This document discusses processing scientific mass spectrometry data in real-time using parallel and distributed computing techniques. It describes how a mass spectrometry experiment produces terabytes of data that currently takes over 24 hours to fully process. The document proposes using MapReduce and Apache Flink to parallelize the data processing across clusters to help speed it up towards real-time analysis. Initial tests show Flink can process the data 2-3 times faster than traditional Hadoop MapReduce. Finally, it discusses simulating real-time streaming of the data using Kafka and Flink Streaming to enable processing results within 10 seconds of the experiment completing.