SlideShare a Scribd company logo
TSP.1
9.4
Travelling Salesperson Problem
(TSP)
• Very famous problem
• Many practical applications
• Very easy to describe
• Very difficult to solve (Curse of Dimensionality)
• We shall consider the dynamic
programming (DP) approach
• Other approaches: see 620-362
TSP.2
Problem Formulation
• There are many ways to describe this
problem.
• We shall consider the following:
– English version
– Linear Programming oriented version
– Linear Programming Free version
– Dynamic programming version
TSP.3
English Version
• You are given a set of n cities
• You are given the distances between
the cities
• You start and terminate your tour at
your home city
• You must visit each other city exactly
once.
• Your mission is to determine the
shortest tour.
TSP.4
Maths versions
• We shall consider two Maths Version
• The first is LP-based
• The second is LP-free
• The first version dominates the OR
literature
TSP.5
TSP Version 1 (LP)
• Decision variable:
A boolean matrix x interpreted as
follows:
x(i,j):= 1, iff we go from city i to city j.
x(i,j) := 0, otherwise
TSP.6
Example
• This matrix represents the tour (1,2,3,4,1)
x =
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0










TSP.7
Objective function
• d(i,j) = (direct) distance between city i and
city j.
z = ξ ( ι , ϕ ) δ ( ι , ϕ )
ϕ = 1
ν
∑
ι = 1
ν
∑
TSP.8
Constraints
• Each city must be “exited” exactly once
• Each city must be “entered” exactly once
x ( i , j )
j = 1
ν
∑ = 1 , ι = 1 , 2 , ..., ν
x ( i , j )
i = 1
ν
∑ = 1 , ϕ = 1 , 2 , ..., ν
TSP.9
Is this enough ?
TSP.10
No!
• The first two constraints allow sub-
tours
• Thus, we have to add a constraint that
will prevent sub-tours
TSP.11
Explanation: sub-tours
• Two subtour: (1,2,1) and (3,4,3)
• This solution is not feasible for the TSP
x =
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0










TSP.12
• If we start at the home city n=1, we will
not visit city 3 and 4.
• We must go from city 2 to either city 3
or city 4.
1
2
3
4
TSP.13
Subtour elimination constraint
• S = subset of cities
• |S| = cardinality of S (# of elements in S)
• There are 2n
such sets !!!!!!!
x ( i , j ) ≤ Σ
ι , ϕ ∈ Σ
∑ − 1 , ∀ Σ ⊂ { 1 , 2 , ..., ν }
TSP.14
Example
• Consider S={1,2}, |S|=2
x =
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0










x ( i , j ) = 2
ι , ϕ ∈ Σ
∑
• Hence the sub-tour
elimination constraint is
not satisfied.
• Indeed, thee are two
subtours in this solution
TSP.15
Thus, LP Version
min
x
x ( i , j ) d ( i , j )
j = 1
ν
∑
ι = 1
ν
∑
σ . τ.
ξ ( ι , ϕ) = 1 , ι = 1 , 2 , ..., ν
ϕ = 1
ν
∑
ξ ( ι , ϕ) = 1 , ϕ = 1 , 2 , ..., ν
ι = 1
ν
∑
ξ ( ι , ϕ) ≤ Σ − 1 , ∀ Σ ⊂ { 1 , 2 , ..., ν }
ι , ϕ∈ Σ
ν
∑
ξ ( ι , ϕ) ∈ { 0 , 1 }
TSP.16
LP-Free Version
• Decision variables:
xj := j-th city on the tour, j=1,2,…,n
• Example:
• x=(1,3,2,4,1)
• We start at city 1, then go to city 3,
then go to city 2 then go to city 4 then
return to city 1.
TSP.17
ASSUMPTION
• Assume that 0 is the home city, and
that there are n other cities
TSP.18
Objective function
z = δ ( 0 , ξ
1
) + δ ( ξ
ϕ
ϕ = 1
ν − 1
∑ , ξ
ϕ + 1
) + δ ( ξ
ν
, 0 )
TSP.19
Constraints
• The constraint basically says that x
is a permutation of the cities (1,2,3,
…,n)
• Make sure that you appreciate the
role of { } in this formulation.
x
1
, ..., x
n
{ } = { 1 , 2 , 3 , ..., ν }
TSP.20
LP-Free Formulation
• There are n! feasible solutions
x
1
, ..., x
n
{ } = { 1 , 2 , 3 , ..., ν }
min
x
d ( 0 , x
1
) + δ ( ξ
ϕ
ϕ = 1
ν − 1
∑ , ξ
ϕ + 1
) + δ ( ξ
ν
, 0 )






TSP.21
Which one do you prefer?
TSP.22
LP Version
min
x
x ( i , j ) d ( i , j )
j = 1
ν
∑
ι = 1
ν
∑
σ . τ.
ξ ( ι , ϕ) = 1 , ι = 1 , 2 , ..., ν
ϕ = 1
ν
∑
ξ ( ι , ϕ) = 1 , ϕ = 1 , 2 , ..., ν
ι = 1
ν
∑
ξ ( ι , ϕ) ≤ Σ − 1 , ∀ Σ ⊂ { 1 , 2 , ..., ν }
ι , ϕ∈ Σ
ν
∑
ξ ( ι , ϕ) ∈ { 0 , 1 }
TSP.23
LP Free Version
x
1
, ..., x
n
{ } = { 1 , 2 , 3 , ..., ν }
min
x
d ( 0 , x
1
) + δ ( ξ
ϕ
ϕ = 1
ν − 1
∑ , ξ
ϕ + 1
) + δ ( ξ
ν
, 0 )






TSP.24
DP Solution
• Let,
f(i,s) := shortest sub-tour given that we
are at city i and still have to visit the
cities in s (and return to home city)
Then clearly,
f (i,φ) = d(i,0), φ = empty set
f (i,s) = min
j ∈S
d(i, j) + f (j,s  {j}){ }, s ≠ φ
s  A:= {k ∈ s,k ∉ A}.
TSP.25
Explanation
• Then clearly, …..
(i,s)
We are at city i
and still have to
visit the cities
in s
Suppose we decide
that from here we
go to city j
Then we shall travel
the Distance d(i,j)
(j,s{j})
We are now at
city j and still
have to visit the
cities in s{j}
f (i,φ) = d(i,0), φ = empty set
f (i,s) = min
j ∈S
d(i, j) + f (j,s  {j}){ }, s ≠ φ
s  A := {k ∈ s,k ∉ A}.
TSP.26
Example (Winston, p. 751)
• Distance (miles)
• Cities: New York, Miami, Dallas, Chicago
d =
− 1334 1559 809
1334 − 1343 1397
1559 1343 − 921
809 1397 921 −
⎡
⎣
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
TSP.27
Initialization (s=φ)
• f(1, φ) = d(1,0) = 1334
• f(2, φ) = d(2,0) = 1559
• f(3, φ) = d(3,0) = 809
TSP.28
Iteration (on, i and s)
• We shall generate s systematically by its “size”.
• Size = 1: Possible values for s: {1}, {2}, {3}.
• s = {1} : f(2,{1})= ? ; f(3,{1})= ?
• s = {2} : f(1,{2})= ? ; f(3,{2})= ?
• s = {3} : f(1,{3})= ? ; f(2,{3})= ?
TSP.29
|s|=1
f(i,{j}) = d(i,j)+f(j, φ)
• f(2,{1})= d(2,1) + f(1,φ) = 1343 + 1334 = 2677
• f(3,{1})= d(3,1) + f(1,φ) = 1397 + 1334 = 2731
• f(1,{2})= d(1,2) + f(2,φ) = 1343 + 1559 = 2902
• f(3,{2})= d(3,2) + f(2,φ) = 921 + 1559 = 2480
• f(1,{3})= d(1,3) + f(3,φ) = 1397 + 809 = 2206
• f(2,{3})= d(2,3) + f(3,φ) = 921 + 809 = 1730
TSP.30
|s| = 2
f(i,s)= min{d(i,j)+f(j,s{j}): j in s}
• Size = 2: Possible values for s: {1,2}, {1,3}, {2,3}
Thus, we have to determine the values of
• f(3,{1,2}) = ? ; f(2,{1,3}) = ? ; f(1,{2,3}) = ?
• Eg:
f(3,{1,2}) = min {d(3,j) + f(j,s{j}): j in {1,2} }
= min {d(3,1) + f(1,{2}) , d(3,2) + f(2,{1})}
= min {1397+2902,921+2677}
= min {4299,3598}
= 3598 , N(3,{1,2})={2}
TSP.31
|s| = 3
• In this case there is only one feasible s, namely
s={1,2,3}.
• Thus, there is only one equation to solve, namely
for i=0, s={1,2,3}. The value of f(0,{1,2,3}) is the
shortest tour.
• Note that in this case
• f(0,{1,2,3})=min {d(0,j) + f(j,{1,2,3}{j}: j in {1,2,3}
• = min {d(0,1)+f(1,{2,3}), d(0,2)+ f(2,{1,3}), d(0,3)+f(3,
{1,2})}
• =min {1334+3073, 1559+3549, 809 + 3598}
• = min {4407,5108,4407} = 4407, N(0,{1,2,3})={1,3}
TSP.32
Recovery
• S=(0,{1,2,3}), N(s)={1,3} , c=1
• S={1,{2,3}}, N(s)={2}, c=(1,2)
• S={2,{3}}, N(s)={3}, c=(1,2,3).
• Hence: x*=(0,1,2,3,0), z*=4407

More Related Content

What's hot (13)

PPTX
Arithmetic progression
Rajaram Narasimhan
 
PDF
Numerical_Methods_Simpson_Rule
Alex_5991
 
PPT
one + 1
R Vittal Kiran
 
PPTX
Arithmetic progression
Chhavi Bansal
 
PPTX
Arithmetic Progression
Deepali Tanwar
 
PDF
Exercicios de integrais
Ribeij2
 
PPT
Arithmeticprogression 130714002550-phpapp02
Arpit Meena
 
PPTX
The Moore-Spiegel Oscillator
Abhranil Das
 
PPT
Arithmetic Progression
itutor
 
PPT
Arithmetic progressions
shefali1710
 
PDF
From moments to sparse representations, a geometric, algebraic and algorithmi...
BernardMourrain
 
PPTX
Laplace periodic function
Kaushal Surti
 
PDF
Bioalgo 2013-06-alignment-1 0
BioinformaticsInstitute
 
Arithmetic progression
Rajaram Narasimhan
 
Numerical_Methods_Simpson_Rule
Alex_5991
 
Arithmetic progression
Chhavi Bansal
 
Arithmetic Progression
Deepali Tanwar
 
Exercicios de integrais
Ribeij2
 
Arithmeticprogression 130714002550-phpapp02
Arpit Meena
 
The Moore-Spiegel Oscillator
Abhranil Das
 
Arithmetic Progression
itutor
 
Arithmetic progressions
shefali1710
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
BernardMourrain
 
Laplace periodic function
Kaushal Surti
 
Bioalgo 2013-06-alignment-1 0
BioinformaticsInstitute
 

Similar to Chapter9 4 (20)

PPT
Travelling sales an problem
suprabhathsimacs
 
PDF
Optimal Vacation Itinerary Modeling
Gerard Trimberger
 
PPT
Appendix b 2
Loc Tran
 
PPTX
Travelling Salesman Problem
Daniel Raditya
 
PPT
Order-Picking-Policies.ppt
TaspiyaAfroz
 
PPT
Appendix b 2
Nv Thejaswini
 
PPT
order picking policies pick sequencing batching
agoyscepa
 
PPTX
unit-4-dynamic programming
hodcsencet
 
PPTX
Travelling salesman problem
Pradeep Behera
 
PPTX
Traveling Salesman Problem
Indian Institute of Technology, Roorkee
 
PPTX
Travelling salesman problem
MariamS99
 
PDF
The Traveling Salesman Problem
Maryam Alipour
 
PPTX
Dynamic Programming in design and analysis .pptx
dimpuk1
 
PPTX
Traveling salesman problem(tsp)
Viraj Patil
 
PPTX
Traveling salesman problem(tsp)
Viraj Patil
 
PPTX
Combinatorial Optimization
Institute of Technology, Nirma University
 
PDF
The Traveling Salesman Problem: A Neural Network Perspective
mustafa sarac
 
DOCX
Unit 7 dynamic programming
Nageswara Rao Thots
 
PPTX
Travelling Salesman Problem
Aafaqueahmad Khan
 
PDF
Fixed Position Constraints in a Travelling Salesman Problem (TSP) with Multip...
dbpublications
 
Travelling sales an problem
suprabhathsimacs
 
Optimal Vacation Itinerary Modeling
Gerard Trimberger
 
Appendix b 2
Loc Tran
 
Travelling Salesman Problem
Daniel Raditya
 
Order-Picking-Policies.ppt
TaspiyaAfroz
 
Appendix b 2
Nv Thejaswini
 
order picking policies pick sequencing batching
agoyscepa
 
unit-4-dynamic programming
hodcsencet
 
Travelling salesman problem
Pradeep Behera
 
Traveling Salesman Problem
Indian Institute of Technology, Roorkee
 
Travelling salesman problem
MariamS99
 
The Traveling Salesman Problem
Maryam Alipour
 
Dynamic Programming in design and analysis .pptx
dimpuk1
 
Traveling salesman problem(tsp)
Viraj Patil
 
Traveling salesman problem(tsp)
Viraj Patil
 
Combinatorial Optimization
Institute of Technology, Nirma University
 
The Traveling Salesman Problem: A Neural Network Perspective
mustafa sarac
 
Unit 7 dynamic programming
Nageswara Rao Thots
 
Travelling Salesman Problem
Aafaqueahmad Khan
 
Fixed Position Constraints in a Travelling Salesman Problem (TSP) with Multip...
dbpublications
 
Ad

More from Nv Thejaswini (11)

DOC
Mea notes
Nv Thejaswini
 
DOC
Huffman coding01
Nv Thejaswini
 
PPT
Lecture11
Nv Thejaswini
 
DOC
Branch and bound
Nv Thejaswini
 
DOC
Unit 5 jwfiles
Nv Thejaswini
 
DOC
Unit 4 jwfiles
Nv Thejaswini
 
DOC
Unit 3 daa
Nv Thejaswini
 
DOC
Unit 2 in daa
Nv Thejaswini
 
PPT
Ch8 of OS
Nv Thejaswini
 
PPTX
Presentation solar
Nv Thejaswini
 
Mea notes
Nv Thejaswini
 
Huffman coding01
Nv Thejaswini
 
Lecture11
Nv Thejaswini
 
Branch and bound
Nv Thejaswini
 
Unit 5 jwfiles
Nv Thejaswini
 
Unit 4 jwfiles
Nv Thejaswini
 
Unit 3 daa
Nv Thejaswini
 
Unit 2 in daa
Nv Thejaswini
 
Ch8 of OS
Nv Thejaswini
 
Presentation solar
Nv Thejaswini
 
Ad

Recently uploaded (20)

PPTX
Basics of Auto Computer Aided Drafting .pptx
Krunal Thanki
 
PDF
2010_Book_EnvironmentalBioengineering (1).pdf
EmilianoRodriguezTll
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
PPTX
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
PPTX
cybersecurityandthe importance of the that
JayachanduHNJc
 
PPTX
Information Retrieval and Extraction - Module 7
premSankar19
 
PDF
CAD-CAM U-1 Combined Notes_57761226_2025_04_22_14_40.pdf
shailendrapratap2002
 
PDF
4 Tier Teamcenter Installation part1.pdf
VnyKumar1
 
PDF
Jual GPS Geodetik CHCNAV i93 IMU-RTK Lanjutan dengan Survei Visual
Budi Minds
 
PPTX
Inventory management chapter in automation and robotics.
atisht0104
 
PDF
All chapters of Strength of materials.ppt
girmabiniyam1234
 
PDF
Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeS...
2208441
 
PPTX
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
PPTX
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PDF
SG1-ALM-MS-EL-30-0008 (00) MS - Isolators and disconnecting switches.pdf
djiceramil
 
PDF
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
ijcncjournal019
 
PDF
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
Basics of Auto Computer Aided Drafting .pptx
Krunal Thanki
 
2010_Book_EnvironmentalBioengineering (1).pdf
EmilianoRodriguezTll
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
FUNDAMENTALS OF ELECTRIC VEHICLES UNIT-1
MikkiliSuresh
 
cybersecurityandthe importance of the that
JayachanduHNJc
 
Information Retrieval and Extraction - Module 7
premSankar19
 
CAD-CAM U-1 Combined Notes_57761226_2025_04_22_14_40.pdf
shailendrapratap2002
 
4 Tier Teamcenter Installation part1.pdf
VnyKumar1
 
Jual GPS Geodetik CHCNAV i93 IMU-RTK Lanjutan dengan Survei Visual
Budi Minds
 
Inventory management chapter in automation and robotics.
atisht0104
 
All chapters of Strength of materials.ppt
girmabiniyam1234
 
Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeS...
2208441
 
business incubation centre aaaaaaaaaaaaaa
hodeeesite4
 
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
SG1-ALM-MS-EL-30-0008 (00) MS - Isolators and disconnecting switches.pdf
djiceramil
 
AI-Driven IoT-Enabled UAV Inspection Framework for Predictive Maintenance and...
ijcncjournal019
 
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 

Chapter9 4

  • 1. TSP.1 9.4 Travelling Salesperson Problem (TSP) • Very famous problem • Many practical applications • Very easy to describe • Very difficult to solve (Curse of Dimensionality) • We shall consider the dynamic programming (DP) approach • Other approaches: see 620-362
  • 2. TSP.2 Problem Formulation • There are many ways to describe this problem. • We shall consider the following: – English version – Linear Programming oriented version – Linear Programming Free version – Dynamic programming version
  • 3. TSP.3 English Version • You are given a set of n cities • You are given the distances between the cities • You start and terminate your tour at your home city • You must visit each other city exactly once. • Your mission is to determine the shortest tour.
  • 4. TSP.4 Maths versions • We shall consider two Maths Version • The first is LP-based • The second is LP-free • The first version dominates the OR literature
  • 5. TSP.5 TSP Version 1 (LP) • Decision variable: A boolean matrix x interpreted as follows: x(i,j):= 1, iff we go from city i to city j. x(i,j) := 0, otherwise
  • 6. TSP.6 Example • This matrix represents the tour (1,2,3,4,1) x = 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0          
  • 7. TSP.7 Objective function • d(i,j) = (direct) distance between city i and city j. z = ξ ( ι , ϕ ) δ ( ι , ϕ ) ϕ = 1 ν ∑ ι = 1 ν ∑
  • 8. TSP.8 Constraints • Each city must be “exited” exactly once • Each city must be “entered” exactly once x ( i , j ) j = 1 ν ∑ = 1 , ι = 1 , 2 , ..., ν x ( i , j ) i = 1 ν ∑ = 1 , ϕ = 1 , 2 , ..., ν
  • 10. TSP.10 No! • The first two constraints allow sub- tours • Thus, we have to add a constraint that will prevent sub-tours
  • 11. TSP.11 Explanation: sub-tours • Two subtour: (1,2,1) and (3,4,3) • This solution is not feasible for the TSP x = 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0          
  • 12. TSP.12 • If we start at the home city n=1, we will not visit city 3 and 4. • We must go from city 2 to either city 3 or city 4. 1 2 3 4
  • 13. TSP.13 Subtour elimination constraint • S = subset of cities • |S| = cardinality of S (# of elements in S) • There are 2n such sets !!!!!!! x ( i , j ) ≤ Σ ι , ϕ ∈ Σ ∑ − 1 , ∀ Σ ⊂ { 1 , 2 , ..., ν }
  • 14. TSP.14 Example • Consider S={1,2}, |S|=2 x = 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0           x ( i , j ) = 2 ι , ϕ ∈ Σ ∑ • Hence the sub-tour elimination constraint is not satisfied. • Indeed, thee are two subtours in this solution
  • 15. TSP.15 Thus, LP Version min x x ( i , j ) d ( i , j ) j = 1 ν ∑ ι = 1 ν ∑ σ . τ. ξ ( ι , ϕ) = 1 , ι = 1 , 2 , ..., ν ϕ = 1 ν ∑ ξ ( ι , ϕ) = 1 , ϕ = 1 , 2 , ..., ν ι = 1 ν ∑ ξ ( ι , ϕ) ≤ Σ − 1 , ∀ Σ ⊂ { 1 , 2 , ..., ν } ι , ϕ∈ Σ ν ∑ ξ ( ι , ϕ) ∈ { 0 , 1 }
  • 16. TSP.16 LP-Free Version • Decision variables: xj := j-th city on the tour, j=1,2,…,n • Example: • x=(1,3,2,4,1) • We start at city 1, then go to city 3, then go to city 2 then go to city 4 then return to city 1.
  • 17. TSP.17 ASSUMPTION • Assume that 0 is the home city, and that there are n other cities
  • 18. TSP.18 Objective function z = δ ( 0 , ξ 1 ) + δ ( ξ ϕ ϕ = 1 ν − 1 ∑ , ξ ϕ + 1 ) + δ ( ξ ν , 0 )
  • 19. TSP.19 Constraints • The constraint basically says that x is a permutation of the cities (1,2,3, …,n) • Make sure that you appreciate the role of { } in this formulation. x 1 , ..., x n { } = { 1 , 2 , 3 , ..., ν }
  • 20. TSP.20 LP-Free Formulation • There are n! feasible solutions x 1 , ..., x n { } = { 1 , 2 , 3 , ..., ν } min x d ( 0 , x 1 ) + δ ( ξ ϕ ϕ = 1 ν − 1 ∑ , ξ ϕ + 1 ) + δ ( ξ ν , 0 )      
  • 21. TSP.21 Which one do you prefer?
  • 22. TSP.22 LP Version min x x ( i , j ) d ( i , j ) j = 1 ν ∑ ι = 1 ν ∑ σ . τ. ξ ( ι , ϕ) = 1 , ι = 1 , 2 , ..., ν ϕ = 1 ν ∑ ξ ( ι , ϕ) = 1 , ϕ = 1 , 2 , ..., ν ι = 1 ν ∑ ξ ( ι , ϕ) ≤ Σ − 1 , ∀ Σ ⊂ { 1 , 2 , ..., ν } ι , ϕ∈ Σ ν ∑ ξ ( ι , ϕ) ∈ { 0 , 1 }
  • 23. TSP.23 LP Free Version x 1 , ..., x n { } = { 1 , 2 , 3 , ..., ν } min x d ( 0 , x 1 ) + δ ( ξ ϕ ϕ = 1 ν − 1 ∑ , ξ ϕ + 1 ) + δ ( ξ ν , 0 )      
  • 24. TSP.24 DP Solution • Let, f(i,s) := shortest sub-tour given that we are at city i and still have to visit the cities in s (and return to home city) Then clearly, f (i,φ) = d(i,0), φ = empty set f (i,s) = min j ∈S d(i, j) + f (j,s {j}){ }, s ≠ φ s A:= {k ∈ s,k ∉ A}.
  • 25. TSP.25 Explanation • Then clearly, ….. (i,s) We are at city i and still have to visit the cities in s Suppose we decide that from here we go to city j Then we shall travel the Distance d(i,j) (j,s{j}) We are now at city j and still have to visit the cities in s{j} f (i,φ) = d(i,0), φ = empty set f (i,s) = min j ∈S d(i, j) + f (j,s {j}){ }, s ≠ φ s A := {k ∈ s,k ∉ A}.
  • 26. TSP.26 Example (Winston, p. 751) • Distance (miles) • Cities: New York, Miami, Dallas, Chicago d = − 1334 1559 809 1334 − 1343 1397 1559 1343 − 921 809 1397 921 − ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
  • 27. TSP.27 Initialization (s=φ) • f(1, φ) = d(1,0) = 1334 • f(2, φ) = d(2,0) = 1559 • f(3, φ) = d(3,0) = 809
  • 28. TSP.28 Iteration (on, i and s) • We shall generate s systematically by its “size”. • Size = 1: Possible values for s: {1}, {2}, {3}. • s = {1} : f(2,{1})= ? ; f(3,{1})= ? • s = {2} : f(1,{2})= ? ; f(3,{2})= ? • s = {3} : f(1,{3})= ? ; f(2,{3})= ?
  • 29. TSP.29 |s|=1 f(i,{j}) = d(i,j)+f(j, φ) • f(2,{1})= d(2,1) + f(1,φ) = 1343 + 1334 = 2677 • f(3,{1})= d(3,1) + f(1,φ) = 1397 + 1334 = 2731 • f(1,{2})= d(1,2) + f(2,φ) = 1343 + 1559 = 2902 • f(3,{2})= d(3,2) + f(2,φ) = 921 + 1559 = 2480 • f(1,{3})= d(1,3) + f(3,φ) = 1397 + 809 = 2206 • f(2,{3})= d(2,3) + f(3,φ) = 921 + 809 = 1730
  • 30. TSP.30 |s| = 2 f(i,s)= min{d(i,j)+f(j,s{j}): j in s} • Size = 2: Possible values for s: {1,2}, {1,3}, {2,3} Thus, we have to determine the values of • f(3,{1,2}) = ? ; f(2,{1,3}) = ? ; f(1,{2,3}) = ? • Eg: f(3,{1,2}) = min {d(3,j) + f(j,s{j}): j in {1,2} } = min {d(3,1) + f(1,{2}) , d(3,2) + f(2,{1})} = min {1397+2902,921+2677} = min {4299,3598} = 3598 , N(3,{1,2})={2}
  • 31. TSP.31 |s| = 3 • In this case there is only one feasible s, namely s={1,2,3}. • Thus, there is only one equation to solve, namely for i=0, s={1,2,3}. The value of f(0,{1,2,3}) is the shortest tour. • Note that in this case • f(0,{1,2,3})=min {d(0,j) + f(j,{1,2,3}{j}: j in {1,2,3} • = min {d(0,1)+f(1,{2,3}), d(0,2)+ f(2,{1,3}), d(0,3)+f(3, {1,2})} • =min {1334+3073, 1559+3549, 809 + 3598} • = min {4407,5108,4407} = 4407, N(0,{1,2,3})={1,3}
  • 32. TSP.32 Recovery • S=(0,{1,2,3}), N(s)={1,3} , c=1 • S={1,{2,3}}, N(s)={2}, c=(1,2) • S={2,{3}}, N(s)={3}, c=(1,2,3). • Hence: x*=(0,1,2,3,0), z*=4407