SlideShare a Scribd company logo
POLAR COORDINATES &
VECTORS
rahimahj@ump.edu.my
rahimahj@ump.edu.my
Suppose that a particle moves along a curve C in the
xy-plane in such a way that its x and y coordinates, as
functions of times are
The variable t is called the parameter for the
equations.
)(tfx  )(tgy 
rahimahj@ump.edu.my
EXAMPLE 1
Solution:
Form the Cartesian equation by eliminate parameter t from the
following equations
tx 2 14 2
 ty
Given that , thus
Then
tx 2
2
x
t 
1
1
2
4
2
2








x
x
y
rahimahj@ump.edu.my
EXAMPLE 2
Solution:
Find the graph of the parametric equations
ttx  2
12  ty
We plug in some values of t .
Applied Calculus Chapter  1 polar coordinates and vector
rahimahj@ump.edu.my
EXAMPLE 13
Find the graph of the parametric equations
tx cos ty sin 20  t
rahimahj@ump.edu.my
x
y
z
Graph the following ordered triples:
a. (3, 4, 5)
b. (2, -5, -7)
EXAMPLE 1
Distance Formula in
3
R
The distance between and
is
21PP ),,( 1111 zyxP
),,( 2222 zyxP
2
12
2
12
2
1221 )()()( zzyyxxPP 
Find the distance between (10, 20, 10) and
(-12, 6, 12).
EXAMPLE 2
Vectors in
3
R
 A vector in R3 is a directed line segment (“an arrow”)
in space.
 Given:
-initial point
-terminal point
Then the vector PQ has the unique standard
component form
),,( 111 zyxP
),,( 222 zyxQ
 121212 ,, zzyyxxPQ
Standard Representation
of Vectors in the Space
 The unit vector:
points in the directions of the positive x-axis
points in the directions of the positive y-axis
points in the directions of the positive z-axis
 i, j and k are called standard basis vector in R3.
 Any vector PQ can be expressed as a linear combination of i, j and
k (standard representation of PQ)
with magnitude
 0,0,1i
 0,1,0j
 1,0,0k
kjiPQ )()()( 121212 zzyyxx 
2
12
2
12
2
12 )()()( zzyyxx PQ
Applied Calculus Chapter  1 polar coordinates and vector
Find the standard representation of the vector PQ
with initial point P(-1, 2, 2) and terminal point
Q(3, -2, 4).
EXAMPLE 3
rahimahj@ump.edu.my
(1) Circular
Cylinder
922
 zx
three.radiusofcircle
aisgraphtheplane-On thexz
rahimahj@ump.edu.my
(2) Ellipsoid
12
2
2
2
2
2

c
z
b
y
a
x
rahimahj@ump.edu.my
(3) Paraboloid
0c,2
2
2
2
 cz
b
y
a
x
rahimahj@ump.edu.my
(5) Cone
02
2
2
2
2
2

c
z
b
y
a
x
rahimahj@ump.edu.my
12
2
2
2
2
2

c
z
b
y
a
x
(3) Hyperboloid of One Sheet
rahimahj@ump.edu.my
(4) Hyperboloid of Two Sheets
12
2
2
2
2
2

c
z
b
y
a
x
rahimahj@ump.edu.my
0c,2
2
2
2
 cz
b
y
a
x
(7) Hyperbolic Paraboloid
rahimahj@ump.edu.my
22
222
22
2
)1(z(v)
1(iv)
16y(iii)
9z(ii)
1535(i)





yx
zyx
x
y
zy
EXAMPLE 29
Sketch the graph of the following equations in 3-dimensions.
Identify each of the surface.
rahimahj@ump.edu.my
Parametric Form of a
Line in
3
R
If L is a line that contains the point and
is parallel to the vector , then L has
parametric form
Conversely, the set of all points that satisfy
such a set of equations is a line that passes
through the point and is parallel to a
vector with direction numbers .
),,( 000 zyx
kjiv cba 
ctzzbtyyatxx  000
),,( zyx
),,( 000 zyx
],,[ cba
Find parametric equations for the line that
contains the point and is parallel to the
vector .
Find where this line passes through the
coordinate planes.
 1, 1, 2 
3 2 5  v i j k
EXAMPLE 18
Solution:
 
0 0 0
The direction numbers are 3, 2, 5 and
1, 1 and z 2, so the 1ine has the
parametric form
1 3 1 2 2 5
x y
x t y t z t

    
       
 
2
5
2 11 9 11 9
, ,
5 5 5 5 5
*This 1ine wi11 intersect the -p1ane when 0;
0 2 5 imp1ies
If , then and . This is the point 0 .
*This 1ine wi11 intersect the -p1ane when 0;
0 1 2 imp1ies
xy z
t t
t x y
xz y
t t
 

   
  

  
 
 
1
2
1 1 9 1 9
2 2 2 2 2
1
3
1 1 11 1 11
3 3 3 3 3
If , then and z . This is the point ,0, .
*This 1ine wi11 intersect the -p1ane when 0;
0 1 3 imp1ies
If , then and z . This is the point 0, , .
t x
yz x
t t
t y

    

    

  

  
  
…continue solution:
Applied Calculus Chapter  1 polar coordinates and vector
Applied Calculus Chapter  1 polar coordinates and vector
Symmetric Form of a Line in
3
R
If L is a line that contains the point and
is parallel to the vector
(A, B, and C are nonzero numbers), then the point
is on L if and only if its coordinates satisfy
kjiv cba 
),,( 000 zyx
),,( zyx
c
zz
b
yy
a
xx 000 




Find symmetric equations for the line L
through the points
and .
Find the point of intersection with the
xy-plane.
 2,4, 3A 
 3, 1,1B 
EXAMPLE 19
 
 
 
 0 0 0
The required 1ine passes through or and
is para11e1 to the vector
3 2, 1 4,1 3 1, 5,4 @ 5 4
Thus, the direction numbers are 1, 5,4 .
Let say we choose as , , .
2 4 3
Then,
1 5 4
The sy
A B
A x y z
x y z
         

  
 


AB i j k
4 3
mmetric equation is 2
5 4
y z
x
 
  
Solution:
 11 1
, ,
4 4
This 1ine wi11 intersect the -p1ane when 0;
3 4 3
2 and
4 5 4
11 1
4 4
The point of intersection of the 1ine with the -p1ane is 0 .
xy z
y
x
x y
xy


  
 
…continue solution:
3
R
 
1. Find the parametric and symmetric equations for the
point 1,0, 1 which is para11e1 to 3 4 .
2. Find the points of intersection of the 1ine
4 3
2 with each of the coordinate p1anes
4 3
x y
z
 
 
  
i j
.
3. Find two unit vectors para11e1 to the 1ine
1 2
5
2 4
x y
z
 
  
Line may Intersect, Parallel or Skew…
 Recall two lines in R2 must intersect if their slopes are
different (cannot be parallel)
 However, two lines in R3 may have different direction
number and still not intersect. In this case, the lines are
said to be skew.
In problems below, tell whether the two lines are
intersect, parallel, or skew . If they intersect, give the
point of intersection.
3 3 , 1 4 , 4 7 ;
2 3 , 5 4 , 3 7
x t y t z t
x t y t z t
      
     
1
2 4 , 1 , 5 ;
2
3 , 2 , 4 2
x t y t z t
x t y t z t
     
     
3 1 4 2 3 2
;
2 1 1 3 1 1
x y z x y z     
   
 
EXAMPLE 20
)(a
)(b
)(c
 
 
 
1 2
1
2
3 1 4 2 5 3
1. Let : and :
3 4 7 3 4 7
has direction numbers 3, 4, 7
and has direction numbers 3, 4, 7 .
Since both 1ines have same direction numbers
(or 3, 4, 7 = 3
x y z x y z
L L
L
L
t
     
   
   
 
 
   
   
 
1 2
, 4, 7 , where 1),
therefore they are para11e1 or coincide.
Obvious1y, has point 3,1, 4 and has point 2,5,3 .
4 7 , with the direction numbers 1,4,7 .
Because there is no ' ' for w
t
L A L B
a
  

    AB i j k
   hich 1,4,7 3, 4, 7 ,
the 1ines are not coincide, but just para11e1.
a   
Solution:
 
 
   
1
2
1 2
1
2
2 1 2 4
2. Let : and :
4 1 5 3 1 2
has direction numbers 4,1,5
and has direction numbers 3, 1, 2 .
Since there is no for which 4,1,5 3, 1, 2 ,
the 1ines are not pa
zx y x y z
L L
L
L
t t
   
   
  

 
   
1
1 1 1 12
2 2 2 2
ra11e1 or coincide, maybe skew or intersect.
Express the 1ines in parametric form
: 2 4 , 1 , 5 ;
: 3 , 2 , 4 2
L x t y t z t
L x t y t z t
     
     
Solution:
1 2 1 2
1 2 1 2
1 7
1 2 1 22 2
1 2
Continue : 2
At an intersection point we must have
2 4 3 4 3 2
1 2 3
5 4 2 5 2
So1ving the first two equations simu1taneous1y,
11 and 14 and since the so1ution is
t t t t
t t t t
t t t t
t t
    
       
     
   not
satisfy the third equation, so the 1ines are skew.
…continue solution:
 
 
   
1 2
1
2
3 1 4 2 3 2
3. Let : and :
2 1 1 3 1 1
has direction numbers 2, 1,1
and has direction numbers 3, 1,1 .
Since there is no for which 2, 1,1 3, 1,1 ,
the 1ines are not para
x y z x y z
L L
L
L
t t
     
   
 


  
1 1 1 1
2 2 2 2
11e1 or coincide, maybe skew or intersect.
Express the 1ines in parametric form
: 3 2 , 1 , 4 ;
: 2 3 , 3 , 2
L x t y t z t
L x t y t z t
     
      
Solution:
1 2
1 2 1 2
1 2
Continue : 3
At an intersection point we must have
3 2 2 3
1 3 1 and 1
4 2
Satisfy a11 of the equation,
then these two 1ines are intersect to each other.
The point of intersectio
t t
t t t t
t t
    

     
   
 
 
 
 
1
1 2 2 2
1
n is
3 2 3 2 1 1
1 1 1 2 or 2 3 , 3 , 2
4 4 1 3
1,2,3
x t
y t x t y t z t
z t
      

            

      

…continue solution:
CLASS ACTIVITY 2 :
In problems below, tell whether the two lines are
intersect, parallel, or skew. If they intersect, give
the point of intersection.
1.
2.
3.
6 , 1 9 , 3 ;
1 2 , 4 3 ,
x t y t z t
x t y t z t
     
    
1 2 , 3 , 2 ;
1 , 4 , 1 3
x t y t z t
x t y t z t
    
      
1 2 3 2 1
;
2 3 4 3 2
y z x y z
x
    
   
 
REMEMBERTHAT…
Theorem:The orthogonal vector theorem
Nonzero vectors v and n are orthogonal
(or perpendicular) if and only if
where n is called the normal vector.
0nv
 
 
     
0 0 0
0 0
Let say, we have a p1ane containing point , , and
is orthogona1 (norma1) to the vector
So1ution:
If we have another any point , , in the p1ane, then
0
Q x y z
A B C
P x y z
Ai Bj Ck x x y y z
  

       
N i j k
N.QP
N.QP . i j   
     
     
 
0
0 0 0
0 0 0
0 0 0 0 0 0
0 @
0, as ,
Then 0
z
A x x B y y C z z
A x x B y y C z z
Ax By Cz Ax By Cz D Ax By Cz
Ax By Cz D
     
     
          
   
k
An equation for the plane with normal
that contains the point has the following forms:
Point-normal form:
Standard form:
Conversely, a normal vector to the plane
is
A B C  N i j k
 0 0 0, ,x y z
     0 0 0 0A x x B y y C z z     
0Ax By Cz D   
0Ax By Cz D   
A B C  N i j k
Find an equation for the plane that contains
the point P and has the normal vector N
given in:
1.
2.
 1,3,5 ; 2 4 3P    N i j k
 1,1, 1 ; 2 3P     N i j k
EXAMPLE 21
Point-Normal form
Standard form
 1,3,5 ; 2 4 3P    N i j k
     2 1 4 3 3 5 0x y z     
     2 1 4 3 3 5 0
2 2 4 12 3 15 0
2 4 3 5 0
x y z
x y z
x y z
     
     
   
1.
Solution :
REMEMBERTHAT..
Theorem: Orthogonality Property ofThe
Cross Product
If v and w are nonzero vectors in that are not
multiples of one another, then v x w is
orthogonal to both v and w
3
R
wvn 
Find the standard form equation of a
plane containing
and
   1,2,1 , 0, 3,2 ,P Q 
 1,1, 4R 
EXAMPLE 22
 0 0 0
Hint :
What we need?
?
Point , , ?x y z
N  N PQ PR
Since, a11 point , and
are points in the p1ane,
so just pick one of them !!
P Q R
 
0 0 0
0 0 0
Hint :
Equation for 1ine; , , ,
so, obvious1y, you just have to find
the va1ue of , and .
and , ,
x x At y y Bt z z Ct
A B C
x y z
     
EXAMPLE 23
Find an equation of the line that passes through the point
Q(2,-1,3) and is orthogonal to the plane 3x-7y+5z+55=0
N = Ai + Bj + Ck
(2, -1, 3)
Applied Calculus Chapter  1 polar coordinates and vector
 
 
1. Find an equation for the p1ane that contains the
point 2,1, 1 and is orthogona1 to the 1ine
3 1
.
3 5 2
2. Find a p1ane that passes through the point 1,2, 1
and is para11e1 to the p1ane 2 3 1.
3. Sh
x y z
x y z

 
 

  
1 1 2
ow that the 1ine
2 3 4
is para11e1 to the p1ane 2 6.
x y z
x y z
  
 
  
 Find the equation of a 1ine passing through 1,2,3
that is para11e1 to the 1ine of intersection of the p1anes
3 2 4 and 2 3 5.x y z x y z

     
Equation of a Line Parallel toThe
Intersection ofTwo Given Planes
EXAMPLE 24
Find the standard-form equation of the p1ane
determined by the intersecting 1ines.
2 5 1 1 16
and
3 2 4 2 1 5
x y z x y z    
   
 
Equation of a Plane Containing
Two Intersecting Lines
EXAMPLE 25
Find the point at which the 1ine with parametric
equations 2 3 , 4 , 5 intersects the
p1ane 4 5 2 18
x t y t z t
x y z
     
  
Point where a Line intersects with
a Plane.
EXAMPLE 26
INTERSECTING PLANE
The acute angle
between the planes :
21
21
cos
nn
nn 

EXAMPLE 27
Find the acute angle of intersection between the
planes 4326and6442  zyxzyx
DISTANCE PROBLEMS INVOLVING
PLANES
The distance D between a point and the
plane is
 0000 ,, zyxP
0 dczbyax
222
000
cba
dczbyax
D



Applied Calculus Chapter  1 polar coordinates and vector
EXAMPLE 28
Find the distance D between the point (1,-4,-3) and the plane
1632  zyx
A polar coordinate system consists of :
A fix point O, called the pole or origin
Polar coordinates where
r : distance from P to the origin
: angle from the polar axis to the ray OP
),( r

),( rP
Polar axisOrigin
O 
rahimahj@ump.edu.my 596
I
sin
cos
tan
II
sin
tan
III
cos
IV
THETRIGONOMETRIC RATIOS
rahimahj@ump.edu.my 607
For any angle θ;
A
CT
S
θ
θ
+ve
-ve
 
 
  


tantan
coscos
sinsin



THETRIGONOMETRIC RATIOS
rahimahj@ump.edu.my 618
Trigonometrical ratios of some special angles;
A
1
2
O
B
30°
60°
3
B
A
1
1
O
45°
45°
2
THETRIGONOMETRIC RATIOS
1/ 2 1/ 2 3 / 2
3 / 2 1/ 2 1/ 2
1/ 3 3
θ 30° 45° 60°
sin θ 0 1
cos θ 1 0
tan θ 0 1 undefined
0 90
rahimahj@ump.edu.my
EXAMPLE 4
Plot the points with the following polar coordinates
 0
225,3)(a 






3
,2)(

b
Solution:
(a)
0
225
 0
225,3P
x
O
)(b







3
,2

P
xO
3


Relationship between Polar and
Rectangular Coordinates
O
x
y P
sinry 
cosrx 
r

cosrx  sinry 
x
y
yxr  tan222
Change the polar coordinates to Cartesian coordinates.





3
,2

 3,1isscoordinateCartesianThe
3
3
sin2sin
1
3
cos2cos
then,
3
and2Since










ry
rx
r
EXAMPLE 5
Solution:
rahimahj@ump.edu.my
EXAMPLE 6
Find the rectangular coordinates of the point P whose
polar coordinates are   






3
2
,4,

r
Solution:
2
2
1
4
3
2
cos4 





 x
32
2
3
4
3
2
sin4 







 y
Thus, the rectangular coordinates of P are    32,2, yx
Change the coordinates Cartesian to polar coordinates. 1,1 
   
















4
7
,2and
4
,2arescoordinatepolarpossibleThe
4
7
or
4
,1tan
211
thenpositive,betochooseweIf
2222




x
y
yxr
r
 1,1 
x
y
EXAMPLE 7
rahimahj@ump.edu.my
EXAMPLE 8
Find polar coordinates of the point P whose rectangular
coordinates are  4,3 
Solution:
   
5or5Thus
2543
22222


rr
yxr
Then,
3
4
3
4
tan 



x
y

Therefore, 000
13.23313.53180 
Symmetry Tests
SYMMETRIC CONDITIONS
about the x axis
about the y axis
about the origin
 ,r  ,r
   ,r
 ,r   ,r
  ,r
 ,r   ,r
 ,r


),( r
),( r

 
),( r
),(  r
 0
Symmetry with respect to x axis
Symmetry with respect to y axis

),( r
),( r
Symmetry with respect to the
origin
(c)Given that . Determine the symmetry of the
polar equation and then sketch the graph.
sin33r
(d) Test and sketch the curve for symmetry.2sinr
(a) What curve represented by the polar equation 5r
(b) Given that . Determine the symmetry of the
polar equation and then sketch the graph.
cos2r
EXAMPLE 9
2cosr
(a) Find the area enclosed by one loop of four petals 2cosr
(b) Find the area of the region that lies inside the circle
and outside the cardioid
sin3r
sin1r
drA
b
a
 2
2
1
:
8
Answer

:Answer 
EXAMPLE 10
rahimahj@ump.edu.my
TANGENT LINES TO PARAMETRIC CURVES
dt
dx
dt
dy
dx
dy

If 0and0 
dt
dx
dt
dy Horizontal
If 0and0 
dt
dx
dt
dy Infinite slope
Vertical
If 0and0 
dt
dx
dt
dy Singular points
rahimahj@ump.edu.my
EXAMPLE 14
(a) Find the slope of the tangent line to the unit circle
at the point where
(b) In a disastrous first flight, an experimental paper airplane
follows the trajectory of the particle as
but crashes into a wall at time t = 10.
i) At what times was the airplane flying horizontally?
ii) At what times was it flying vertically?
tx cos ty sin
3

t
ttx sin3 ty cos34
ARC LENGTH OF PARAMETRIC CURVES
 












b
a
dt
dt
dy
dt
dx
L
22
EXAMPLE 15
Find the exact arc length of the curve over the stated interval
2
tx 
3
3
1
ty  10  t)(a
tx 3cos ty 3sin  t0)(b
rahimahj@ump.edu.my
Consider the parametric equations,
a) Sketch the graph.
b) By eliminating t, find the Cartesian equation.
12
3
9, for 3 2x t y t t     
2
R
EXAMPLE 16
12
3
9, for 3 2x t y t t     
2
9 9x y 
)(a
Solution:
)(b
 
 
Sketch the graph of 2 4 , 1 5 ,3
So1ution:
In this form we can see that 2 4 , 1 5 , 3
Notice that this is nothing more than a 1ine, with
a point 2, 1,3 and a vector para11e1 is 4,5,1 .
F t t t t
x t y t z t
    
      
  v
Graph in 3
REXAMPLE 17
Applied Calculus Chapter  1 polar coordinates and vector
rahimahj@ump.edu.my
sCoordinatePolarlCylindrica
cosrx 
sinry 
22
yxr 






 
x
y1
tan
 r0
 20 
 z
rahimahj@ump.edu.my
sCoordinatePolarSpherical
rahimahj@ump.edu.my
Figure 11.8.3 (p. 833)
Figure 11.8.4 (p. 833)
Table 11.8.1 (p. 833)
Table 11.8.2 (p. 835)
rahimahj@ump.edu.my
EXAMPLE 30
(a) Convert from rectangular to cylindrical coordinates
(i) (-5,5,6) (ii) (0,2,0)
(b) Convert from cylindrical to rectangular coordinates
(c) Convert from spherical to rectangular coordinates
(d) Convert from spherical to cylindrical coordinates
 9,7(ii)3,
6
,4)( ,πi 




 












4
,
6
5(ii)
2
,0,7)(
 π
,i
  





3
2
,
4
5(ii)0,0,3)(
π
,i
rahimahj@ump.edu.my
Success = 90% Perspiration + 10% Inspiration

More Related Content

What's hot (20)

PPTX
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Sukhvinder Singh
 
PPTX
application of complex numbers
Kaustubh Garud
 
PPT
systems of linear equations & matrices
Student
 
PPTX
Vector Space.pptx
Dr Ashok Tiwari
 
PPTX
Equation of second degree
M M ALAMGIR HOSSAIN
 
PPTX
Power series
Pranav Veerani
 
PDF
Solution to linear equhgations
Robin Singh
 
PPTX
Linear transformation and application
shreyansp
 
PPTX
4.3 Determinants and Cramer's Rule
hisema01
 
PDF
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chaimae Baroudi
 
PPTX
Ecuaciones de segundogrado incompletas
María Pizarro
 
PPT
Differential geometry three dimensional space
Solo Hermelin
 
PPTX
Matrix transformation
mstf mstf
 
PPTX
Sequences and Series
sujathavvv
 
PPT
Linear transformation.ppt
Raj Parekh
 
PPTX
Analytic geometry lecture2
admercano101
 
PPTX
Trapezoidal rule
Dr. Jennifer Chang Wathall
 
PPT
Properties of straight lines
Dalubhasaan ng Lungsod ng Lucena
 
PDF
Chapter 4 solving systems of nonlinear equations
ssuser53ee01
 
PPT
1.5 - equations of circles.ppt
JustineFernandezBuen
 
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Sukhvinder Singh
 
application of complex numbers
Kaustubh Garud
 
systems of linear equations & matrices
Student
 
Vector Space.pptx
Dr Ashok Tiwari
 
Equation of second degree
M M ALAMGIR HOSSAIN
 
Power series
Pranav Veerani
 
Solution to linear equhgations
Robin Singh
 
Linear transformation and application
shreyansp
 
4.3 Determinants and Cramer's Rule
hisema01
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chaimae Baroudi
 
Ecuaciones de segundogrado incompletas
María Pizarro
 
Differential geometry three dimensional space
Solo Hermelin
 
Matrix transformation
mstf mstf
 
Sequences and Series
sujathavvv
 
Linear transformation.ppt
Raj Parekh
 
Analytic geometry lecture2
admercano101
 
Trapezoidal rule
Dr. Jennifer Chang Wathall
 
Properties of straight lines
Dalubhasaan ng Lungsod ng Lucena
 
Chapter 4 solving systems of nonlinear equations
ssuser53ee01
 
1.5 - equations of circles.ppt
JustineFernandezBuen
 

Viewers also liked (10)

PPTX
Conic Sections by Narayana Dash
narayana dash
 
PPTX
Multiple integral(tripple integral)
jigar sable
 
DOCX
Appearance
patrickkayebula
 
DOCX
Certificates of appearance, to print
Joyce Arce
 
DOCX
Certificate of appearance
blits_20
 
PDF
Chapter 2
hashim4941
 
PPT
1574 multiple integral
Dr Fereidoun Dejahang
 
DOC
Certification del carmen
Ij Gesta
 
PPT
Dobule and triple integral
sonendra Gupta
 
PPTX
Multiple ppt
Manish Mor
 
Conic Sections by Narayana Dash
narayana dash
 
Multiple integral(tripple integral)
jigar sable
 
Appearance
patrickkayebula
 
Certificates of appearance, to print
Joyce Arce
 
Certificate of appearance
blits_20
 
Chapter 2
hashim4941
 
1574 multiple integral
Dr Fereidoun Dejahang
 
Certification del carmen
Ij Gesta
 
Dobule and triple integral
sonendra Gupta
 
Multiple ppt
Manish Mor
 
Ad

Similar to Applied Calculus Chapter 1 polar coordinates and vector (20)

PDF
chapter1_part2.pdf
AliEb2
 
PPT
1539 graphs linear equations and functions
Dr Fereidoun Dejahang
 
PPT
7.5 lines and_planes_in_space
Mahbub Alwathoni
 
PPT
1525 equations of lines in space
Dr Fereidoun Dejahang
 
PPTX
Aieee mathematics- 2010
Vasista Vinuthan
 
PDF
C1 g9-s1-t7-1
Al Muktadir Hussain
 
PDF
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
alproelearning
 
PDF
Class 10 mathematics compendium
APEX INSTITUTE
 
PPT
Math project
jamian_loverz
 
PPTX
IIT JEE - 2008 ii- mathematics
Vasista Vinuthan
 
PPT
Analytic Geometry Period 1
ingroy
 
PPTX
Straight Lines for JEE REVISION Power point presentation
iNLUVWDu
 
PPTX
Lesson 9: Linear Relations and Lines
Kevin Johnson
 
PDF
SP_1_Maths.pdf for thent class jee @neet
iraeducation23
 
DOCX
Week1-3.docxjdjdjhdjsjdudjdjdjdjjdjdjdjjdjr
sendileep559
 
PDF
Coordinate geometry
Carl Davis
 
PPT
illustrate and determine the linear equations.ppt
landoyjennilyn
 
PDF
Nbhm m. a. and m.sc. scholarship test 2011
MD Kutubuddin Sardar
 
PPTX
Linear equation in 2 variables
avb public school
 
PPTX
CoordinateGeometry.ppt.pptx
AaryanLal
 
chapter1_part2.pdf
AliEb2
 
1539 graphs linear equations and functions
Dr Fereidoun Dejahang
 
7.5 lines and_planes_in_space
Mahbub Alwathoni
 
1525 equations of lines in space
Dr Fereidoun Dejahang
 
Aieee mathematics- 2010
Vasista Vinuthan
 
C1 g9-s1-t7-1
Al Muktadir Hussain
 
5.vector geometry Further Mathematics Zimbabwe Zimsec Cambridge
alproelearning
 
Class 10 mathematics compendium
APEX INSTITUTE
 
Math project
jamian_loverz
 
IIT JEE - 2008 ii- mathematics
Vasista Vinuthan
 
Analytic Geometry Period 1
ingroy
 
Straight Lines for JEE REVISION Power point presentation
iNLUVWDu
 
Lesson 9: Linear Relations and Lines
Kevin Johnson
 
SP_1_Maths.pdf for thent class jee @neet
iraeducation23
 
Week1-3.docxjdjdjhdjsjdudjdjdjdjjdjdjdjjdjr
sendileep559
 
Coordinate geometry
Carl Davis
 
illustrate and determine the linear equations.ppt
landoyjennilyn
 
Nbhm m. a. and m.sc. scholarship test 2011
MD Kutubuddin Sardar
 
Linear equation in 2 variables
avb public school
 
CoordinateGeometry.ppt.pptx
AaryanLal
 
Ad

More from J C (15)

PDF
Testing of hardened concrete
J C
 
PDF
Special concrete not made using portland cement
J C
 
PDF
Shrinkage and creep
J C
 
PDF
Polymer modified concrete 1
J C
 
PDF
No fines concrete
J C
 
PDF
Lightweight aggregate concrete
J C
 
PDF
High workability concrete
J C
 
PDF
Chemical attack
J C
 
PDF
Carbonation
J C
 
PDF
Alkali aggregate reaction
J C
 
PDF
Aerated concrete
J C
 
PPTX
Applied Calculus Chapter 4 multiple integrals
J C
 
PPTX
Applied Calculus Chapter 3 partial derivatives
J C
 
PPTX
Applied Calculus Chapter 2 vector valued function
J C
 
PPTX
Glass( Civil Engineering Material)
J C
 
Testing of hardened concrete
J C
 
Special concrete not made using portland cement
J C
 
Shrinkage and creep
J C
 
Polymer modified concrete 1
J C
 
No fines concrete
J C
 
Lightweight aggregate concrete
J C
 
High workability concrete
J C
 
Chemical attack
J C
 
Carbonation
J C
 
Alkali aggregate reaction
J C
 
Aerated concrete
J C
 
Applied Calculus Chapter 4 multiple integrals
J C
 
Applied Calculus Chapter 3 partial derivatives
J C
 
Applied Calculus Chapter 2 vector valued function
J C
 
Glass( Civil Engineering Material)
J C
 

Recently uploaded (20)

PPTX
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
PPTX
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
PPTX
Unlock the Power of Cursor AI: MuleSoft Integrations
Veera Pallapu
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PPTX
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
PDF
Tips for Writing the Research Title with Examples
Thelma Villaflores
 
PDF
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
PPTX
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
PPTX
Cybersecurity: How to Protect your Digital World from Hackers
vaidikpanda4
 
PDF
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PPTX
ENGLISH 8 WEEK 3 Q1 - Analyzing the linguistic, historical, andor biographica...
OliverOllet
 
PPTX
Digital Professionalism and Interpersonal Competence
rutvikgediya1
 
DOCX
pgdei-UNIT -V Neurological Disorders & developmental disabilities
JELLA VISHNU DURGA PRASAD
 
PPTX
Translation_ Definition, Scope & Historical Development.pptx
DhatriParmar
 
PPTX
I INCLUDED THIS TOPIC IS INTELLIGENCE DEFINITION, MEANING, INDIVIDUAL DIFFERE...
parmarjuli1412
 
PPTX
Introduction to Probability(basic) .pptx
purohitanuj034
 
PDF
John Keats introduction and list of his important works
vatsalacpr
 
PPTX
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
PPTX
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
Unlock the Power of Cursor AI: MuleSoft Integrations
Veera Pallapu
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
Tips for Writing the Research Title with Examples
Thelma Villaflores
 
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
Cybersecurity: How to Protect your Digital World from Hackers
vaidikpanda4
 
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
ENGLISH 8 WEEK 3 Q1 - Analyzing the linguistic, historical, andor biographica...
OliverOllet
 
Digital Professionalism and Interpersonal Competence
rutvikgediya1
 
pgdei-UNIT -V Neurological Disorders & developmental disabilities
JELLA VISHNU DURGA PRASAD
 
Translation_ Definition, Scope & Historical Development.pptx
DhatriParmar
 
I INCLUDED THIS TOPIC IS INTELLIGENCE DEFINITION, MEANING, INDIVIDUAL DIFFERE...
parmarjuli1412
 
Introduction to Probability(basic) .pptx
purohitanuj034
 
John Keats introduction and list of his important works
vatsalacpr
 
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
Python-Application-in-Drug-Design by R D Jawarkar.pptx
Rahul Jawarkar
 

Applied Calculus Chapter 1 polar coordinates and vector

  • 2. [email protected] Suppose that a particle moves along a curve C in the xy-plane in such a way that its x and y coordinates, as functions of times are The variable t is called the parameter for the equations. )(tfx  )(tgy 
  • 3. [email protected] EXAMPLE 1 Solution: Form the Cartesian equation by eliminate parameter t from the following equations tx 2 14 2  ty Given that , thus Then tx 2 2 x t  1 1 2 4 2 2         x x y
  • 4. [email protected] EXAMPLE 2 Solution: Find the graph of the parametric equations ttx  2 12  ty We plug in some values of t .
  • 6. [email protected] EXAMPLE 13 Find the graph of the parametric equations tx cos ty sin 20  t
  • 8. Graph the following ordered triples: a. (3, 4, 5) b. (2, -5, -7) EXAMPLE 1
  • 9. Distance Formula in 3 R The distance between and is 21PP ),,( 1111 zyxP ),,( 2222 zyxP 2 12 2 12 2 1221 )()()( zzyyxxPP  Find the distance between (10, 20, 10) and (-12, 6, 12). EXAMPLE 2
  • 10. Vectors in 3 R  A vector in R3 is a directed line segment (“an arrow”) in space.  Given: -initial point -terminal point Then the vector PQ has the unique standard component form ),,( 111 zyxP ),,( 222 zyxQ  121212 ,, zzyyxxPQ
  • 11. Standard Representation of Vectors in the Space  The unit vector: points in the directions of the positive x-axis points in the directions of the positive y-axis points in the directions of the positive z-axis  i, j and k are called standard basis vector in R3.  Any vector PQ can be expressed as a linear combination of i, j and k (standard representation of PQ) with magnitude  0,0,1i  0,1,0j  1,0,0k kjiPQ )()()( 121212 zzyyxx  2 12 2 12 2 12 )()()( zzyyxx PQ
  • 13. Find the standard representation of the vector PQ with initial point P(-1, 2, 2) and terminal point Q(3, -2, 4). EXAMPLE 3
  • 19. [email protected] (4) Hyperboloid of Two Sheets 12 2 2 2 2 2  c z b y a x
  • 22. [email protected] Parametric Form of a Line in 3 R If L is a line that contains the point and is parallel to the vector , then L has parametric form Conversely, the set of all points that satisfy such a set of equations is a line that passes through the point and is parallel to a vector with direction numbers . ),,( 000 zyx kjiv cba  ctzzbtyyatxx  000 ),,( zyx ),,( 000 zyx ],,[ cba
  • 23. Find parametric equations for the line that contains the point and is parallel to the vector . Find where this line passes through the coordinate planes.  1, 1, 2  3 2 5  v i j k EXAMPLE 18 Solution:   0 0 0 The direction numbers are 3, 2, 5 and 1, 1 and z 2, so the 1ine has the parametric form 1 3 1 2 2 5 x y x t y t z t              
  • 24.   2 5 2 11 9 11 9 , , 5 5 5 5 5 *This 1ine wi11 intersect the -p1ane when 0; 0 2 5 imp1ies If , then and . This is the point 0 . *This 1ine wi11 intersect the -p1ane when 0; 0 1 2 imp1ies xy z t t t x y xz y t t                   1 2 1 1 9 1 9 2 2 2 2 2 1 3 1 1 11 1 11 3 3 3 3 3 If , then and z . This is the point ,0, . *This 1ine wi11 intersect the -p1ane when 0; 0 1 3 imp1ies If , then and z . This is the point 0, , . t x yz x t t t y                        …continue solution:
  • 27. Symmetric Form of a Line in 3 R If L is a line that contains the point and is parallel to the vector (A, B, and C are nonzero numbers), then the point is on L if and only if its coordinates satisfy kjiv cba  ),,( 000 zyx ),,( zyx c zz b yy a xx 000     
  • 28. Find symmetric equations for the line L through the points and . Find the point of intersection with the xy-plane.  2,4, 3A   3, 1,1B  EXAMPLE 19
  • 29.        0 0 0 The required 1ine passes through or and is para11e1 to the vector 3 2, 1 4,1 3 1, 5,4 @ 5 4 Thus, the direction numbers are 1, 5,4 . Let say we choose as , , . 2 4 3 Then, 1 5 4 The sy A B A x y z x y z                   AB i j k 4 3 mmetric equation is 2 5 4 y z x      Solution:
  • 30.  11 1 , , 4 4 This 1ine wi11 intersect the -p1ane when 0; 3 4 3 2 and 4 5 4 11 1 4 4 The point of intersection of the 1ine with the -p1ane is 0 . xy z y x x y xy        …continue solution:
  • 31. 3 R   1. Find the parametric and symmetric equations for the point 1,0, 1 which is para11e1 to 3 4 . 2. Find the points of intersection of the 1ine 4 3 2 with each of the coordinate p1anes 4 3 x y z        i j . 3. Find two unit vectors para11e1 to the 1ine 1 2 5 2 4 x y z     
  • 32. Line may Intersect, Parallel or Skew…  Recall two lines in R2 must intersect if their slopes are different (cannot be parallel)  However, two lines in R3 may have different direction number and still not intersect. In this case, the lines are said to be skew.
  • 33. In problems below, tell whether the two lines are intersect, parallel, or skew . If they intersect, give the point of intersection. 3 3 , 1 4 , 4 7 ; 2 3 , 5 4 , 3 7 x t y t z t x t y t z t              1 2 4 , 1 , 5 ; 2 3 , 2 , 4 2 x t y t z t x t y t z t             3 1 4 2 3 2 ; 2 1 1 3 1 1 x y z x y z            EXAMPLE 20 )(a )(b )(c
  • 34.       1 2 1 2 3 1 4 2 5 3 1. Let : and : 3 4 7 3 4 7 has direction numbers 3, 4, 7 and has direction numbers 3, 4, 7 . Since both 1ines have same direction numbers (or 3, 4, 7 = 3 x y z x y z L L L L t                             1 2 , 4, 7 , where 1), therefore they are para11e1 or coincide. Obvious1y, has point 3,1, 4 and has point 2,5,3 . 4 7 , with the direction numbers 1,4,7 . Because there is no ' ' for w t L A L B a         AB i j k    hich 1,4,7 3, 4, 7 , the 1ines are not coincide, but just para11e1. a    Solution:
  • 35.         1 2 1 2 1 2 2 1 2 4 2. Let : and : 4 1 5 3 1 2 has direction numbers 4,1,5 and has direction numbers 3, 1, 2 . Since there is no for which 4,1,5 3, 1, 2 , the 1ines are not pa zx y x y z L L L L t t                   1 1 1 1 12 2 2 2 2 ra11e1 or coincide, maybe skew or intersect. Express the 1ines in parametric form : 2 4 , 1 , 5 ; : 3 , 2 , 4 2 L x t y t z t L x t y t z t             Solution:
  • 36. 1 2 1 2 1 2 1 2 1 7 1 2 1 22 2 1 2 Continue : 2 At an intersection point we must have 2 4 3 4 3 2 1 2 3 5 4 2 5 2 So1ving the first two equations simu1taneous1y, 11 and 14 and since the so1ution is t t t t t t t t t t t t t t                       not satisfy the third equation, so the 1ines are skew. …continue solution:
  • 37.         1 2 1 2 3 1 4 2 3 2 3. Let : and : 2 1 1 3 1 1 has direction numbers 2, 1,1 and has direction numbers 3, 1,1 . Since there is no for which 2, 1,1 3, 1,1 , the 1ines are not para x y z x y z L L L L t t                  1 1 1 1 2 2 2 2 11e1 or coincide, maybe skew or intersect. Express the 1ines in parametric form : 3 2 , 1 , 4 ; : 2 3 , 3 , 2 L x t y t z t L x t y t z t              Solution:
  • 38. 1 2 1 2 1 2 1 2 Continue : 3 At an intersection point we must have 3 2 2 3 1 3 1 and 1 4 2 Satisfy a11 of the equation, then these two 1ines are intersect to each other. The point of intersectio t t t t t t t t                         1 1 2 2 2 1 n is 3 2 3 2 1 1 1 1 1 2 or 2 3 , 3 , 2 4 4 1 3 1,2,3 x t y t x t y t z t z t                               …continue solution:
  • 39. CLASS ACTIVITY 2 : In problems below, tell whether the two lines are intersect, parallel, or skew. If they intersect, give the point of intersection. 1. 2. 3. 6 , 1 9 , 3 ; 1 2 , 4 3 , x t y t z t x t y t z t            1 2 , 3 , 2 ; 1 , 4 , 1 3 x t y t z t x t y t z t             1 2 3 2 1 ; 2 3 4 3 2 y z x y z x           
  • 40. REMEMBERTHAT… Theorem:The orthogonal vector theorem Nonzero vectors v and n are orthogonal (or perpendicular) if and only if where n is called the normal vector. 0nv
  • 41.           0 0 0 0 0 Let say, we have a p1ane containing point , , and is orthogona1 (norma1) to the vector So1ution: If we have another any point , , in the p1ane, then 0 Q x y z A B C P x y z Ai Bj Ck x x y y z             N i j k N.QP N.QP . i j                  0 0 0 0 0 0 0 0 0 0 0 0 0 0 @ 0, as , Then 0 z A x x B y y C z z A x x B y y C z z Ax By Cz Ax By Cz D Ax By Cz Ax By Cz D                            k
  • 42. An equation for the plane with normal that contains the point has the following forms: Point-normal form: Standard form: Conversely, a normal vector to the plane is A B C  N i j k  0 0 0, ,x y z      0 0 0 0A x x B y y C z z      0Ax By Cz D    0Ax By Cz D    A B C  N i j k
  • 43. Find an equation for the plane that contains the point P and has the normal vector N given in: 1. 2.  1,3,5 ; 2 4 3P    N i j k  1,1, 1 ; 2 3P     N i j k EXAMPLE 21
  • 44. Point-Normal form Standard form  1,3,5 ; 2 4 3P    N i j k      2 1 4 3 3 5 0x y z           2 1 4 3 3 5 0 2 2 4 12 3 15 0 2 4 3 5 0 x y z x y z x y z                 1. Solution :
  • 45. REMEMBERTHAT.. Theorem: Orthogonality Property ofThe Cross Product If v and w are nonzero vectors in that are not multiples of one another, then v x w is orthogonal to both v and w 3 R wvn 
  • 46. Find the standard form equation of a plane containing and    1,2,1 , 0, 3,2 ,P Q   1,1, 4R  EXAMPLE 22
  • 47.  0 0 0 Hint : What we need? ? Point , , ?x y z N  N PQ PR Since, a11 point , and are points in the p1ane, so just pick one of them !! P Q R
  • 48.   0 0 0 0 0 0 Hint : Equation for 1ine; , , , so, obvious1y, you just have to find the va1ue of , and . and , , x x At y y Bt z z Ct A B C x y z       EXAMPLE 23 Find an equation of the line that passes through the point Q(2,-1,3) and is orthogonal to the plane 3x-7y+5z+55=0 N = Ai + Bj + Ck (2, -1, 3)
  • 50.     1. Find an equation for the p1ane that contains the point 2,1, 1 and is orthogona1 to the 1ine 3 1 . 3 5 2 2. Find a p1ane that passes through the point 1,2, 1 and is para11e1 to the p1ane 2 3 1. 3. Sh x y z x y z          1 1 2 ow that the 1ine 2 3 4 is para11e1 to the p1ane 2 6. x y z x y z        
  • 51.  Find the equation of a 1ine passing through 1,2,3 that is para11e1 to the 1ine of intersection of the p1anes 3 2 4 and 2 3 5.x y z x y z        Equation of a Line Parallel toThe Intersection ofTwo Given Planes EXAMPLE 24
  • 52. Find the standard-form equation of the p1ane determined by the intersecting 1ines. 2 5 1 1 16 and 3 2 4 2 1 5 x y z x y z           Equation of a Plane Containing Two Intersecting Lines EXAMPLE 25
  • 53. Find the point at which the 1ine with parametric equations 2 3 , 4 , 5 intersects the p1ane 4 5 2 18 x t y t z t x y z          Point where a Line intersects with a Plane. EXAMPLE 26
  • 54. INTERSECTING PLANE The acute angle between the planes : 21 21 cos nn nn   EXAMPLE 27 Find the acute angle of intersection between the planes 4326and6442  zyxzyx
  • 55. DISTANCE PROBLEMS INVOLVING PLANES The distance D between a point and the plane is  0000 ,, zyxP 0 dczbyax 222 000 cba dczbyax D   
  • 57. EXAMPLE 28 Find the distance D between the point (1,-4,-3) and the plane 1632  zyx
  • 58. A polar coordinate system consists of : A fix point O, called the pole or origin Polar coordinates where r : distance from P to the origin : angle from the polar axis to the ray OP ),( r  ),( rP Polar axisOrigin O 
  • 60. [email protected] 607 For any angle θ; A CT S θ θ +ve -ve          tantan coscos sinsin    THETRIGONOMETRIC RATIOS
  • 61. [email protected] 618 Trigonometrical ratios of some special angles; A 1 2 O B 30° 60° 3 B A 1 1 O 45° 45° 2 THETRIGONOMETRIC RATIOS 1/ 2 1/ 2 3 / 2 3 / 2 1/ 2 1/ 2 1/ 3 3 θ 30° 45° 60° sin θ 0 1 cos θ 1 0 tan θ 0 1 undefined 0 90
  • 62. [email protected] EXAMPLE 4 Plot the points with the following polar coordinates  0 225,3)(a        3 ,2)(  b Solution: (a) 0 225  0 225,3P x O )(b        3 ,2  P xO 3  
  • 63. Relationship between Polar and Rectangular Coordinates O x y P sinry  cosrx  r  cosrx  sinry  x y yxr  tan222
  • 64. Change the polar coordinates to Cartesian coordinates.      3 ,2   3,1isscoordinateCartesianThe 3 3 sin2sin 1 3 cos2cos then, 3 and2Since           ry rx r EXAMPLE 5 Solution:
  • 65. [email protected] EXAMPLE 6 Find the rectangular coordinates of the point P whose polar coordinates are          3 2 ,4,  r Solution: 2 2 1 4 3 2 cos4        x 32 2 3 4 3 2 sin4          y Thus, the rectangular coordinates of P are    32,2, yx
  • 66. Change the coordinates Cartesian to polar coordinates. 1,1                      4 7 ,2and 4 ,2arescoordinatepolarpossibleThe 4 7 or 4 ,1tan 211 thenpositive,betochooseweIf 2222     x y yxr r  1,1  x y EXAMPLE 7
  • 67. [email protected] EXAMPLE 8 Find polar coordinates of the point P whose rectangular coordinates are  4,3  Solution:     5or5Thus 2543 22222   rr yxr Then, 3 4 3 4 tan     x y  Therefore, 000 13.23313.53180 
  • 68. Symmetry Tests SYMMETRIC CONDITIONS about the x axis about the y axis about the origin  ,r  ,r    ,r  ,r   ,r   ,r  ,r   ,r  ,r
  • 69.   ),( r ),( r    ),( r ),(  r  0 Symmetry with respect to x axis Symmetry with respect to y axis
  • 70.  ),( r ),( r Symmetry with respect to the origin
  • 71. (c)Given that . Determine the symmetry of the polar equation and then sketch the graph. sin33r (d) Test and sketch the curve for symmetry.2sinr (a) What curve represented by the polar equation 5r (b) Given that . Determine the symmetry of the polar equation and then sketch the graph. cos2r EXAMPLE 9
  • 73. (a) Find the area enclosed by one loop of four petals 2cosr (b) Find the area of the region that lies inside the circle and outside the cardioid sin3r sin1r drA b a  2 2 1 : 8 Answer  :Answer  EXAMPLE 10
  • 74. [email protected] TANGENT LINES TO PARAMETRIC CURVES dt dx dt dy dx dy  If 0and0  dt dx dt dy Horizontal If 0and0  dt dx dt dy Infinite slope Vertical If 0and0  dt dx dt dy Singular points
  • 75. [email protected] EXAMPLE 14 (a) Find the slope of the tangent line to the unit circle at the point where (b) In a disastrous first flight, an experimental paper airplane follows the trajectory of the particle as but crashes into a wall at time t = 10. i) At what times was the airplane flying horizontally? ii) At what times was it flying vertically? tx cos ty sin 3  t ttx sin3 ty cos34
  • 76. ARC LENGTH OF PARAMETRIC CURVES               b a dt dt dy dt dx L 22 EXAMPLE 15 Find the exact arc length of the curve over the stated interval 2 tx  3 3 1 ty  10  t)(a tx 3cos ty 3sin  t0)(b
  • 77. [email protected] Consider the parametric equations, a) Sketch the graph. b) By eliminating t, find the Cartesian equation. 12 3 9, for 3 2x t y t t      2 R EXAMPLE 16
  • 78. 12 3 9, for 3 2x t y t t      2 9 9x y  )(a Solution: )(b
  • 79.     Sketch the graph of 2 4 , 1 5 ,3 So1ution: In this form we can see that 2 4 , 1 5 , 3 Notice that this is nothing more than a 1ine, with a point 2, 1,3 and a vector para11e1 is 4,5,1 . F t t t t x t y t z t               v Graph in 3 REXAMPLE 17
  • 81. [email protected] sCoordinatePolarlCylindrica cosrx  sinry  22 yxr          x y1 tan  r0  20   z
  • 88. [email protected] EXAMPLE 30 (a) Convert from rectangular to cylindrical coordinates (i) (-5,5,6) (ii) (0,2,0) (b) Convert from cylindrical to rectangular coordinates (c) Convert from spherical to rectangular coordinates (d) Convert from spherical to cylindrical coordinates  9,7(ii)3, 6 ,4)( ,πi                    4 , 6 5(ii) 2 ,0,7)(  π ,i         3 2 , 4 5(ii)0,0,3)( π ,i
  • 89. [email protected] Success = 90% Perspiration + 10% Inspiration