The document proposes a cloud-based mobile multimedia recommendation system that can reduce network overhead and speed up the recommendation process. It analyzes limitations of existing systems, including difficulty reusing video tags, lack of scalability, and inability to identify spammers. The proposed system classifies users to recommend desired multimedia content with high precision and recall, while collecting user clusters instead of detailed profiles to avoid exploding network overhead. It utilizes computing resources in large data centers and detects video spammers through a machine learning approach.