Pilot Optimization and Channel Estimation for
Multiuser Massive MIMO Systems
Tadilo Endeshaw Bogale
Institute National de la Recherche Scientifique (INRS),
Canada
March 20, 2014
Presentation outline
Presentation outline
1 Multiuser Block Diagram
2 Problem Statement
3 Proposed Solution
4 Simulation Results
5 Conclusions
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 2 / 12
Multiuser Block Diagram
Communication Scenario and Objective
BS
a1 · · · aM
MS1
MS2
MSK
h
1
h2
hK
Scenario
• MS1, MS2, MSK are separated in space
and no coordination between them
⇒ Downlink Multiuser system
• MS1, MS2, MSK have single antennas
⇒ Downlink Multiuser MISO system
• Channel between Tx and Rx is flat fading
• Transmission is TDD
• M >> K (i.e., Massive MIMO system)
General Objective
• To estimate channels H = [h1, h2, · · · hk ]
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 3 / 12
Multiuser Block Diagram
Conventional Channel Estimation (Orthogonal)
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
h3
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 4 / 12
Multiuser Block Diagram
Conventional Channel Estimation (Orthogonal)
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
h3
x1
x2
x3
⋄ y1 = h1x11 + h2x21 + h3x31 + n1
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
Multiuser Block Diagram
Conventional Channel Estimation (Orthogonal)
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
h3
x1
x2
x3
⋄ y1 = h1x11 + h2x21 + h3x31 + n1
y2 = h1x12 + h2x22 + h3x32 + n2
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
Multiuser Block Diagram
Conventional Channel Estimation (Orthogonal)
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
h3
x1
x2
x3
⋄ y1 = h1x11 + h2x21 + h3x31 + n1
y2 = h1x12 + h2x22 + h3x32 + n2
y3 = h1x13 + h2x23 + h3x33 + n3
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
Multiuser Block Diagram
Conventional Channel Estimation (Orthogonal)
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
h3
x1
x2
x3
⋄ y1 = h1x11 + h2x21 + h3x31 + n1
y2 = h1x12 + h2x22 + h3x32 + n2
y3 = h1x13 + h2x23 + h3x33 + n3
⇒ Y = HX + N
where X = [x1 x2 x3]
N = [n1 n2 n3]
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
Multiuser Block Diagram
Conventional Channel Estimation (Orthogonal)
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
h3
x1
x2
x3
⋄ y1 = h1x11 + h2x21 + h3x31 + n1
y2 = h1x12 + h2x22 + h3x32 + n2
y3 = h1x13 + h2x23 + h3x33 + n3
⇒ Y = HX + N
where X = [x1 x2 x3]
N = [n1 n2 n3]
⇒ YXH
= H + NXH
ˆhk = hk + NxH
k
⇒ Requires N ≥ K
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
Problem Statement
Problem Statement
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Objective : Optimize pilots xk
Estimate channels hk , ∀N, M, K
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
Problem Statement
Problem Statement
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Objective : Optimize pilots xk
Estimate channels hk , ∀N, M, K
⋄ Assumptions : hk =
√
gk
˜hk
˜hk ∼ CN(0, 1)
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
Problem Statement
Problem Statement
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Objective : Optimize pilots xk
Estimate channels hk , ∀N, M, K
⋄ Assumptions : hk =
√
gk
˜hk
˜hk ∼ CN(0, 1)
⋄ Problem : Y = HXH
+ N
where H = [h1, · · · , hK ]
X = [x1, · · · , xN ]
N = [n1, · · · , nN]
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
Problem Statement
Problem Statement
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Objective : Optimize pilots xk
Estimate channels hk , ∀N, M, K
⋄ Assumptions : hk =
√
gk
˜hk
˜hk ∼ CN(0, 1)
⋄ Problem : Y = HXH
+ N
where H = [h1, · · · , hK ]
X = [x1, · · · , xN ]
N = [n1, · · · , nN]
⋄ Represent : hk = WH
k Yuk
ξk = tr{E{|hk − hk |2
}}
= uH
k (
K
i=1 gi xi xH
i + σ2
IN)uk tr{(WH
k Wk )}
+gk IM − (gk xH
k uk )tr{WH
k } − (gk uH
k xk )tr{Wk }
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
Proposed Solution
Proposed Solution
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Represent : hk = WH
k Yuk
ξk = tr{E{|hk − hk |2
}}
= uH
k (
K
i=1 gi xi xH
i + σ2
IN)uk tr{(WH
k Wk )}
+gk IM − (gk xH
k uk )tr{WH
k } − (gk uH
k xk )tr{Wk }
⋄ ξk depends on gk ⇒ higher gk higher ξk
⇒ To incorporate fairness
minxk ,uk ,Wk
K
k=1
1
gk
ξk
s.t xH
k xk ≤ Pk
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 7 / 12
Proposed Solution
Proposed Solution
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Represent : hk = WH
k Yuk
ξk = tr{E{|hk − hk |2
}}
= uH
k (
K
i=1 gi xi xH
i + σ2
IN)uk tr{(WH
k Wk )}
+gk IM − (gk xH
k uk )tr{WH
k } − (gk uH
k xk )tr{Wk }
⋄ ξk depends on gk ⇒ higher gk higher ξk
⇒ To incorporate fairness
minxk ,uk ,Wk
K
k=1
1
gk
ξk
s.t xH
k xk ≤ Pk
⋄ Wk =
gk xH
k uk
K
i=1 gi xH
i
uk uH
k
xi +σ2uH
k
uk
IM .
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 7 / 12
Proposed Solution
Proposed Solution
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Represent : hk = WH
k Yuk
ξk = tr{E{|hk − hk |2
}}
= uH
k (
K
i=1 gi xi xH
i + σ2
IN)uk tr{(WH
k Wk )}
+gk IM − (gk xH
k uk )tr{WH
k } − (gk uH
k xk )tr{Wk }
⋄ ξk depends on gk ⇒ higher gk higher ξk
⇒ To incorporate fairness
minxk ,uk ,Wk
K
k=1
1
gk
ξk
s.t xH
k xk ≤ Pk
⋄ Wk =
gk xH
k uk
K
i=1 gi xH
i
uk uH
k
xi +σ2uH
k
uk
IM .
⋄ ˜ξk = M gk −
uH
k (g2
k xk xH
k )uk
uH
k
( K
i=1 gi xi xH
i
+σ2IN )uk
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 7 / 12
Proposed Solution
Proposed Solution
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Wk =
gk xH
k uk
K
i=1 gi xH
i
uk uH
k
xi +σ2uH
k
uk
IM .
⋄ ˜ξk = M gk −
uH
k (g2
k xk xH
k )uk
uH
k
( K
i=1 gi xi xH
i
+σ2IN )uk
⋄ ˜˜ξk = Mgk − Mg2
k xH
k A−1
xk
where A =
K
i=1 gi xi xH
i + σ2
I
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 8 / 12
Proposed Solution
Proposed Solution
BS
a1 · · · aM
MS1
MS2
MS3
h
1
h2
hK
x1
x2
xK
⋄ Wk =
gk xH
k uk
K
i=1 gi xH
i
uk uH
k
xi +σ2uH
k
uk
IM .
⋄ ˜ξk = M gk −
uH
k (g2
k xk xH
k )uk
uH
k
( K
i=1 gi xi xH
i
+σ2IN )uk
⋄ ˜˜ξk = Mgk − Mg2
k xH
k A−1
xk
where A =
K
i=1 gi xi xH
i + σ2
I
⋄ minxk
tr{Q−1
k } −
gk xH
k Q−2
k
xk
1+gk xH
k
Q−1
k
xk
s.t xH
k xk ≤ Pk
where Qk =
K
i=1,i=k gi xi xH
i + σ2
IN
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 8 / 12
Simulation Results
Effect of SNR
Parameters: M = 128, N = 16, K = 32, Pk = 1mw, SNR = Pav
σ2
0 2 4 6 8 10 12 14 15
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
SNR (dB)
NormalizedWSMSE
Existing algorithm
Proposed algorithm
g =












0.04 0.74 0.81 0.26
0.70 0.29 0.08 0.87
0.07 0.74 0.12 0.44
0.59 0.63 0.53 0.20
0.67 0.24 0.72 0.40
0.39 0.41 0.14 0.87
0.02 0.92 0.63 0.06
0.63 0.75 0.76 0.06












Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 9 / 12
Simulation Results
Effect of Number of pilots (N)
Parameters: M = 128, K = 32, Pk = 1mw, SNR = Pav
σ2
16 18 20 22 24 26 28 30 32
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Number of pilot symbols (N)
NormalizedWSMSE
Existing (Orange) and proposed (Blue) algorithms
SNR = 18dB
SNR = 12dB
SNR = 6dB
g =












0.04 0.74 0.81 0.26
0.70 0.29 0.08 0.87
0.07 0.74 0.12 0.44
0.59 0.63 0.53 0.20
0.67 0.24 0.72 0.40
0.39 0.41 0.14 0.87
0.02 0.92 0.63 0.06
0.63 0.75 0.76 0.06












Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 10 / 12
Simulation Results
Convergence speed and effect of initialization
Parameters: M = 128, N = 16, K = 32, Pk = 1mw, SNR = Pav
σ2
5 10 15 20 25 30 35 40
0.75
0.755
0.76
0.765
0.77
0.775
0.78
0.785
0.79
0.795
0.8
Iteration number
NormalizedWSMSE
SNR = 0dB
DFT matrix with pilot reuse
Truncated DFT matrix
Random matrix
5 10 15 20 25 30 35 40
0.67
0.68
0.69
0.7
0.71
0.72
0.73
SNR = 3dB
Iteration number
NormalizedWSMSE
DFT matrix with pilot reuse
Truncated DFT matrix
Random matrix
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 11 / 12
Conclusions
Conclusions
In this work, we accomplish the following main tasks.
We propose new pilot assignment and channel estimation
algorithm (especially for Massive MIMO system)
The proposed algorithm employs WSMSE as an objective function
To solve the problem, we apply MMSE and Rayleigh quotient
methods
The proposed algorithm achieves the optimal pilot and estimated
channel when K = N
Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 12 / 12

More Related Content

PDF
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
PDF
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
PDF
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
PDF
Slide11 icc2015
PDF
Graph kernels
PDF
rgDefense
PDF
Graph Edit Distance: Basics & Trends
PDF
presentation
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
Slide11 icc2015
Graph kernels
rgDefense
Graph Edit Distance: Basics & Trends
presentation

What's hot (19)

PDF
A One-Pass Triclustering Approach: Is There any Room for Big Data?
PPTX
Ponchon Savarait
PPT
Processing Reachability Queries with Realistic Constraints on Massive Network...
PDF
Querying Temporal Databases via OWL 2 QL
PDF
Iterative methods with special structures
PDF
Zero-Forcing Precoding and Generalized Inverses
PDF
Improving initial generations in pso algorithm for transportation network des...
PDF
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
PDF
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
PDF
Quantitative norm convergence of some ergodic averages
PDF
The power and Arnoldi methods in an algebra of circulants
PPT
study Streaming Multigrid For Gradient Domain Operations On Large Images
PPTX
Effect of gauss doping profile on electric potential of p-n diode
PDF
[DL輪読会]近年のエネルギーベースモデルの進展
PDF
From planar maps to spatial topology change in 2d gravity
PDF
Operation cost reduction in unit commitment problem using improved quantum bi...
PDF
Wasserstein GAN
PDF
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
PDF
Non-exhaustive, Overlapping K-means
A One-Pass Triclustering Approach: Is There any Room for Big Data?
Ponchon Savarait
Processing Reachability Queries with Realistic Constraints on Massive Network...
Querying Temporal Databases via OWL 2 QL
Iterative methods with special structures
Zero-Forcing Precoding and Generalized Inverses
Improving initial generations in pso algorithm for transportation network des...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Quantitative norm convergence of some ergodic averages
The power and Arnoldi methods in an algebra of circulants
study Streaming Multigrid For Gradient Domain Operations On Large Images
Effect of gauss doping profile on electric potential of p-n diode
[DL輪読会]近年のエネルギーベースモデルの進展
From planar maps to spatial topology change in 2d gravity
Operation cost reduction in unit commitment problem using improved quantum bi...
Wasserstein GAN
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Non-exhaustive, Overlapping K-means
Ad

Viewers also liked (20)

PDF
Channel estimation - F. Ling
PDF
Short survey for Channel estimation using OFDM systems
PDF
Orthogonal Faster than Nyquist Transmission for SIMO Wireless Systems
PDF
Pilot Contamination Mitigation for Wideband Massive MIMO: Number of Cells Vs ...
PDF
Channel estimation
PDF
Tutorial PIMRC 2015 [T8]
PDF
Frame Synchronization for OFDMA mode of WMAN
PPTX
VTC-location based channel estimation for massive full-dimensional MIMO systems
PDF
Mimo and sync_with_usrp
PDF
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
PDF
Transportation of MIMO Radio Signals over RoF-Distributed Antenna System and ...
PPTX
Final presentation
PDF
Channel estimation-for-wireless-ofdm-communications
PPTX
MILLIMETER WAVE FOR 5G CELLULAR
PPTX
OFDM Orthogonal Frequency Division Multiplexing
PDF
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
PPTX
orthogonal frequency division multiplexing(OFDM)
PDF
Introduction to Massive Mimo
PPTX
MIMO in 4G Wireless
PDF
Mimo ofdm wireless communications with matlab
Channel estimation - F. Ling
Short survey for Channel estimation using OFDM systems
Orthogonal Faster than Nyquist Transmission for SIMO Wireless Systems
Pilot Contamination Mitigation for Wideband Massive MIMO: Number of Cells Vs ...
Channel estimation
Tutorial PIMRC 2015 [T8]
Frame Synchronization for OFDMA mode of WMAN
VTC-location based channel estimation for massive full-dimensional MIMO systems
Mimo and sync_with_usrp
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
Transportation of MIMO Radio Signals over RoF-Distributed Antenna System and ...
Final presentation
Channel estimation-for-wireless-ofdm-communications
MILLIMETER WAVE FOR 5G CELLULAR
OFDM Orthogonal Frequency Division Multiplexing
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
orthogonal frequency division multiplexing(OFDM)
Introduction to Massive Mimo
MIMO in 4G Wireless
Mimo ofdm wireless communications with matlab
Ad

Similar to Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems (20)

PDF
A reduced complexity and an efficient channel
PPTX
itu k-2(1)(1).pptx
PDF
Performance analysis of adaptive filter channel estimated MIMO OFDM communica...
PDF
Performance Analysis of MIMO–OFDM for PCHBF , RELAY Technique with MMSE For T...
PDF
Low-complex Bayesian estimator for imperfect channels in massive muti-input ...
PDF
Indexed-channel estimation under frequency and time-selective fading channels...
PPTX
Learning the mmse channel estimators
PDF
Paper id 22201419
PDF
Sparse channel estimation by pilot allocation in MIMO-OFDM systems
PDF
EE402B Radio Systems and Personal Communication Networks-Formula sheet
PPTX
Green Communication
PDF
Research paper (channel_estimation)
PDF
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
PDF
Strategies to Combat Pilot Contamination in Massive MIMO Systems
PDF
F43063841
PDF
MIMO Channel Estimation Using the LS and MMSE Algorithm
PDF
Hg3413361339
PPTX
PDF
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
PDF
Pilot based channel estimation improvement in orthogonal frequency-division m...
A reduced complexity and an efficient channel
itu k-2(1)(1).pptx
Performance analysis of adaptive filter channel estimated MIMO OFDM communica...
Performance Analysis of MIMO–OFDM for PCHBF , RELAY Technique with MMSE For T...
Low-complex Bayesian estimator for imperfect channels in massive muti-input ...
Indexed-channel estimation under frequency and time-selective fading channels...
Learning the mmse channel estimators
Paper id 22201419
Sparse channel estimation by pilot allocation in MIMO-OFDM systems
EE402B Radio Systems and Personal Communication Networks-Formula sheet
Green Communication
Research paper (channel_estimation)
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Strategies to Combat Pilot Contamination in Massive MIMO Systems
F43063841
MIMO Channel Estimation Using the LS and MMSE Algorithm
Hg3413361339
Hybrid Adaptive Channel Estimation Technique in Time and Frequency Domain for...
Pilot based channel estimation improvement in orthogonal frequency-division m...

More from T. E. BOGALE (10)

PDF
Dominant CIR Tap Index Identification for Wideband Channels
PDF
Hybrid Analog-Digital Architecture for Massive MIMO: An Introduction
PDF
Adaptive Channel Prediction, Beamforming and Scheduling Design for 5G V2I Net...
PDF
5G WIRELESS TECHNOLOGIES FOR V2X COMMUNICATIONS
PDF
5G Communication (Full Video: https://www.youtube.com/watch?v=ICE2BGbQ_14)
PDF
Call for papers: CROWNCOM Cognitive Radio Workshop
PDF
Sum Rate Optimization for Coordinated Multi-antenna Base Station Systems
PDF
MSE uplink-downlink duality of MIMO systems under imperfect CSI
PDF
Weighted Sum Rate Optimization for Downlink Multiuser MIMO Systems with per A...
PDF
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...
Dominant CIR Tap Index Identification for Wideband Channels
Hybrid Analog-Digital Architecture for Massive MIMO: An Introduction
Adaptive Channel Prediction, Beamforming and Scheduling Design for 5G V2I Net...
5G WIRELESS TECHNOLOGIES FOR V2X COMMUNICATIONS
5G Communication (Full Video: https://www.youtube.com/watch?v=ICE2BGbQ_14)
Call for papers: CROWNCOM Cognitive Radio Workshop
Sum Rate Optimization for Coordinated Multi-antenna Base Station Systems
MSE uplink-downlink duality of MIMO systems under imperfect CSI
Weighted Sum Rate Optimization for Downlink Multiuser MIMO Systems with per A...
Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance ...

Recently uploaded (20)

PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PPTX
Agentic Artificial Intelligence (Agentic AI).pptx
PPTX
Unit_1_introduction to surveying for diploma.pptx
PDF
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
PPTX
mechattonicsand iotwith sensor and actuator
PDF
First part_B-Image Processing - 1 of 2).pdf
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PPTX
AI-Reporting for Emerging Technologies(BS Computer Engineering)
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
PDF
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
PPTX
CT Generations and Image Reconstruction methods
PPTX
Wireless sensor networks (WSN) SRM unit 2
PDF
Present and Future of Systems Engineering: Air Combat Systems
DOCX
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
PPTX
Amdahl’s law is explained in the above power point presentations
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PPTX
Principal presentation for NAAC (1).pptx
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Management Information system : MIS-e-Business Systems.pptx
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Agentic Artificial Intelligence (Agentic AI).pptx
Unit_1_introduction to surveying for diploma.pptx
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
mechattonicsand iotwith sensor and actuator
First part_B-Image Processing - 1 of 2).pdf
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
AI-Reporting for Emerging Technologies(BS Computer Engineering)
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
CT Generations and Image Reconstruction methods
Wireless sensor networks (WSN) SRM unit 2
Present and Future of Systems Engineering: Air Combat Systems
ENVIRONMENTAL PROTECTION AND MANAGEMENT (18CVL756)
Amdahl’s law is explained in the above power point presentations
August -2025_Top10 Read_Articles_ijait.pdf
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
Principal presentation for NAAC (1).pptx
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems

  • 1. Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems Tadilo Endeshaw Bogale Institute National de la Recherche Scientifique (INRS), Canada March 20, 2014
  • 2. Presentation outline Presentation outline 1 Multiuser Block Diagram 2 Problem Statement 3 Proposed Solution 4 Simulation Results 5 Conclusions Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 2 / 12
  • 3. Multiuser Block Diagram Communication Scenario and Objective BS a1 · · · aM MS1 MS2 MSK h 1 h2 hK Scenario • MS1, MS2, MSK are separated in space and no coordination between them ⇒ Downlink Multiuser system • MS1, MS2, MSK have single antennas ⇒ Downlink Multiuser MISO system • Channel between Tx and Rx is flat fading • Transmission is TDD • M >> K (i.e., Massive MIMO system) General Objective • To estimate channels H = [h1, h2, · · · hk ] Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 3 / 12
  • 4. Multiuser Block Diagram Conventional Channel Estimation (Orthogonal) BS a1 · · · aM MS1 MS2 MS3 h 1 h2 h3 Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 4 / 12
  • 5. Multiuser Block Diagram Conventional Channel Estimation (Orthogonal) BS a1 · · · aM MS1 MS2 MS3 h 1 h2 h3 x1 x2 x3 ⋄ y1 = h1x11 + h2x21 + h3x31 + n1 Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
  • 6. Multiuser Block Diagram Conventional Channel Estimation (Orthogonal) BS a1 · · · aM MS1 MS2 MS3 h 1 h2 h3 x1 x2 x3 ⋄ y1 = h1x11 + h2x21 + h3x31 + n1 y2 = h1x12 + h2x22 + h3x32 + n2 Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
  • 7. Multiuser Block Diagram Conventional Channel Estimation (Orthogonal) BS a1 · · · aM MS1 MS2 MS3 h 1 h2 h3 x1 x2 x3 ⋄ y1 = h1x11 + h2x21 + h3x31 + n1 y2 = h1x12 + h2x22 + h3x32 + n2 y3 = h1x13 + h2x23 + h3x33 + n3 Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
  • 8. Multiuser Block Diagram Conventional Channel Estimation (Orthogonal) BS a1 · · · aM MS1 MS2 MS3 h 1 h2 h3 x1 x2 x3 ⋄ y1 = h1x11 + h2x21 + h3x31 + n1 y2 = h1x12 + h2x22 + h3x32 + n2 y3 = h1x13 + h2x23 + h3x33 + n3 ⇒ Y = HX + N where X = [x1 x2 x3] N = [n1 n2 n3] Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
  • 9. Multiuser Block Diagram Conventional Channel Estimation (Orthogonal) BS a1 · · · aM MS1 MS2 MS3 h 1 h2 h3 x1 x2 x3 ⋄ y1 = h1x11 + h2x21 + h3x31 + n1 y2 = h1x12 + h2x22 + h3x32 + n2 y3 = h1x13 + h2x23 + h3x33 + n3 ⇒ Y = HX + N where X = [x1 x2 x3] N = [n1 n2 n3] ⇒ YXH = H + NXH ˆhk = hk + NxH k ⇒ Requires N ≥ K Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 5 / 12
  • 10. Problem Statement Problem Statement BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Objective : Optimize pilots xk Estimate channels hk , ∀N, M, K Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
  • 11. Problem Statement Problem Statement BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Objective : Optimize pilots xk Estimate channels hk , ∀N, M, K ⋄ Assumptions : hk = √ gk ˜hk ˜hk ∼ CN(0, 1) Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
  • 12. Problem Statement Problem Statement BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Objective : Optimize pilots xk Estimate channels hk , ∀N, M, K ⋄ Assumptions : hk = √ gk ˜hk ˜hk ∼ CN(0, 1) ⋄ Problem : Y = HXH + N where H = [h1, · · · , hK ] X = [x1, · · · , xN ] N = [n1, · · · , nN] Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
  • 13. Problem Statement Problem Statement BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Objective : Optimize pilots xk Estimate channels hk , ∀N, M, K ⋄ Assumptions : hk = √ gk ˜hk ˜hk ∼ CN(0, 1) ⋄ Problem : Y = HXH + N where H = [h1, · · · , hK ] X = [x1, · · · , xN ] N = [n1, · · · , nN] ⋄ Represent : hk = WH k Yuk ξk = tr{E{|hk − hk |2 }} = uH k ( K i=1 gi xi xH i + σ2 IN)uk tr{(WH k Wk )} +gk IM − (gk xH k uk )tr{WH k } − (gk uH k xk )tr{Wk } Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 6 / 12
  • 14. Proposed Solution Proposed Solution BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Represent : hk = WH k Yuk ξk = tr{E{|hk − hk |2 }} = uH k ( K i=1 gi xi xH i + σ2 IN)uk tr{(WH k Wk )} +gk IM − (gk xH k uk )tr{WH k } − (gk uH k xk )tr{Wk } ⋄ ξk depends on gk ⇒ higher gk higher ξk ⇒ To incorporate fairness minxk ,uk ,Wk K k=1 1 gk ξk s.t xH k xk ≤ Pk Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 7 / 12
  • 15. Proposed Solution Proposed Solution BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Represent : hk = WH k Yuk ξk = tr{E{|hk − hk |2 }} = uH k ( K i=1 gi xi xH i + σ2 IN)uk tr{(WH k Wk )} +gk IM − (gk xH k uk )tr{WH k } − (gk uH k xk )tr{Wk } ⋄ ξk depends on gk ⇒ higher gk higher ξk ⇒ To incorporate fairness minxk ,uk ,Wk K k=1 1 gk ξk s.t xH k xk ≤ Pk ⋄ Wk = gk xH k uk K i=1 gi xH i uk uH k xi +σ2uH k uk IM . Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 7 / 12
  • 16. Proposed Solution Proposed Solution BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Represent : hk = WH k Yuk ξk = tr{E{|hk − hk |2 }} = uH k ( K i=1 gi xi xH i + σ2 IN)uk tr{(WH k Wk )} +gk IM − (gk xH k uk )tr{WH k } − (gk uH k xk )tr{Wk } ⋄ ξk depends on gk ⇒ higher gk higher ξk ⇒ To incorporate fairness minxk ,uk ,Wk K k=1 1 gk ξk s.t xH k xk ≤ Pk ⋄ Wk = gk xH k uk K i=1 gi xH i uk uH k xi +σ2uH k uk IM . ⋄ ˜ξk = M gk − uH k (g2 k xk xH k )uk uH k ( K i=1 gi xi xH i +σ2IN )uk Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 7 / 12
  • 17. Proposed Solution Proposed Solution BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Wk = gk xH k uk K i=1 gi xH i uk uH k xi +σ2uH k uk IM . ⋄ ˜ξk = M gk − uH k (g2 k xk xH k )uk uH k ( K i=1 gi xi xH i +σ2IN )uk ⋄ ˜˜ξk = Mgk − Mg2 k xH k A−1 xk where A = K i=1 gi xi xH i + σ2 I Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 8 / 12
  • 18. Proposed Solution Proposed Solution BS a1 · · · aM MS1 MS2 MS3 h 1 h2 hK x1 x2 xK ⋄ Wk = gk xH k uk K i=1 gi xH i uk uH k xi +σ2uH k uk IM . ⋄ ˜ξk = M gk − uH k (g2 k xk xH k )uk uH k ( K i=1 gi xi xH i +σ2IN )uk ⋄ ˜˜ξk = Mgk − Mg2 k xH k A−1 xk where A = K i=1 gi xi xH i + σ2 I ⋄ minxk tr{Q−1 k } − gk xH k Q−2 k xk 1+gk xH k Q−1 k xk s.t xH k xk ≤ Pk where Qk = K i=1,i=k gi xi xH i + σ2 IN Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 8 / 12
  • 19. Simulation Results Effect of SNR Parameters: M = 128, N = 16, K = 32, Pk = 1mw, SNR = Pav σ2 0 2 4 6 8 10 12 14 15 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 SNR (dB) NormalizedWSMSE Existing algorithm Proposed algorithm g =             0.04 0.74 0.81 0.26 0.70 0.29 0.08 0.87 0.07 0.74 0.12 0.44 0.59 0.63 0.53 0.20 0.67 0.24 0.72 0.40 0.39 0.41 0.14 0.87 0.02 0.92 0.63 0.06 0.63 0.75 0.76 0.06             Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 9 / 12
  • 20. Simulation Results Effect of Number of pilots (N) Parameters: M = 128, K = 32, Pk = 1mw, SNR = Pav σ2 16 18 20 22 24 26 28 30 32 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Number of pilot symbols (N) NormalizedWSMSE Existing (Orange) and proposed (Blue) algorithms SNR = 18dB SNR = 12dB SNR = 6dB g =             0.04 0.74 0.81 0.26 0.70 0.29 0.08 0.87 0.07 0.74 0.12 0.44 0.59 0.63 0.53 0.20 0.67 0.24 0.72 0.40 0.39 0.41 0.14 0.87 0.02 0.92 0.63 0.06 0.63 0.75 0.76 0.06             Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 10 / 12
  • 21. Simulation Results Convergence speed and effect of initialization Parameters: M = 128, N = 16, K = 32, Pk = 1mw, SNR = Pav σ2 5 10 15 20 25 30 35 40 0.75 0.755 0.76 0.765 0.77 0.775 0.78 0.785 0.79 0.795 0.8 Iteration number NormalizedWSMSE SNR = 0dB DFT matrix with pilot reuse Truncated DFT matrix Random matrix 5 10 15 20 25 30 35 40 0.67 0.68 0.69 0.7 0.71 0.72 0.73 SNR = 3dB Iteration number NormalizedWSMSE DFT matrix with pilot reuse Truncated DFT matrix Random matrix Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 11 / 12
  • 22. Conclusions Conclusions In this work, we accomplish the following main tasks. We propose new pilot assignment and channel estimation algorithm (especially for Massive MIMO system) The proposed algorithm employs WSMSE as an objective function To solve the problem, we apply MMSE and Rayleigh quotient methods The proposed algorithm achieves the optimal pilot and estimated channel when K = N Tadilo (CISS, Princeton, NJ, USA, Mar. 2014) Channel estimation March 20, 2014 12 / 12