This document discusses backpropagation in convolutional neural networks. It begins by explaining backpropagation for single neurons and multi-layer neural networks. It then discusses the specific operations involved in convolutional and pooling layers, and how backpropagation is applied to convolutional neural networks as a composite function with multiple differentiable operations. The key steps are decomposing the network into differentiable operations, propagating error signals backward using derivatives, and computing gradients to update weights.