Probability and Statistics
Chapter 7
Fundamental Sampling
Distributions
Dr. Yehya Mesalam 1
Population
17 18 19 20 21 22
1
2
3
4
5
6
23 24 25
Sampling Distribution of the Sample Mean
The sampling distribution of the sample mean is the probability
distribution of the population of the sample means obtainable
from all possible samples of size n from a population of size N
2
Dr. Yehya Mesalam
DistributionofSampleMeansfromSamplesofSizen=2
3
Dr. Yehya Mesalam
x f(x) x.f(x) x2.f(x)
18 0.25 4.5 81
20 0.25 5 100
22 0.25 5.5 121
24 0.25 6 144
sum 1 21 446
21
P(x)
x
E(X)
μ
x


 
(x
V(X) 2
2
5
21
446
)]
(
[
) 2
2





 x
E
E

2.24
2.236068


DistributionofSampleMeansfromSamplesofSizen=2
1 18, 18 18
2 18, 20 19
3 18, 22 20
4 18, 24 21
5 20, 18 19
6 20, 20 20
7 20, 22 21
8 20, 24 22
9 22, 18 20
10 22, 20 21
11 22, 22 22
12 22, 24 23
13 24, 18 21
14 24, 20 22
15 24, 22 23
16 24, 24 24
Sample # Scores Mean ( )
X
4
Dr. Yehya Mesalam
DistributionofSampleMeansfromSamplesofSizen=2
5
Dr. Yehya Mesalam
𝒙 f f(x) 𝒙.f(x) 𝒙2.f(x)
18 1 0.0625 1.125 20.25
19 2 0.125 2.375 45.125
20 3 0.1875 3.75 75
21 4 0.25 5.25 110.25
22 3 0.1875 4.125 90.75
23 2 0.125 2.875 66.125
24 1 0.0625 1.5 36
sum 16 1 21 443.5
DistributionofSampleMeansfromSamplesofSizen=2
6
Dr. Yehya Mesalam
21
f(x)
.
x
)
X
E(
μ
x
x 

 
x
(
)
X
V( 2
2
5
.
2
21
5
.
443
)]
(
[
) 2
2





 x
E
E
x

1.581139

x

1.581139
2
2.236068



n
X


21
μx 
 
Population
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
Sampling Distribution of the Sample Mean
The sampling distribution of the sample mean is the probability
distribution of the population of the sample means obtainable
from all possible samples of size n from a population of size N
7
Dr. Yehya Mesalam
DistributionofSampleMeansfromSamplesofSizen=2
8
Dr. Yehya Mesalam
x f(x) x.f(x) x2.f(x)
2 0.25 0.5 1
4 0.25 1 4
6 0.25 1.5 9
8 0.25 2 16
sum 1 5 30
5
P(x)
x
E(X)
μ
x


 
(x
V(X) 2
2
5
25
30
)]
(
[
) 2





 x
E
E

2.24
2.236068


DistributionofSampleMeansfromSamplesofSizen=2
1 2, 2 2
2 2,4 3
3 2,6 4
4 2,8 5
5 4,2 3
6 4,4 4
7 4,6 5
8 4,8 6
9 6,2 4
10 6,4 5
11 6,6 6
12 6,8 7
13 8,2 5
14 8,4 6
15 8.6 7
16 8.8 8
Sample # Scores Mean ( )
X
9
Dr. Yehya Mesalam
DistributionofSampleMeansfromSamplesofSizen=2
10
Dr. Yehya Mesalam
𝒙 f f(x) 𝒙.f(x) 𝒙2.f(x)
2 1 0.0625 0.125 0.25
3 2 0.125 0.375 1.125
4 3 0.1875 0.75 3
5 4 0.25 1.25 6.25
6 3 0.1875 1.125 6.75
7 2 0.125 0.875 6.125
8 1 0.0625 0.5 4
sum 16 1 5 27.5
DistributionofSampleMeansfromSamplesofSizen=2
11
Dr. Yehya Mesalam
5
f(x)
.
x
)
X
E(
μ
x
x 

 
x
(
)
X
V( 2
2
5
.
2
25
5
.
27
)]
(
[
) 2





 x
E
E
x

1.581139

x

1.581139
2
2.236068



n
X


5
μx 
 
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
sample mean
We can use the distribution of sample means to
answer probability questions about sample
means
12
DistributionofSampleMeansfromSamplesofSizen=2
Dr. Yehya Mesalam
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
Distribution of Individuals in Population
Distribution of Sample Means
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
sample mean
 = 5,  = 2.24
X = 5, X = 1.58
13
Dr. Yehya Mesalam
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
Distribution of Individuals in Population
Distribution of Sample Means
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
sample mean
 = 5,  = 2.24
X = 5, X = 1.58
58
.
1
2
24
.
2


X

14
Dr. Yehya Mesalam
1 2 3 4 5 6
2
4
6
8
10
12
7 8 9
sample mean
14
16
18
20
22
24
Sampling Distribution (n = 3)
X = 5
X = 1.29
29
.
1
3
24
.
2


X

15
Dr. Yehya Mesalam
1 2 3 4 5 6
1
2
3
4
5
6
7 8 9
sample mean
Distribution of Sample Means
Things to Notice
1. The sample means tend to pile
up around the population mean.
2. The distribution of sample means
is approximately normal in
shape, even though the
population distribution was not.
3. The distribution of sample means
has less variability than does the
population distribution.
16
n
σ
μ
x
z


Dr. Yehya Mesalam
Central Limit Theorem
For any population with mean  and standard deviation ,
the distribution of sample means for sample size n …
1. will have a mean of 
2. will have a standard deviation of
3. will approach a normal distribution as n approaches
infinity

n
 The mean of the sampling distribution
 The standard deviation of sampling distribution
(“standard error of the mean”)

 
X
n
X

 
17
Dr. Yehya Mesalam
Population Sample
Distribution of
Sample Means
Clarifying Formulas
N
X


 n
X
X

 
 
X
N
ss


1


n
ss
s n
X

 
n
X
2
2 
 
notice
18
Dr. Yehya Mesalam
Confidence Level, (1-)
• Suppose confidence level = 95%
• Also written (1 - ) = 0.95
• A relative frequency interpretation:
– From repeated samples, 95% of all the
confidence intervals that can be constructed
will contain the unknown true parameter
• A specific interval either will contain or
will not contain the true parameter
– No probability involved in a specific interval
19
Dr. Yehya Mesalam
Confidence Interval for μ
– Population variance σ2 is known use Z
• Confidence interval estimate:
(where z/2 is the normal distribution value for a probability of /2 in each
tail)
n
σ
z
x
μ
n
σ
z
x α/2
α/2 



n
σ
μ
x
z


20
Dr. Yehya Mesalam
Finding the Reliability Factor, z/2
• Consider a 95% confidence interval:
z = -1.96 z = 1.96
.95
1 


.025
2
α
 .025
2
α

Point Estimate
Lower
Confidence
Limit
Upper
Confidence
Limit
Z units:
X units: Point Estimate
0
 Find z.025 = 1.96 from the standard normal distribution table
21
Dr. Yehya Mesalam
Common Levels of Confidence
• Commonly used confidence levels are 90%,
95%, and 99%
Confidence
Level
Confidence
Coefficient, Z/2 value
1.28
1.645
1.96
2.33
2.58
3.08
3.27
.80
.90
.95
.98
.99
.998
.999
80%
90%
95%
98%
99%
99.8%
99.9%


1
22
Dr. Yehya Mesalam
Chapter 7 2022.pdf
Chapter 7 2022.pdf
Example
• A sample of 11 circuits from a large normal population has a
mean resistance of 2.20 ohms. We know from past testing that
the population standard deviation is 0.35 ohms. Determine a
95% confidence interval for the true mean resistance of the
population.
• Solution:
2.4068
μ
1.9932
.2068
2.20
)
11
(.35/
1.96
2.20
n
σ
z
x







We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
25
Dr. Yehya Mesalam
Confidence Interval for μ
• If the population standard deviation σ is
unknown, and n>30 use Z
• N<=30 use t distribution
n
s
z
x
μ
n
s
z
x α/2
α/2 



n
S
t
x
μ
n
S
t
x α/2,
α/2, 
 



where tα/2,n-1 is the critical value of the t distribution with n-1 d.f. and an
area of α/2 in each tail:
n
s
μ
x
z


n
s
μ
x
t


26
Dr. Yehya Mesalam
Choice of Sample Size
• To Calculate the sample size needed for (1-α )
is
• Where E the error
2
α/2
]
.
z
[
E
n


μ
x
E 

27
Dr. Yehya Mesalam
Example
• Assuming the population standard deviation =
3, how large should a sample be to estimate the
population mean with a margin of error not
exceeding 0.5?
2
α/2
]
.
z
[
E
n


28
Dr. Yehya Mesalam
Solution
• where = 0.05
• Then from table
• Error =E = 0.5
• Then
• n= [ 1.96*3 / 0.5]2 = 138.3
• we need a sample of size at least 139
2
α/2
]
.
z
[
E
n


29
Dr. Yehya Mesalam
96
.
1
z 25
.
0
α/2 
 o
z
Student’s t Distribution
• Consider a random sample of n observations
– with mean x and standard deviation s
– from a normally distributed population with mean μ
• Then the variable
follows the Student’s t distribution with (n - 1) degrees of
freedom
n
s/
μ
x
t


d.f. = n - 1
30
Dr. Yehya Mesalam
Student’s t Distribution
t
0
t (df = 5)
t (df = 13)
t-distributions are bell-
shaped and symmetric, but
have ‘fatter’ tails than the
normal
Standard
Normal
(t with df = ∞)
Note: t Z as n increases
31
Dr. Yehya Mesalam
Chapter 7 2022.pdf
Chapter 7 2022.pdf
Example
A random sample of n = 25 has x = 50 and
s = 8. Form a 95% confidence interval for μ
• Solution
d.f. = n – 1 = 24, so
The confidence interval is
2.0639
t
t 24,.025
α/2, 


53.302
μ
46.698
25
8
(2.0639)
50
μ
25
8
(2.0639)
50
n
S
t
x
μ
n
S
t
x α/2,
α/2,









 

34
Dr. Yehya Mesalam
Confidence Intervals for the Population
Variance
The random variable
2
2
2
1
n
σ
1)s
(n



follows a chi-square distribution with (n – 1) degrees of
freedom
Where the chi-square value denotes the number
for which
2
,
1
n 
 
α
χ
χ 
 
 )
P( 2
α
,
1
n
2
1
n
35
Dr. Yehya Mesalam
Confidence Intervals for the Population
Variance
The (1 - )% confidence interval for the population
variance is
2
/2,
-
1
2
2
2
/2,
2
1)s
(n
σ
1)s
(n

 α
α χ
χ




36
Dr. Yehya Mesalam
Example
You are testing the speed of a batch of computer
processors. You collect the following data (in Mhz):
Sample size 17
Sample mean 3004
Sample std dev 74
Assume the population is normal.
Determine the 95% confidence interval for σ2
37
Dr. Yehya Mesalam
Solution
• n = 17 so the chi-square distribution has (n – 1) =
16 degrees of freedom
•  = 0.05, so use the chi-square values with area
0.025 in each tail:
probability
α/2 = .025
2
16
2
16
= 28.85
6.91
28.85
2
0.975,16
2
/2,
-
1
2
0.025,16
2
/2,




χ
χ
χ
χ
α
α


2
16 = 6.91
probability
α/2 = .025
38
Dr. Yehya Mesalam
Chapter 7 2022.pdf
Chapter 7 2022.pdf
Chapter 7 2022.pdf
Solution
• The 95% confidence interval is
Converting to standard deviation, we are 95% confident
that the population standard deviation of CPU speed is
between 55.1 and 112.6 Mhz
2
/2,
-
1
2
2
2
/2,
2
1)s
(n
σ
1)s
(n

 α
α χ
χ




6.91
1)(74)
(17
σ
28.85
1)(74)
(17 2
2
2




12683
σ
3037 2


42
Dr. Yehya Mesalam
Example
43
Dr. Yehya Mesalam
.
The lapping process which is used to grind certain
silicon wafers to the proper thickness is acceptable only
if the population standard deviation of the thickness of
dice cut from the wafers is at most 0.50 mil. If the
thicknesses of 17 dice cut from such wafers have a
standard deviation of 0.78 mil. Find 95% confidence
limits on .
Solution
44
Dr. Yehya Mesalam
.
2
/2,
-
1
2
2
2
/2,
2
1)s
(n
σ
1)s
(n

 α
α χ
χ




6.908
0.78
*
6
1
σ
845
.
28
0.78
*
6
1 2
2
2


4091
.
1
σ
3374
.
0 2


ConfidenceIntervalbetween(TwoMeans)
σ1
2 and σ2
2 known use Z
2
2
2
1
2
1
α/2
2
1
2
1
2
2
2
1
2
1
α/2
2
1
n
σ
n
σ
z
)
x
x
(
μ
μ
n
σ
n
σ
z
)
x
x
( 








σ1
2 and σ2
2 Unknown and n1+n2 >30 use Z
The confidence interval for μ1 – μ2 is:
2
2
2
1
2
1
α/2
2
1
2
1
2
2
2
1
2
1
α/2
2
1
n
s
n
s
z
)
x
x
(
μ
μ
n
s
n
s
z
)
x
x
( 








2
2
2
1
2
1
2
1
2
1
n
σ
n
σ
)
μ
(μ
)
x
x
(
Z





The confidence interval for μ1 – μ2 is:
45
Dr. Yehya Mesalam
Where
2
n
n
1)s
(n
1)s
(n
s
2
1
2
2
2
2
1
1
p






Is the pooled variance
σ1
2 and σ2
2 Unknown and n1+n2 <=30 use t
2
1
2
1
2
1
n
1
n
1
)
μ
(μ
)
x
x
(
t





p
S
The confidence interval for μ1 – μ2 is:
46
ConfidenceIntervalbetween(TwoMeans)
Dr. Yehya Mesalam
2
1
p
α/2,
2
1
2
1
2
1
p
α/2,
2
1
n
1
n
1
s
.
t
)
x
x
(
μ
μ
n
1
n
1
.s
t
)
x
x
( 







 

Example
You are testing two computer processors for speed.
Form a confidence interval for the difference in CPU
speed. You collect the following speed data (in Mhz):
CPU1 CPU2
Number Tested 16 13
Sample mean 3004 2538
Sample std dev 74 56
Assume both populations are normal with
equal variances, and use 95% confidence
47
Dr. Yehya Mesalam
Solution
        4427.03
2)
13
(16
56
1
13
74
1
16
2)
n
(n
S
1
n
S
1
n
S
2
2
2
1
2
2
2
2
1
1
2
p 












The pooled variance is:
The t value for a 95% confidence interval is:
2.052
t
t 0.025,27
α/2, 


48
Dr. Yehya Mesalam
        537
.
6
6
2)
13
(16
56
1
13
74
1
16
2)
n
(n
S
1
n
S
1
n
S
2
2
2
1
2
2
2
2
1
1
p 












Solution
• The 95% confidence interval is
13
1
16
1
66.537
*
(2.052)
2538)
(3004
μ
μ
13
1
16
1
66.537
*
(2.052)
2538)
(3004 2
1 








515.31
μ
μ
416.69 2
1 


We are 95% confident that the mean difference in CPU
speed is between 416.69 and 515.31 Mhz.
2
1
p
α/2,
2
1
2
1
2
1
p
α/2,
2
1
n
1
n
1
s
.
t
)
x
x
(
μ
μ
n
1
n
1
.s
t
)
x
x
( 







 

49
Dr. Yehya Mesalam
Example
50
Dr. Yehya Mesalam
Method 1 71 75 65 69 73 66 69 75 74 87 68
Method 2 72 77 84 78 69 70 77 81 65 77 75
As part of an industrial training program, some trainees are
instructed by Method 1, which is straight teaching-machine
instruction, and some are instructed by Method 2, which
also involves the personal attention of an instructor. If
random samples are taken from large groups of trainees
instructed by each of these two methods and the scores
with standard deviation are 6.06, and 5.58 respectively;
The score obtained in an appropriate achievement test
are
  %
100
1 

2
1 
 
•Use the 0.05 level of significance to find
confidence limits on
.
Solution
51
Dr. Yehya Mesalam
.
SX SX2 Mean Variance S.D
A 792 52351 72 36.8 6.0663
B 825 62183 75 30.8 5.549775
2
2
2
1
2
1
α/2
2
1
2
1
2
2
2
1
2
1
α/2
2
1
n
σ
n
σ
z
)
x
x
(
μ
μ
n
σ
n
σ
z
)
x
x
( 








11
58
.
5
1
1
6.06
1.96
75)
(72
μ
μ
11
58
.
5
1
1
6.06
1.96
75)
(72
2
2
2
1
2
2









1.858845
μ
μ
7.85885
- 2
1 


Example
52
Dr. Yehya Mesalam
Method 1 71 75 65 69 73 66 69 75 74 87 68
Method 2 72 77 84 78 69 70 77 81 65 77 75
As part of an industrial training program, some trainees
are instructed by Method 1, which is straight teaching-
machine instruction, and some are instructed by Method
2, which also involves the personal attention of an
instructor. If random samples are taken from large
groups of trainees instructed by each of these two
methods and the scores which they obtained in an
appropriate achievement test are
  %
100
1 

2
1 
 
•Use the 0.05 level of significance to find
confidence limits on
.
Solution
53
Dr. Yehya Mesalam
.
SX SX2 Mean Variance S.D
A 792 52351 72 36.8 6.0663
B 825 62183 75 30.8 5.549775
2
2
p
1
2
p
α/2
,
2
1
1
1
2
2
p
1
2
p
α/2
,
2
1
n
s
n
s
t
)
x
x
(
μ
μ
n
s
n
s
t
)
x
x
( 







 

2
n
n
1)s
(n
1)s
(n
s
2
1
2
2
2
2
1
1
p






813
.
5
2
1
1
1
1
5.5497
*
0
1
6.0663
*
10
s
2
2
p 




Solution
54
Dr. Yehya Mesalam
.
11
1
1
1
1
813
.
5
*
086
.
2
75)
(72
μ
μ
11
1
1
1
1
813
.
5
*
086
.
2
75)
(72 2
1 








1705
.
2
μ
μ
8.1705
- 2
1 


55
55
Dr. Yehya Mesalam

More Related Content

PPTX
3. Statistical inference_anesthesia.pptx
PPTX
Sampling distribution.pptx
PPT
Chapter 7 note Estimation.ppt biostatics
PPT
Chapter one on sampling distributions.ppt
PPT
chapter three Sampling_distributions_1.ppt
PPT
Statistik 1 7 estimasi & ci
PPT
Inferential statistics-estimation
PPTX
StatBasicsRefffffffffffffffffffffffffffffffffffffffffv2.pptx
3. Statistical inference_anesthesia.pptx
Sampling distribution.pptx
Chapter 7 note Estimation.ppt biostatics
Chapter one on sampling distributions.ppt
chapter three Sampling_distributions_1.ppt
Statistik 1 7 estimasi & ci
Inferential statistics-estimation
StatBasicsRefffffffffffffffffffffffffffffffffffffffffv2.pptx

Similar to Chapter 7 2022.pdf (20)

PDF
Estimation and hypothesis testing (2).pdf
PPT
PPTX
Sampling fundamentals
PPTX
statistics chapter 4 PowerPoint for accounting studens.ppt
PPT
Tbs910 sampling hypothesis regression
PPTX
6. point and interval estimation
PPTX
estimation.pptx
PPT
POINT_INTERVAL_estimates.ppt
PPTX
Estimating population mean
PPT
Review of Chapters 1-5.ppt
PPTX
Week 7 lecture_math_221_apr_2012
PPTX
M1-4 Estimasi Titik dan Intervaltttt.pptx
PPT
Lecture-3 inferential stastistics.ppt
PPT
PPT
What is an estimate with details regarding it's use in biostatistics
PPT
STATS_Q4_1.powerpoint presentation in....
PPTX
Week 7 lecture_math_221_dec_2012
PPTX
Standard Error & Confidence Intervals.pptx
PPTX
BIOMETRYc(1).pptx
PPTX
BIOMETRYc(1).pptx
Estimation and hypothesis testing (2).pdf
Sampling fundamentals
statistics chapter 4 PowerPoint for accounting studens.ppt
Tbs910 sampling hypothesis regression
6. point and interval estimation
estimation.pptx
POINT_INTERVAL_estimates.ppt
Estimating population mean
Review of Chapters 1-5.ppt
Week 7 lecture_math_221_apr_2012
M1-4 Estimasi Titik dan Intervaltttt.pptx
Lecture-3 inferential stastistics.ppt
What is an estimate with details regarding it's use in biostatistics
STATS_Q4_1.powerpoint presentation in....
Week 7 lecture_math_221_dec_2012
Standard Error & Confidence Intervals.pptx
BIOMETRYc(1).pptx
BIOMETRYc(1).pptx
Ad

More from Mohamed Ali (16)

PDF
Sheet 1.pdf
PDF
Chapter 2 2022.pdf
PDF
Chapter 1 2022.pdf
PDF
Chapter 1 2021.pdf
PDF
Chapter 6 2022.pdf
PDF
Chapter 5 2022.pdf
PDF
Chapter 3 2022.pdf
PDF
Chapter 4 2022.pdf
PDF
Ch 6.pdf
PDF
Ch 5.pdf
PDF
Ch 4.pdf
PDF
Ch 3.pdf
PDF
Ch 2.pdf
PDF
Ch 1.pdf
PDF
information system Ch 2
PDF
Information system
Sheet 1.pdf
Chapter 2 2022.pdf
Chapter 1 2022.pdf
Chapter 1 2021.pdf
Chapter 6 2022.pdf
Chapter 5 2022.pdf
Chapter 3 2022.pdf
Chapter 4 2022.pdf
Ch 6.pdf
Ch 5.pdf
Ch 4.pdf
Ch 3.pdf
Ch 2.pdf
Ch 1.pdf
information system Ch 2
Information system
Ad

Recently uploaded (20)

PDF
Present and Future of Systems Engineering: Air Combat Systems
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
PPT
Programmable Logic Controller PLC and Industrial Automation
PDF
Cryptography and Network Security-Module-I.pdf
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
MAD Unit - 3 User Interface and Data Management (Diploma IT)
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PPT
UNIT-I Machine Learning Essentials for 2nd years
PDF
Principles of operation, construction, theory, advantages and disadvantages, ...
PDF
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
PDF
Computer organization and architecuture Digital Notes....pdf
PPTX
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
PDF
Micro 4 New.ppt.pdf a servay of cells and microorganism
PDF
Research on ultrasonic sensor for TTU.pdf
PPTX
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
PDF
electrical machines course file-anna university
PPTX
chapter 1.pptx dotnet technology introduction
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
SEH5E Unveiled: Enhancements and Key Takeaways for Certification Success
Present and Future of Systems Engineering: Air Combat Systems
MLpara ingenieira CIVIL, meca Y AMBIENTAL
VSL-Strand-Post-tensioning-Systems-Technical-Catalogue_2019-01.pdf
Programmable Logic Controller PLC and Industrial Automation
Cryptography and Network Security-Module-I.pdf
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
MAD Unit - 3 User Interface and Data Management (Diploma IT)
Environmental studies, Moudle 3-Environmental Pollution.pptx
UNIT-I Machine Learning Essentials for 2nd years
Principles of operation, construction, theory, advantages and disadvantages, ...
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
Computer organization and architecuture Digital Notes....pdf
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
Micro 4 New.ppt.pdf a servay of cells and microorganism
Research on ultrasonic sensor for TTU.pdf
WN UNIT-II CH4_MKaruna_BapatlaEngineeringCollege.pptx
electrical machines course file-anna university
chapter 1.pptx dotnet technology introduction
August -2025_Top10 Read_Articles_ijait.pdf
SEH5E Unveiled: Enhancements and Key Takeaways for Certification Success

Chapter 7 2022.pdf

  • 1. Probability and Statistics Chapter 7 Fundamental Sampling Distributions Dr. Yehya Mesalam 1
  • 2. Population 17 18 19 20 21 22 1 2 3 4 5 6 23 24 25 Sampling Distribution of the Sample Mean The sampling distribution of the sample mean is the probability distribution of the population of the sample means obtainable from all possible samples of size n from a population of size N 2 Dr. Yehya Mesalam
  • 3. DistributionofSampleMeansfromSamplesofSizen=2 3 Dr. Yehya Mesalam x f(x) x.f(x) x2.f(x) 18 0.25 4.5 81 20 0.25 5 100 22 0.25 5.5 121 24 0.25 6 144 sum 1 21 446 21 P(x) x E(X) μ x     (x V(X) 2 2 5 21 446 )] ( [ ) 2 2       x E E  2.24 2.236068  
  • 4. DistributionofSampleMeansfromSamplesofSizen=2 1 18, 18 18 2 18, 20 19 3 18, 22 20 4 18, 24 21 5 20, 18 19 6 20, 20 20 7 20, 22 21 8 20, 24 22 9 22, 18 20 10 22, 20 21 11 22, 22 22 12 22, 24 23 13 24, 18 21 14 24, 20 22 15 24, 22 23 16 24, 24 24 Sample # Scores Mean ( ) X 4 Dr. Yehya Mesalam
  • 5. DistributionofSampleMeansfromSamplesofSizen=2 5 Dr. Yehya Mesalam 𝒙 f f(x) 𝒙.f(x) 𝒙2.f(x) 18 1 0.0625 1.125 20.25 19 2 0.125 2.375 45.125 20 3 0.1875 3.75 75 21 4 0.25 5.25 110.25 22 3 0.1875 4.125 90.75 23 2 0.125 2.875 66.125 24 1 0.0625 1.5 36 sum 16 1 21 443.5
  • 6. DistributionofSampleMeansfromSamplesofSizen=2 6 Dr. Yehya Mesalam 21 f(x) . x ) X E( μ x x     x ( ) X V( 2 2 5 . 2 21 5 . 443 )] ( [ ) 2 2       x E E x  1.581139  x  1.581139 2 2.236068    n X   21 μx   
  • 7. Population 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 Sampling Distribution of the Sample Mean The sampling distribution of the sample mean is the probability distribution of the population of the sample means obtainable from all possible samples of size n from a population of size N 7 Dr. Yehya Mesalam
  • 8. DistributionofSampleMeansfromSamplesofSizen=2 8 Dr. Yehya Mesalam x f(x) x.f(x) x2.f(x) 2 0.25 0.5 1 4 0.25 1 4 6 0.25 1.5 9 8 0.25 2 16 sum 1 5 30 5 P(x) x E(X) μ x     (x V(X) 2 2 5 25 30 )] ( [ ) 2       x E E  2.24 2.236068  
  • 9. DistributionofSampleMeansfromSamplesofSizen=2 1 2, 2 2 2 2,4 3 3 2,6 4 4 2,8 5 5 4,2 3 6 4,4 4 7 4,6 5 8 4,8 6 9 6,2 4 10 6,4 5 11 6,6 6 12 6,8 7 13 8,2 5 14 8,4 6 15 8.6 7 16 8.8 8 Sample # Scores Mean ( ) X 9 Dr. Yehya Mesalam
  • 10. DistributionofSampleMeansfromSamplesofSizen=2 10 Dr. Yehya Mesalam 𝒙 f f(x) 𝒙.f(x) 𝒙2.f(x) 2 1 0.0625 0.125 0.25 3 2 0.125 0.375 1.125 4 3 0.1875 0.75 3 5 4 0.25 1.25 6.25 6 3 0.1875 1.125 6.75 7 2 0.125 0.875 6.125 8 1 0.0625 0.5 4 sum 16 1 5 27.5
  • 11. DistributionofSampleMeansfromSamplesofSizen=2 11 Dr. Yehya Mesalam 5 f(x) . x ) X E( μ x x     x ( ) X V( 2 2 5 . 2 25 5 . 27 )] ( [ ) 2       x E E x  1.581139  x  1.581139 2 2.236068    n X   5 μx   
  • 12. 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 sample mean We can use the distribution of sample means to answer probability questions about sample means 12 DistributionofSampleMeansfromSamplesofSizen=2 Dr. Yehya Mesalam
  • 13. 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 Distribution of Individuals in Population Distribution of Sample Means 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 sample mean  = 5,  = 2.24 X = 5, X = 1.58 13 Dr. Yehya Mesalam
  • 14. 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 Distribution of Individuals in Population Distribution of Sample Means 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 sample mean  = 5,  = 2.24 X = 5, X = 1.58 58 . 1 2 24 . 2   X  14 Dr. Yehya Mesalam
  • 15. 1 2 3 4 5 6 2 4 6 8 10 12 7 8 9 sample mean 14 16 18 20 22 24 Sampling Distribution (n = 3) X = 5 X = 1.29 29 . 1 3 24 . 2   X  15 Dr. Yehya Mesalam
  • 16. 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 sample mean Distribution of Sample Means Things to Notice 1. The sample means tend to pile up around the population mean. 2. The distribution of sample means is approximately normal in shape, even though the population distribution was not. 3. The distribution of sample means has less variability than does the population distribution. 16 n σ μ x z   Dr. Yehya Mesalam
  • 17. Central Limit Theorem For any population with mean  and standard deviation , the distribution of sample means for sample size n … 1. will have a mean of  2. will have a standard deviation of 3. will approach a normal distribution as n approaches infinity  n  The mean of the sampling distribution  The standard deviation of sampling distribution (“standard error of the mean”)    X n X    17 Dr. Yehya Mesalam
  • 18. Population Sample Distribution of Sample Means Clarifying Formulas N X    n X X      X N ss   1   n ss s n X    n X 2 2    notice 18 Dr. Yehya Mesalam
  • 19. Confidence Level, (1-) • Suppose confidence level = 95% • Also written (1 - ) = 0.95 • A relative frequency interpretation: – From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter • A specific interval either will contain or will not contain the true parameter – No probability involved in a specific interval 19 Dr. Yehya Mesalam
  • 20. Confidence Interval for μ – Population variance σ2 is known use Z • Confidence interval estimate: (where z/2 is the normal distribution value for a probability of /2 in each tail) n σ z x μ n σ z x α/2 α/2     n σ μ x z   20 Dr. Yehya Mesalam
  • 21. Finding the Reliability Factor, z/2 • Consider a 95% confidence interval: z = -1.96 z = 1.96 .95 1    .025 2 α  .025 2 α  Point Estimate Lower Confidence Limit Upper Confidence Limit Z units: X units: Point Estimate 0  Find z.025 = 1.96 from the standard normal distribution table 21 Dr. Yehya Mesalam
  • 22. Common Levels of Confidence • Commonly used confidence levels are 90%, 95%, and 99% Confidence Level Confidence Coefficient, Z/2 value 1.28 1.645 1.96 2.33 2.58 3.08 3.27 .80 .90 .95 .98 .99 .998 .999 80% 90% 95% 98% 99% 99.8% 99.9%   1 22 Dr. Yehya Mesalam
  • 25. Example • A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Determine a 95% confidence interval for the true mean resistance of the population. • Solution: 2.4068 μ 1.9932 .2068 2.20 ) 11 (.35/ 1.96 2.20 n σ z x        We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms 25 Dr. Yehya Mesalam
  • 26. Confidence Interval for μ • If the population standard deviation σ is unknown, and n>30 use Z • N<=30 use t distribution n s z x μ n s z x α/2 α/2     n S t x μ n S t x α/2, α/2,       where tα/2,n-1 is the critical value of the t distribution with n-1 d.f. and an area of α/2 in each tail: n s μ x z   n s μ x t   26 Dr. Yehya Mesalam
  • 27. Choice of Sample Size • To Calculate the sample size needed for (1-α ) is • Where E the error 2 α/2 ] . z [ E n   μ x E   27 Dr. Yehya Mesalam
  • 28. Example • Assuming the population standard deviation = 3, how large should a sample be to estimate the population mean with a margin of error not exceeding 0.5? 2 α/2 ] . z [ E n   28 Dr. Yehya Mesalam
  • 29. Solution • where = 0.05 • Then from table • Error =E = 0.5 • Then • n= [ 1.96*3 / 0.5]2 = 138.3 • we need a sample of size at least 139 2 α/2 ] . z [ E n   29 Dr. Yehya Mesalam 96 . 1 z 25 . 0 α/2   o z
  • 30. Student’s t Distribution • Consider a random sample of n observations – with mean x and standard deviation s – from a normally distributed population with mean μ • Then the variable follows the Student’s t distribution with (n - 1) degrees of freedom n s/ μ x t   d.f. = n - 1 30 Dr. Yehya Mesalam
  • 31. Student’s t Distribution t 0 t (df = 5) t (df = 13) t-distributions are bell- shaped and symmetric, but have ‘fatter’ tails than the normal Standard Normal (t with df = ∞) Note: t Z as n increases 31 Dr. Yehya Mesalam
  • 34. Example A random sample of n = 25 has x = 50 and s = 8. Form a 95% confidence interval for μ • Solution d.f. = n – 1 = 24, so The confidence interval is 2.0639 t t 24,.025 α/2,    53.302 μ 46.698 25 8 (2.0639) 50 μ 25 8 (2.0639) 50 n S t x μ n S t x α/2, α/2,             34 Dr. Yehya Mesalam
  • 35. Confidence Intervals for the Population Variance The random variable 2 2 2 1 n σ 1)s (n    follows a chi-square distribution with (n – 1) degrees of freedom Where the chi-square value denotes the number for which 2 , 1 n    α χ χ     ) P( 2 α , 1 n 2 1 n 35 Dr. Yehya Mesalam
  • 36. Confidence Intervals for the Population Variance The (1 - )% confidence interval for the population variance is 2 /2, - 1 2 2 2 /2, 2 1)s (n σ 1)s (n   α α χ χ     36 Dr. Yehya Mesalam
  • 37. Example You are testing the speed of a batch of computer processors. You collect the following data (in Mhz): Sample size 17 Sample mean 3004 Sample std dev 74 Assume the population is normal. Determine the 95% confidence interval for σ2 37 Dr. Yehya Mesalam
  • 38. Solution • n = 17 so the chi-square distribution has (n – 1) = 16 degrees of freedom •  = 0.05, so use the chi-square values with area 0.025 in each tail: probability α/2 = .025 2 16 2 16 = 28.85 6.91 28.85 2 0.975,16 2 /2, - 1 2 0.025,16 2 /2,     χ χ χ χ α α   2 16 = 6.91 probability α/2 = .025 38 Dr. Yehya Mesalam
  • 42. Solution • The 95% confidence interval is Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz 2 /2, - 1 2 2 2 /2, 2 1)s (n σ 1)s (n   α α χ χ     6.91 1)(74) (17 σ 28.85 1)(74) (17 2 2 2     12683 σ 3037 2   42 Dr. Yehya Mesalam
  • 43. Example 43 Dr. Yehya Mesalam . The lapping process which is used to grind certain silicon wafers to the proper thickness is acceptable only if the population standard deviation of the thickness of dice cut from the wafers is at most 0.50 mil. If the thicknesses of 17 dice cut from such wafers have a standard deviation of 0.78 mil. Find 95% confidence limits on .
  • 44. Solution 44 Dr. Yehya Mesalam . 2 /2, - 1 2 2 2 /2, 2 1)s (n σ 1)s (n   α α χ χ     6.908 0.78 * 6 1 σ 845 . 28 0.78 * 6 1 2 2 2   4091 . 1 σ 3374 . 0 2  
  • 45. ConfidenceIntervalbetween(TwoMeans) σ1 2 and σ2 2 known use Z 2 2 2 1 2 1 α/2 2 1 2 1 2 2 2 1 2 1 α/2 2 1 n σ n σ z ) x x ( μ μ n σ n σ z ) x x (          σ1 2 and σ2 2 Unknown and n1+n2 >30 use Z The confidence interval for μ1 – μ2 is: 2 2 2 1 2 1 α/2 2 1 2 1 2 2 2 1 2 1 α/2 2 1 n s n s z ) x x ( μ μ n s n s z ) x x (          2 2 2 1 2 1 2 1 2 1 n σ n σ ) μ (μ ) x x ( Z      The confidence interval for μ1 – μ2 is: 45 Dr. Yehya Mesalam
  • 46. Where 2 n n 1)s (n 1)s (n s 2 1 2 2 2 2 1 1 p       Is the pooled variance σ1 2 and σ2 2 Unknown and n1+n2 <=30 use t 2 1 2 1 2 1 n 1 n 1 ) μ (μ ) x x ( t      p S The confidence interval for μ1 – μ2 is: 46 ConfidenceIntervalbetween(TwoMeans) Dr. Yehya Mesalam 2 1 p α/2, 2 1 2 1 2 1 p α/2, 2 1 n 1 n 1 s . t ) x x ( μ μ n 1 n 1 .s t ) x x (           
  • 47. Example You are testing two computer processors for speed. Form a confidence interval for the difference in CPU speed. You collect the following speed data (in Mhz): CPU1 CPU2 Number Tested 16 13 Sample mean 3004 2538 Sample std dev 74 56 Assume both populations are normal with equal variances, and use 95% confidence 47 Dr. Yehya Mesalam
  • 48. Solution         4427.03 2) 13 (16 56 1 13 74 1 16 2) n (n S 1 n S 1 n S 2 2 2 1 2 2 2 2 1 1 2 p              The pooled variance is: The t value for a 95% confidence interval is: 2.052 t t 0.025,27 α/2,    48 Dr. Yehya Mesalam         537 . 6 6 2) 13 (16 56 1 13 74 1 16 2) n (n S 1 n S 1 n S 2 2 2 1 2 2 2 2 1 1 p             
  • 49. Solution • The 95% confidence interval is 13 1 16 1 66.537 * (2.052) 2538) (3004 μ μ 13 1 16 1 66.537 * (2.052) 2538) (3004 2 1          515.31 μ μ 416.69 2 1    We are 95% confident that the mean difference in CPU speed is between 416.69 and 515.31 Mhz. 2 1 p α/2, 2 1 2 1 2 1 p α/2, 2 1 n 1 n 1 s . t ) x x ( μ μ n 1 n 1 .s t ) x x (            49 Dr. Yehya Mesalam
  • 50. Example 50 Dr. Yehya Mesalam Method 1 71 75 65 69 73 66 69 75 74 87 68 Method 2 72 77 84 78 69 70 77 81 65 77 75 As part of an industrial training program, some trainees are instructed by Method 1, which is straight teaching-machine instruction, and some are instructed by Method 2, which also involves the personal attention of an instructor. If random samples are taken from large groups of trainees instructed by each of these two methods and the scores with standard deviation are 6.06, and 5.58 respectively; The score obtained in an appropriate achievement test are   % 100 1   2 1    •Use the 0.05 level of significance to find confidence limits on .
  • 51. Solution 51 Dr. Yehya Mesalam . SX SX2 Mean Variance S.D A 792 52351 72 36.8 6.0663 B 825 62183 75 30.8 5.549775 2 2 2 1 2 1 α/2 2 1 2 1 2 2 2 1 2 1 α/2 2 1 n σ n σ z ) x x ( μ μ n σ n σ z ) x x (          11 58 . 5 1 1 6.06 1.96 75) (72 μ μ 11 58 . 5 1 1 6.06 1.96 75) (72 2 2 2 1 2 2          1.858845 μ μ 7.85885 - 2 1   
  • 52. Example 52 Dr. Yehya Mesalam Method 1 71 75 65 69 73 66 69 75 74 87 68 Method 2 72 77 84 78 69 70 77 81 65 77 75 As part of an industrial training program, some trainees are instructed by Method 1, which is straight teaching- machine instruction, and some are instructed by Method 2, which also involves the personal attention of an instructor. If random samples are taken from large groups of trainees instructed by each of these two methods and the scores which they obtained in an appropriate achievement test are   % 100 1   2 1    •Use the 0.05 level of significance to find confidence limits on .
  • 53. Solution 53 Dr. Yehya Mesalam . SX SX2 Mean Variance S.D A 792 52351 72 36.8 6.0663 B 825 62183 75 30.8 5.549775 2 2 p 1 2 p α/2 , 2 1 1 1 2 2 p 1 2 p α/2 , 2 1 n s n s t ) x x ( μ μ n s n s t ) x x (            2 n n 1)s (n 1)s (n s 2 1 2 2 2 2 1 1 p       813 . 5 2 1 1 1 1 5.5497 * 0 1 6.0663 * 10 s 2 2 p     
  • 54. Solution 54 Dr. Yehya Mesalam . 11 1 1 1 1 813 . 5 * 086 . 2 75) (72 μ μ 11 1 1 1 1 813 . 5 * 086 . 2 75) (72 2 1          1705 . 2 μ μ 8.1705 - 2 1   