Notation 256 16 1 1/16 1/256 1 E 5 7 A 2 1 0 -1 -2 1 *162+14 *161+5 *160+7 *16-1+10 *16-2 5 / 45 =(485.4765625)10 (1E5.7A)16
  • 7. The Power of 2 6 / 45 n 2n 0 20=1 1 21=2 2 22=4 3 23=8 4 24=16 5 25=32 6 26=64 7 27=128 n 2n 8 28=256 9 29=512 10 210=1024 11 211=2048 12 212=4096 20 220=1M 30 230=1G 40 240=1T Kilo Mega Giga Tera
  • 8. Addition Decimal Addition 7 / 45 1 1 Carry 5 5 + 5 5 1 1 0 = Ten ≥ Base  Subtract a Base
  • 9. Binary Addition Column Addition 8 / 45 1 1 1 1 0 1 + 1 0 1 1 1 1 0 1 0 1 0 0 ≥ (2)10 1 1 1 1 1 1 = 61 = 23 = 84
  • 10. Binary Subtraction Borrow a “Base” when needed 9 / 45 0 0 0 0 0 1 1 0 1 − 1 0 1 1 1 0 1 1 0 1 1 0 = (10)2 2 2 2 2 1 1 = 77 = 23 = 54
  • 11. Binary Multiplication Bit by bit 10 / 45 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 x 1 0 1 1 1 1 1 1 0 0 1 1 0
  • 12. Number Base Conversions 11 / 45 Decimal (Base 10) Octal (Base 8) Binary (Base 2) Hexadecimal (Base 16) Evaluate Magnitude Evaluate Magnitude Evaluate Magnitude
  • 13. Decimal (Integer) to Binary Conversion Divide the number by the ‘Base’ (=2) Take the remainder (either 0 or 1) as a coefficient Take the quotient and repeat the division 12 / 45 Example: (13)10 Quotient Remainder Coefficient 13/ 2 = 6 1 a0 = 1 6 / 2 = 3 0 a1 = 0 3 / 2 = 1 1 a2 = 1 1 / 2 = 0 1 a3 = 1 Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2 MSB LSB
  • 14. Decimal (Fraction) to Binary Conversion Multiply the number by the ‘Base’ (=2) Take the integer (either 0 or 1) as a coefficient Take the resultant fraction and repeat the division 13 / 45 Example: (0.625)10 Integer Fraction Coefficient a-1 = 1 0.625 * 2 = 1 . 25 0.25 * 2 = 0 . 5 a-2 = 0 0.5 * 2 = 1 . 0 a-3 = 1 Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2 MSB LSB
  • 15. Decimal to Octal Conversion 14 / 45 Example: (175)10 Quotient Remainder Coefficient 175 / 8 = 21 7 a0 = 7 21 / 8 = 2 5 a1 = 5 2 / 8 = 0 2 a2 = 2 Answer: (175)10 = (a2 a1 a0)8 = (257)8 Example: (0.3125)10 Integer Fraction Coefficient a-1 = 2 0.3125 * 8 = 2 . 5 0.5 * 8 = 4 . 0 a-2 = 4 Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8
  • 16. Binary − Octal Conversion 8 = 23 Each group of 3 bits represents an octal digit Octal Binary 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 15 / 45 Example: Assume Zeros ( 1 0 1 1 0 . 0 1 )2 ( 2 6 . 2 )8 Works both ways (Binary to Octal & Octal to Binary)
  • 17. Binary − Hexadecimal Conversion 16 = 24 Each group of 4 bits represents a hexadecimal digit Hex Binary 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 A 1 0 1 0 B 1 0 1 1 C 1 1 0 0 D 1 1 0 1 E 1 1 1 0 F 1 1 1 1 16 / 45 Example: Assume Zeros ( 1 0 1 1 0 . 0 1 )2 ( 1 6 . 4 )16 Works both ways (Binary to Hex & Hex to Binary)
  • 18. Octal − Hexadecimal Conversion Convert to Binary as an intermediate step 17 / 45 Example: ( 2 6 . 2 )8 ( 0 1 0 1 1 0 . 0 1 0 )2 ( 1 6 . 4 )16 Assume Zeros Assume Zeros Works both ways (Octal to Hex & Hex to Octal)
  • 19. Decimal, Binary, Octal and Hexadecimal 18 / 45 Decimal Binary Octal Hex 00 0000 00 0 01 0001 01 1 02 0010 02 2 03 0011 03 3 04 0100 04 4 05 0101 05 5 06 0110 06 6 07 0111 07 7 08 1000 10 8 09 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F
  • 20. Complements 1’s Complement (Diminished Radix Complement) ● All ‘0’s become ‘1’s ● All ‘1’s become ‘0’s Example (10110000)2  (01001111)2 If you add a number and its 1’s complement … 19 / 45 1 0 1 1 0 0 0 0 + 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
  • 21. Complements 2’s Complement (Radix Complement) ● Take 1’s complement then add 1 ● Toggle all bits to the left of the first ‘1’ from the right Example: Number: 1’s Comp.: 20 / 45 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 + 1 0 1 0 1 0 0 0 0 OR 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0
  • 22. Negative Numbers Computers Represent Information in ‘0’s and ‘1’s ● ‘+’ and ‘−’ signs have to be represented in ‘0’s and ‘1’s 3 Systems ● Signed Magnitude ● 1’s Complement ● 2’s Complement All three use the left-most bit to represent the sign: ♦ ‘0’  positive ♦ ‘1’  negative 21 / 45
  • 23. Signed Magnitude Representation Magnitude is magnitude, does not change with sign S Magnitude (Binary) (+3)10  ( 0 0 1 1 )2 (−3)10  ( 1 0 1 1 )2 Sign Magnitude Can’t include the sign bit in ‘Addition’ 22 / 45 0 0 1 1  (+3)10 + 1 0 1 1  (−3)10 1 1 1 0  (−6)10
  • 24. 1’s Complement Representation Positive numbers are represented in “Binary” Negative numbers are represented in “1’s Comp.” (+3)10  (0 011)2 (−3)10  (1 100)2 There are 2 representations for ‘0’ (+0)10  (0 000)2 (−0)10  (1 111)2 23 / 45 0 Magnitude (Binary) 1 Code (1’s Comp.)
  • 25. 1’s Complement Range 4-Bit Representation 24 = 16 Combinations − 7 ≤ Number ≤ + 7 −23+1 ≤ Number ≤ +23 − 1 n-Bit Representation −2n−1+1 ≤ Number ≤ +2n−1 − 1 24 / 45 Decimal 1’s Comp. + 7 0 1 1 1 + 6 0 1 1 0 + 5 0 1 0 1 + 4 0 1 0 0 + 3 0 0 1 1 + 2 0 0 1 0 + 1 0 0 0 1 + 0 0 0 0 0 − 0 1 1 1 1 − 1 1 1 1 0 − 2 1 1 0 1 − 3 1 1 0 0 − 4 1 0 1 1 − 5 1 0 1 0 − 6 1 0 0 1 − 7 1 0 0 0
  • 26. 2’s Complement Representation Positive numbers are represented in “Binary” Negative numbers are represented in “2’s Comp.” (+3)10  (0 011)2 (−3)10  (1 101)2 There is 1 representation for ‘0’ (+0)10  (0 000)2 (−0)10  (0 000)2 25 / 45 0 Magnitude (Binary) 1 Code (2’s Comp.) 1’s Comp. 1 1 1 1 + 1 1 0 0 0 0
  • 27. 2’s Complement Range 4-Bit Representation 24 = 16 Combinations − 8 ≤ Number ≤ + 7 −23 ≤ Number ≤ + 23 − 1 n-Bit Representation −2n−1 ≤ Number ≤ + 2n−1 − 1 Decimal 2’s Comp. 26 / 45 + 7 0 1 1 1 + 6 0 1 1 0 + 5 0 1 0 1 + 4 0 1 0 0 + 3 0 0 1 1 + 2 0 0 1 0 + 1 0 0 0 1 + 0 0 0 0 0 − 1 1 1 1 1 − 2 1 1 1 0 − 3 1 1 0 1 − 4 1 1 0 0 − 5 1 0 1 1 − 6 1 0 1 0 − 7 1 0 0 1 − 8 1 0 0 0
  • 28. Number Representations 4-Bit Example 27 / 45 Unsigned Binary Signed Magnitude 1’s Comp. 2’s Comp. Range 0 ≤ N ≤ 15 -7 ≤ N ≤ +7 -7 ≤ N ≤ +7 -8 ≤ N ≤ +7 Positive 0 0 0 Binary Binary Binary Binary Negative X 1 1 1 Binary 1’s Comp. 2’s Comp.
  • 29. Binary Subtraction Using 1’s Comp. Addition Change “Subtraction” to “Addition” If “Carry” = 1 then add it to the LSB, and the result is positive (in Binary) If “Carry” = 0 then the result is negative (in 1’s Comp.) (5)10 – (6)10 (+5)10 + (-6)10 28 / 45 (5)10 – (1)10 (+5)10 + (-1)10 0 1 0 1 + 1 1 1 0 0 0 1 1 + 0 1 0 0 0 1 0 1 + 1 0 0 1 0 1 1 1 0 1 1 1 0 + 4 − 1 1
  • 30. Binary Subtraction Using 2’s Comp. Addition Change “Subtraction” to “Addition” If “Carry” = 1 ignore it, and the result is positive (in Binary) If “Carry” = 0 then the result is negative (in 2’s Comp.) (5)10 – (6)10 (+5)10 + (-6)10 29 / 45 (5)10 – (1)10 (+5)10 + (-1)10 0 1 0 1 + 1 1 1 1 1 0 1 0 0 0 1 0 1 + 1 0 1 0 0 1 1 1 1 + 4 − 1
  • 31. Binary Codes Group of n bits ● Up to 2n combinations ● Each combination represents an element of information Binary Coded Decimal (BCD) ● Each Decimal Digit is represented by 4 bits ● (0 – 9)  Valid combinations ● (10 – 15)  Invalid combinations 30 / 45 Decimal BCD 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1
  • 32. BCD Addition One decimal digit + one decimal digit ● If the result is 1 decimal digit ( ≤ 9 ), then it is a simple binary addition Example: ● If the result is two decimal digits ( ≥ 10 ), then binary addition gives invalid combinations Example: 31 / 45 5 + 3 8 0 1 0 1 + 0 0 1 1 1 0 0 0 5 + 5 1 0 0 1 0 1 + 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0
  • 33. BCD Addition If the binary result is greater than 9, correct the result by adding 6 32 / 45 5 + 5 1 0 0 1 0 1 + 0 1 0 1 1 0 1 0 + 0 1 1 0 0 0 0 1 0 0 0 0 Two Decimal Digits Multiple Decimal Digits 3 5 1 0 0 1 1 0 1 0 1 0 0 0 1
  • 34. Gray Code  One bit changes from one code to the next code  Different than Binary Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 33 / 45 Decimal Gray 00 0000 01 0001 02 0011 03 0010 04 0110 05 0111 06 0101 07 0100 08 1100 09 1101 10 1111 11 1110 12 1010 13 1011 14 1001 15 1000
  • 35. ASCII Code American Standard Code for Information Interchange 34 / 45 Info 7-bit Code A 1000001 B 1000010 ... ... Z 1011010 a 1100001 b 1100010 ... ... z 1111010 @ 1000000 ? 0111111 + 0101011
  • 36. Error Detecting Codes Parity One bit added to a group of bits to make the total number of ‘1’s (including the parity bit) even or odd ● Even ● Odd 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 Good for checking single-bit errors 35 / 45 4-bit Example 7-bit Example
  • 37. Binary Logic Operators ● NOT If ‘x’ = 0 then NOT ‘x’ = 1 If ‘x’ = 1 then NOT ‘x’ = 0 ● AND If ‘x’ = 1 AND ‘y’ = 1 then ‘z’ = 1 Otherwise ‘z’ = 0 ● OR If ‘x’ = 1 OR ‘y’ = 1 then ‘z’ = 1 Otherwise ‘z’ = 0 36 / 45
  • 38. Binary Logic  Truth Tables, Boolean Expressions, and Logic Gates z = x • y = x y z = x + y z = x = x’ xy AND OR NOT z 37 / 45 x y z 0 0 0 0 1 0 1 0 0 1 1 1 x y z 0 0 0 0 1 1 1 0 1 1 1 1 x z 0 1 1 0 xy z x z
  • 39. Logic Signals Binary ‘0’ is represented by a “low” voltage (range of voltages) Binary ‘1’ is represented by a “high” voltage (range of voltages) The “voltage ranges” guard against noise 38 / 45 Example of binary signals
  • 40. Switching Circuits 39 / 45 AND OR
  • 41. Homework Mano ● Chapter 1 Write your family name in ASCII with odd parity Decode the following ASCII ♦ 1-2 ♦ 1-7 string (with MSB = parity): ♦ 1-9 11000011 01101111 11101101 ♦ 1-10 11110000 11000000 01010000 ♦ 1-11 01010011 01010101 11010100 ♦ 1-16 Is the parity even or odd? ♦ 1-18 ♦ 1-20 ♦ 1-24(a) ♦ 1-29 40 / 45
  • 42. Homework Mano 41 / 45 1-2 What is the exact number of bytes in a system that contains (a) 32K byte, (b) 64M byte, and (c) 6.4G byte? 1-7 Express the following numbers in decimal: (10110.0101)2, (16.5)16, and (26.24)8. 1-9 Convert the hexadecimal number 68BE to binary and then from binary convert it to octal. 1-10 Convert the decimal number 345 to binary in two ways: (a) convert directly to binary, (b) convert first to hexadecimal, then from hexadecimal to binary. Which method is faster?
  • 43. Homework 42 / 45 1-11 Do the following conversion problems: (a) Convert decimal 34.4375 to binary. (b) Calculate the binary equivalent of 1/3 out to 8 places. Then convert from binary to decimal. How close is the result to 1/3? (c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the answer the same? 1-16 Obtain the 1’s and 2’s complements of the following binary numbers: (a) 11101010 (b) 01111110 (c) 00000001 (d) 10000000 (e) 00000000
  • 44. Homework 43 / 45 1-18 Perform subtraction on the following unsigned binary numbers using the 2’s-complement of the subtrahend. Where the result should be negative, 2’s complement it and affix a minus sign. (a) 11011 – 11001 (b) 110100 – 10101 (c) 1011 – 110000 (d) 101010 – 101011 1-20 Convert decimal +61 and +27 to binary using the signed- 2’s complement representation and enough digits to accommodate the numbers. Then perform the binary equivalent of (+27) + (– 61), (–27) + (+61) and (–27) + (–61). Convert the answers back to decimal and verify that they are correct.
  • 45. Homework 44 / 45 1-24 Represent decimal number 6027 in (a) BCD 1-29 The following is a string of ASCII characters whose bit patterns have been converted into hexadecimal for compactness: 4A EF 68 6E 20 C4 EF E5. Of the 8 bits in each pair digit, the leftmost is a parity bit. The remaining bits are the ASCII code. (a) Convert to bit form and decode the ASCII (b) Determine the parity used: odd or even.