SlideShare a Scribd company logo
Data Mining:
Concepts and Techniques
— Chapter 1 —
— Introduction —
Eng Ali sheak Ahmed
alijama99@gmail.com
090-7731966
Outline
• 1.1 Motivation: Why data mining?
• 1.2 What is data mining?
• 1.3 Data Mining: On what kind of data?
• 1.4 Data mining functionality: What kinds of Patterns Can Be Mined?
• 1.5 Are all the patterns interesting?
1.1 Why Data Mining?
• The Explosive Growth of Data: from terabytes(10004) to yottabytes(10008)
• Data collection and data availability
• Automated data collection tools, database systems, web
• Major sources of abundant/richness data
• Business: Web, e-commerce, transactions, stocks, …
• Science: bioinformatics, scientific simulation, medical research …
• Society and everyone: news, digital cameras, …
Continued………..
• Data rich but information poor!
• What does those data mean?
• How to analyze data?
• Data mining — Automated analysis of massive data sets
Evolution of Database Technology
1.2 What Is Data Mining?
• Data mining (knowledge discovery from data)
• Extraction of interesting (non-trivial, implicit, previously unknown and
potentially useful) patterns or knowledge from huge amount of data
• Alternative names
• Knowledge discovery (mining) in databases (KDD), knowledge
extraction, data/pattern analysis, data archeology, data dredging,
information harvesting, business intelligence, etc.
Data Mining: Concepts and Techniques 6
Potential Applications
• Data analysis and decision support
• Market analysis and management
• Target marketing, customer relationship management (CRM),
market basket analysis, cross selling, market segmentation
• Risk analysis and management
• Forecasting, customer retention, improved underwriting, quality
control, competitive analysis
• Fraud detection and detection of unusual patterns (outliers)
Data Mining: Concepts and Techniques
Continued…
• Other Applications
• Text mining (news group, email, documents) and Web mining
• Stream data mining
• Bioinformatics and bio-data analysis
Ex.: Market Analysis and Management
• Where does the data come from?—Credit card transactions, loyalty cards,
discount coupons, customer complaint calls, surveys …
• Target marketing
• Find clusters of “model” customers who share the same characteristics: interest,
income level, spending habits, etc.,
• E.g. Most customers with income level 60k – 80k with food expenses $600 - $800 a month live in that area
• Determine customer purchasing patterns over time
• E.g. Customers who are between 20 and 29 years old, with income of 20k – 29k usually buy this type of CD player
Data Mining: Concepts and Techniques 9
Continued…….
• Cross-market analysis—Find associations/co-relations between product sales, & predict based on such
association
• E.g. Customers who buy computer A usually buy software B
• Customer requirement analysis
• Identify the best products for different customers
• Predict what factors will attract new customers
• Fraud detection
• Find outliers of unusual transactions
Knowledge Discovery (KDD) Process
KDD Process: Several Key Steps
• Learning the application domain
• relevant prior knowledge and goals of application
• Identifying a target data set: data selection
• Data processing
• Data cleaning (remove noise and inconsistent data)
• Data integration (multiple data sources maybe combined)
• Data selection (data relevant to the analysis task are retrieved from database)
• Data transformation (data transformed or consolidated into forms appropriate for mining)
(Done with data preprocessing)
• Data mining (an essential process where intelligent methods are applied to extract
data patterns)
• Pattern evaluation (indentify the truly interesting patterns)
• Knowledge presentation (mined knowledge is presented to the user with
visualization or representation techniques)
• Use of discovered knowledge
12
Data Mining and Business Intelligence
13
Increasing potential
to support
business decisions End User
Business
Analyst
Data
Analyst
DBA
Decision
Making
Data Presentation
Visualization Techniques
Data Mining
Information Discovery
Data Exploration
Statistical Summary, Querying, and Reporting
Data Preprocessing/Integration, Data Warehouses
Data Sources
Paper, Files, Web documents, Scientific experiments, Database Systems
A typical DM System Architecture
• Database, data warehouse, WWW or other information
repository (store data)
• Database or data warehouse server (fetch and
combine data)
• Knowledge base (turn data into meaningful groups
according to domain knowledge)
• Data mining engine (perform mining tasks)
• Pattern evaluation module (find interesting patterns)
• User interface (interact with the user)
A typical DM System Architecture (2)
Confluence of Multiple Disciplines
16
Data Mining
Database
Technology Statistics
Information
Science
Other
Disciplines
Visualization
Machine
Learning
• Not all “Data Mining System” performs true data mining
 machine learning system, statistical analysis (small amount of data)
 Database system (information retrieval, deductive querying…)
1.3 On What Kinds of Data?
• Database-oriented data sets and applications
• Relational database, data warehouse, transactional database
• Advanced data sets and advanced applications
• Object-Relational Databases
• Temporal Databases, Sequence Databases, Time-Series databases
• Spatial Databases and Spatiotemporal Databases
• Text databases and Multimedia databases
• Heterogeneous Databases and Legacy Databases
• Data Streams
• The World-Wide Web
17
Relational Databases
• DBMS – database management system, contains a collection of
interrelated databases
e.g. Faculty database, student database, publications database
• Each database contains a collection of tables and functions to
manage and access the data.
e.g. student_bio, student_graduation, student_parking
• Each table contains columns and rows, with columns as attributes of data and rows as records.
• Tables can be used to represent the relationships between or among multiple tables.
Relational Databases (2) – AllElectronics store
Relational Databases (3)
• With a relational query language, e.g. SQL, we will be able to find
answers to questions such as:
• How many items were sold last year?
• Who has earned commissions higher than 10%?
• What is the total sales of last month for Dell laptops?
• When data mining is applied to relational databases, we can search for trends or data patterns.
• Relational databases are one of the most commonly available and
rich information repositories, and thus are a major data form in our study.
Data Warehouses
• A repository of information collected from
multiple sources, stored
under a unified schema, and that usually
resides at a single site.
• Constructed via a process of data cleaning,
data integration, data
transformation, data loading and periodic data
refreshing.
Data Warehouses (2)
• Data are organized around major subjects, e.g. customer, item, supplier and
activity.
• Provide information from a historical perspective (e.g. from the past 5 – 10
years)
• Typically summarized to a higher level (e.g. a summary of the
transactions per item type for each store)
• User can perform drill-down or roll-up operation to view the data at different
degrees of summarization
Data Warehouses (3)
Transactional Databases
• Consists of a file where each record represents a transaction
• A transaction typically includes a unique transaction ID and a list of the items
making up the transaction.
• Either stored in a flat file or unfolded into relational tables
• Easy to identify items that are frequently sold together
Data Mining: Concepts and Techniques
1.4 Data Mining Functionalities
- What kinds of patterns can be mined?
• Concept/Class Description: Characterization and Discrimination
• Data can be associated with classes or concepts.
• E.g. classes of items – computers, printers, …
concepts of customers – bigSpenders, budgetSpenders, …
• How to describe these items or concepts?
• Descriptions can be derived via
• Data characterization – summarizing the general characteristics of a
target class of data.
• E.g. summarizing the characteristics of customers who spend more than $1,000 a year
at AllElectronics. Result can be a general profile of the customers, such as 40 – 50 years old, employed,
have excellent credit ratings. 25
• Data discrimination – comparing the target class with one or a set of
comparative classes
• E.g. Compare the general features of software products whole sales increase by 10% in the last year with those
whose sales decrease by 30% during the same period
• Or both of the above
• Mining Frequent Patterns, Associations and
Correlations
• Frequent itemset: a set of items that frequently appear
together in a transactional data set (e.g. milk and bread)
• Frequent subsequence: a pattern that customers tend to purchase product A,
followed by a purchase of product B
26
Continued……………
• Association Analysis: find frequent patterns
• E.g. a sample analysis result – an association rule:
buys(X, “computer”) => buys(X, “software”) [support = 1%, confidence = 50%]
(if a customer buys a computer, there is a 50% chance that she will buy software. 1% of all of
the transactions under analysis showed that computer and software
are purchased together. )
• Associations rules are discarded as uninteresting if they do not satisfy both a minimum
support threshold and a minimum confidence threshold.
• Correlation Analysis: additional analysis to find statistical correlations between
associated pairs
Data Mining: Concepts and Techniques 27
Continued……………
• Classification and Prediction
• Classification
• The process of finding a model that describes and distinguishes the data classes or concepts,
for the purpose of being able to use the model to predict the class of
objects whose class label is unknown.
• The derived model is based on the analysis of a set of training data (data objects whose class
label is known).
• The model can be represented in classification (IF-THEN) rules, decision trees,
neural networks, etc.
• Prediction
• Predict missing or unavailable numerical data values
Data Mining: Concepts and Techniques 28
Continued……………
29
Continued……………
Data Mining Functionalities (2)
• Cluster Analysis
• Class label is unknown: group data to form new classes
• Clusters of objects are formed based on the principle of maximizing intra-class
similarity & minimizing interclass similarity
• E.g. Identify homogeneous subpopulations of customers. These clusters may
represent individual target groups for marketing.
30
Data Mining Functionalities (2)
• Outlier Analysis
• Data that do no comply with the general behavior or model.
• Outliers are usually discarded as noise or exceptions.
• Useful for fraud detection.
• E.g. Detect purchases of extremely large amounts
• Evolution Analysis
• Describes and models regularities or trends for objects whose
behavior changes over time.
• E.g. Identify stock evolution regularities for overall stocks and for the stocks of
particular companies.
31
1.5 Are All of the Patterns Interesting?
• Data mining may generate thousands of patterns: Not all of them
are interesting
• A pattern is interesting if it is
• easily understood by humans
• valid on new or test data with some degree of certainty,
• potentially useful
• novel
• validates some hypothesis that a user seeks to confirm
• An interesting measure represents knowledge !
32
1.5 Are All of the Patterns Interesting?
• Objective measures
• Based on statistics and structures of patterns, e.g., support, confidence, etc. (Rules that
do not satisfy a threshold are considered uninteresting.)
• Subjective measures
• Reflect the needs and interests of a particular user.
• E.g. A marketing manager is only interested in characteristics of customers who shop
frequently.
• Based on user’s belief in the data.
• e.g., Patterns are interesting if they are unexpected, or can be used for strategic planning, etc
• Objective and subjective measures need to be combined.
33
1.5 Are All of the Patterns Interesting?
• Find all the interesting patterns: Completeness
• Unrealistic and inefficient
• User-provided constraints and interestingness measures should be used
• Search for only interesting patterns: An optimization problem
• Highly desirable
• No need to search through the generated patterns to identify truly
interesting ones.
• Measures can be used to rank the discovered patterns according their
interestingness.
34

More Related Content

What's hot (20)

PPTX
Model of information retrieval (3)
9866825059
 
PPTX
NCompass Live: How to catalog a kit
Nebraska Library Commission
 
PDF
Data-Ed Online: Approaching Data Quality
DATAVERSITY
 
PDF
Introduction to data science
Tharushi Ruwandika
 
PDF
Property graph vs. RDF Triplestore comparison in 2020
Ontotext
 
PPTX
Text mining
Koshy Geoji
 
PDF
Data Management, Metadata Management, and Data Governance – Working Together
DATAVERSITY
 
PPTX
Big data
madhavsolanki
 
PPTX
SQL Server 2019 Master Data Service
Kenichiro Nakamura
 
PPTX
Data Science
Amit Singh
 
PDF
Data Modeling Fundamentals
DATAVERSITY
 
PPTX
metadata.pptx
bhavyag24
 
PDF
The Evolution of Data Science
Kenny Daniel
 
PPTX
Enterprise Data Management
Syed Jahanzaib Bin Hassan - JBH Syed
 
PDF
Introduction to metadata management
Open Data Support
 
PDF
Lessons in Data Modeling: Data Modeling & MDM
DATAVERSITY
 
PDF
How to Become a Data Scientist | Data Scientist Skills | Data Science Trainin...
Edureka!
 
PDF
Data Governance Best Practices, Assessments, and Roadmaps
DATAVERSITY
 
PPTX
Information policy ppt
Kabir Khan
 
PDF
Data Contracts: Consensus as Code - Pycon 2023
Ryan Collingwood
 
Model of information retrieval (3)
9866825059
 
NCompass Live: How to catalog a kit
Nebraska Library Commission
 
Data-Ed Online: Approaching Data Quality
DATAVERSITY
 
Introduction to data science
Tharushi Ruwandika
 
Property graph vs. RDF Triplestore comparison in 2020
Ontotext
 
Text mining
Koshy Geoji
 
Data Management, Metadata Management, and Data Governance – Working Together
DATAVERSITY
 
Big data
madhavsolanki
 
SQL Server 2019 Master Data Service
Kenichiro Nakamura
 
Data Science
Amit Singh
 
Data Modeling Fundamentals
DATAVERSITY
 
metadata.pptx
bhavyag24
 
The Evolution of Data Science
Kenny Daniel
 
Enterprise Data Management
Syed Jahanzaib Bin Hassan - JBH Syed
 
Introduction to metadata management
Open Data Support
 
Lessons in Data Modeling: Data Modeling & MDM
DATAVERSITY
 
How to Become a Data Scientist | Data Scientist Skills | Data Science Trainin...
Edureka!
 
Data Governance Best Practices, Assessments, and Roadmaps
DATAVERSITY
 
Information policy ppt
Kabir Khan
 
Data Contracts: Consensus as Code - Pycon 2023
Ryan Collingwood
 

Similar to Chapter 1 - Introduction to Data Mining Concepts and Techniques.pptx (20)

PPT
Data mining concept and methods for basic
NivaTripathy2
 
PPT
Data Mining: Concepts and Techniques.ppt
AnonymousEImkf6RGdQ
 
PPTX
DMDA Unit-1.pptx .
SaiM947604
 
PPT
chap1.ppt
AsifImran37
 
PPT
chap1.ppt
ImXaib
 
PPT
chap1.ppt
IfedayoOladeji1
 
PPT
Information_System_and_Data_mining12.ppt
PrasadG76
 
PPT
Dma unit 1
thamizh arasi
 
PPTX
Week-1-Introduction to Data Mining.pptx
Take1As
 
PPTX
Introduction_to_Data_Mining12345678.pptx
AnonymousEImkf6RGdQ
 
PPTX
Data mining
Akannsha Totewar
 
PPT
Introduction.ppt
bommaiah
 
PPT
Introduction
neelamoberoi1030
 
PPTX
Business Intelligence and Analytics Unit-2 part-A .pptx
RupaRani28
 
PPT
Data mining
Samir Sabry
 
PPT
Data Mining-2023 (2).ppt
SATYAJITJENABTECH
 
PPT
Sanjeev Kumar Dash D ata Mining-2023.ppt
gobeli2850
 
PDF
DATA MINING BASIC INTRODUCTION OF ALL THE STAGES
JignaJadav1
 
PPT
What Is DATA MINING(INTRODUCTION)
Pratik Tambekar
 
PPT
Data mining 1
Krunal Doshi
 
Data mining concept and methods for basic
NivaTripathy2
 
Data Mining: Concepts and Techniques.ppt
AnonymousEImkf6RGdQ
 
DMDA Unit-1.pptx .
SaiM947604
 
chap1.ppt
AsifImran37
 
chap1.ppt
ImXaib
 
chap1.ppt
IfedayoOladeji1
 
Information_System_and_Data_mining12.ppt
PrasadG76
 
Dma unit 1
thamizh arasi
 
Week-1-Introduction to Data Mining.pptx
Take1As
 
Introduction_to_Data_Mining12345678.pptx
AnonymousEImkf6RGdQ
 
Data mining
Akannsha Totewar
 
Introduction.ppt
bommaiah
 
Introduction
neelamoberoi1030
 
Business Intelligence and Analytics Unit-2 part-A .pptx
RupaRani28
 
Data mining
Samir Sabry
 
Data Mining-2023 (2).ppt
SATYAJITJENABTECH
 
Sanjeev Kumar Dash D ata Mining-2023.ppt
gobeli2850
 
DATA MINING BASIC INTRODUCTION OF ALL THE STAGES
JignaJadav1
 
What Is DATA MINING(INTRODUCTION)
Pratik Tambekar
 
Data mining 1
Krunal Doshi
 
Ad

Recently uploaded (20)

PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PPTX
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
PPTX
Rocket-Launched-PowerPoint-Template.pptx
Arden31
 
PDF
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPTX
Resmed Rady Landis May 4th - analytics.pptx
Adrian Limanto
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PDF
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
PPTX
Introduction to Artificial Intelligence.pptx
StarToon1
 
PDF
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
PPTX
Climate Action.pptx action plan for climate
justfortalabat
 
PDF
2_Management_of_patients_with_Reproductive_System_Disorders.pdf
motbayhonewunetu
 
PDF
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
PDF
List of all the AI prompt cheat codes.pdf
Avijit Kumar Roy
 
PPT
Data base management system Transactions.ppt
gandhamcharan2006
 
PDF
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
DOCX
AI/ML Applications in Financial domain projects
Rituparna De
 
PDF
Incident Response and Digital Forensics Certificate
VICTOR MAESTRE RAMIREZ
 
PPTX
Rational Functions, Equations, and Inequalities (1).pptx
mdregaspi24
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
Rocket-Launched-PowerPoint-Template.pptx
Arden31
 
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
Resmed Rady Landis May 4th - analytics.pptx
Adrian Limanto
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
Introduction to Artificial Intelligence.pptx
StarToon1
 
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
Climate Action.pptx action plan for climate
justfortalabat
 
2_Management_of_patients_with_Reproductive_System_Disorders.pdf
motbayhonewunetu
 
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
List of all the AI prompt cheat codes.pdf
Avijit Kumar Roy
 
Data base management system Transactions.ppt
gandhamcharan2006
 
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
AI/ML Applications in Financial domain projects
Rituparna De
 
Incident Response and Digital Forensics Certificate
VICTOR MAESTRE RAMIREZ
 
Rational Functions, Equations, and Inequalities (1).pptx
mdregaspi24
 
Ad

Chapter 1 - Introduction to Data Mining Concepts and Techniques.pptx

  • 1. Data Mining: Concepts and Techniques — Chapter 1 — — Introduction — Eng Ali sheak Ahmed [email protected] 090-7731966
  • 2. Outline • 1.1 Motivation: Why data mining? • 1.2 What is data mining? • 1.3 Data Mining: On what kind of data? • 1.4 Data mining functionality: What kinds of Patterns Can Be Mined? • 1.5 Are all the patterns interesting?
  • 3. 1.1 Why Data Mining? • The Explosive Growth of Data: from terabytes(10004) to yottabytes(10008) • Data collection and data availability • Automated data collection tools, database systems, web • Major sources of abundant/richness data • Business: Web, e-commerce, transactions, stocks, … • Science: bioinformatics, scientific simulation, medical research … • Society and everyone: news, digital cameras, …
  • 4. Continued……….. • Data rich but information poor! • What does those data mean? • How to analyze data? • Data mining — Automated analysis of massive data sets
  • 6. 1.2 What Is Data Mining? • Data mining (knowledge discovery from data) • Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data • Alternative names • Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc. Data Mining: Concepts and Techniques 6
  • 7. Potential Applications • Data analysis and decision support • Market analysis and management • Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation • Risk analysis and management • Forecasting, customer retention, improved underwriting, quality control, competitive analysis • Fraud detection and detection of unusual patterns (outliers) Data Mining: Concepts and Techniques
  • 8. Continued… • Other Applications • Text mining (news group, email, documents) and Web mining • Stream data mining • Bioinformatics and bio-data analysis
  • 9. Ex.: Market Analysis and Management • Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, surveys … • Target marketing • Find clusters of “model” customers who share the same characteristics: interest, income level, spending habits, etc., • E.g. Most customers with income level 60k – 80k with food expenses $600 - $800 a month live in that area • Determine customer purchasing patterns over time • E.g. Customers who are between 20 and 29 years old, with income of 20k – 29k usually buy this type of CD player Data Mining: Concepts and Techniques 9
  • 10. Continued……. • Cross-market analysis—Find associations/co-relations between product sales, & predict based on such association • E.g. Customers who buy computer A usually buy software B • Customer requirement analysis • Identify the best products for different customers • Predict what factors will attract new customers • Fraud detection • Find outliers of unusual transactions
  • 12. KDD Process: Several Key Steps • Learning the application domain • relevant prior knowledge and goals of application • Identifying a target data set: data selection • Data processing • Data cleaning (remove noise and inconsistent data) • Data integration (multiple data sources maybe combined) • Data selection (data relevant to the analysis task are retrieved from database) • Data transformation (data transformed or consolidated into forms appropriate for mining) (Done with data preprocessing) • Data mining (an essential process where intelligent methods are applied to extract data patterns) • Pattern evaluation (indentify the truly interesting patterns) • Knowledge presentation (mined knowledge is presented to the user with visualization or representation techniques) • Use of discovered knowledge 12
  • 13. Data Mining and Business Intelligence 13 Increasing potential to support business decisions End User Business Analyst Data Analyst DBA Decision Making Data Presentation Visualization Techniques Data Mining Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems
  • 14. A typical DM System Architecture • Database, data warehouse, WWW or other information repository (store data) • Database or data warehouse server (fetch and combine data) • Knowledge base (turn data into meaningful groups according to domain knowledge) • Data mining engine (perform mining tasks) • Pattern evaluation module (find interesting patterns) • User interface (interact with the user)
  • 15. A typical DM System Architecture (2)
  • 16. Confluence of Multiple Disciplines 16 Data Mining Database Technology Statistics Information Science Other Disciplines Visualization Machine Learning • Not all “Data Mining System” performs true data mining  machine learning system, statistical analysis (small amount of data)  Database system (information retrieval, deductive querying…)
  • 17. 1.3 On What Kinds of Data? • Database-oriented data sets and applications • Relational database, data warehouse, transactional database • Advanced data sets and advanced applications • Object-Relational Databases • Temporal Databases, Sequence Databases, Time-Series databases • Spatial Databases and Spatiotemporal Databases • Text databases and Multimedia databases • Heterogeneous Databases and Legacy Databases • Data Streams • The World-Wide Web 17
  • 18. Relational Databases • DBMS – database management system, contains a collection of interrelated databases e.g. Faculty database, student database, publications database • Each database contains a collection of tables and functions to manage and access the data. e.g. student_bio, student_graduation, student_parking • Each table contains columns and rows, with columns as attributes of data and rows as records. • Tables can be used to represent the relationships between or among multiple tables.
  • 19. Relational Databases (2) – AllElectronics store
  • 20. Relational Databases (3) • With a relational query language, e.g. SQL, we will be able to find answers to questions such as: • How many items were sold last year? • Who has earned commissions higher than 10%? • What is the total sales of last month for Dell laptops? • When data mining is applied to relational databases, we can search for trends or data patterns. • Relational databases are one of the most commonly available and rich information repositories, and thus are a major data form in our study.
  • 21. Data Warehouses • A repository of information collected from multiple sources, stored under a unified schema, and that usually resides at a single site. • Constructed via a process of data cleaning, data integration, data transformation, data loading and periodic data refreshing.
  • 22. Data Warehouses (2) • Data are organized around major subjects, e.g. customer, item, supplier and activity. • Provide information from a historical perspective (e.g. from the past 5 – 10 years) • Typically summarized to a higher level (e.g. a summary of the transactions per item type for each store) • User can perform drill-down or roll-up operation to view the data at different degrees of summarization
  • 24. Transactional Databases • Consists of a file where each record represents a transaction • A transaction typically includes a unique transaction ID and a list of the items making up the transaction. • Either stored in a flat file or unfolded into relational tables • Easy to identify items that are frequently sold together Data Mining: Concepts and Techniques
  • 25. 1.4 Data Mining Functionalities - What kinds of patterns can be mined? • Concept/Class Description: Characterization and Discrimination • Data can be associated with classes or concepts. • E.g. classes of items – computers, printers, … concepts of customers – bigSpenders, budgetSpenders, … • How to describe these items or concepts? • Descriptions can be derived via • Data characterization – summarizing the general characteristics of a target class of data. • E.g. summarizing the characteristics of customers who spend more than $1,000 a year at AllElectronics. Result can be a general profile of the customers, such as 40 – 50 years old, employed, have excellent credit ratings. 25
  • 26. • Data discrimination – comparing the target class with one or a set of comparative classes • E.g. Compare the general features of software products whole sales increase by 10% in the last year with those whose sales decrease by 30% during the same period • Or both of the above • Mining Frequent Patterns, Associations and Correlations • Frequent itemset: a set of items that frequently appear together in a transactional data set (e.g. milk and bread) • Frequent subsequence: a pattern that customers tend to purchase product A, followed by a purchase of product B 26 Continued……………
  • 27. • Association Analysis: find frequent patterns • E.g. a sample analysis result – an association rule: buys(X, “computer”) => buys(X, “software”) [support = 1%, confidence = 50%] (if a customer buys a computer, there is a 50% chance that she will buy software. 1% of all of the transactions under analysis showed that computer and software are purchased together. ) • Associations rules are discarded as uninteresting if they do not satisfy both a minimum support threshold and a minimum confidence threshold. • Correlation Analysis: additional analysis to find statistical correlations between associated pairs Data Mining: Concepts and Techniques 27 Continued……………
  • 28. • Classification and Prediction • Classification • The process of finding a model that describes and distinguishes the data classes or concepts, for the purpose of being able to use the model to predict the class of objects whose class label is unknown. • The derived model is based on the analysis of a set of training data (data objects whose class label is known). • The model can be represented in classification (IF-THEN) rules, decision trees, neural networks, etc. • Prediction • Predict missing or unavailable numerical data values Data Mining: Concepts and Techniques 28 Continued……………
  • 30. Data Mining Functionalities (2) • Cluster Analysis • Class label is unknown: group data to form new classes • Clusters of objects are formed based on the principle of maximizing intra-class similarity & minimizing interclass similarity • E.g. Identify homogeneous subpopulations of customers. These clusters may represent individual target groups for marketing. 30
  • 31. Data Mining Functionalities (2) • Outlier Analysis • Data that do no comply with the general behavior or model. • Outliers are usually discarded as noise or exceptions. • Useful for fraud detection. • E.g. Detect purchases of extremely large amounts • Evolution Analysis • Describes and models regularities or trends for objects whose behavior changes over time. • E.g. Identify stock evolution regularities for overall stocks and for the stocks of particular companies. 31
  • 32. 1.5 Are All of the Patterns Interesting? • Data mining may generate thousands of patterns: Not all of them are interesting • A pattern is interesting if it is • easily understood by humans • valid on new or test data with some degree of certainty, • potentially useful • novel • validates some hypothesis that a user seeks to confirm • An interesting measure represents knowledge ! 32
  • 33. 1.5 Are All of the Patterns Interesting? • Objective measures • Based on statistics and structures of patterns, e.g., support, confidence, etc. (Rules that do not satisfy a threshold are considered uninteresting.) • Subjective measures • Reflect the needs and interests of a particular user. • E.g. A marketing manager is only interested in characteristics of customers who shop frequently. • Based on user’s belief in the data. • e.g., Patterns are interesting if they are unexpected, or can be used for strategic planning, etc • Objective and subjective measures need to be combined. 33
  • 34. 1.5 Are All of the Patterns Interesting? • Find all the interesting patterns: Completeness • Unrealistic and inefficient • User-provided constraints and interestingness measures should be used • Search for only interesting patterns: An optimization problem • Highly desirable • No need to search through the generated patterns to identify truly interesting ones. • Measures can be used to rank the discovered patterns according their interestingness. 34