SlideShare a Scribd company logo
Completeness Statements about RDF Data Sources
and Their Use for Query Answering
Fariz Darari
joint work with Werner Nutt, Giuseppe Pirrò, and Simon Razniewski
KRDB, Free University of Bozen-Bolzano, Italy

Context

Problem

Thousands of RDF data sources are today
available on the Web.
Machine-readable qualitative descriptions
of their content are crucial.
We focus on data completeness,
an important aspect of data quality.

Contributions

How to formalize and express in
a machine-readable way
completeness information
about RDF data sources?
How to leverage
such completeness information?

Completeness statement on the Web

1. Formal framework for expressing
completeness information.
2. Study of query completeness from
completeness information
in various settings.

Completeness statement on the Semantic Web
lv:lmdbdataset rdf:type void:Dataset.
lv:lmdbdataset c:hasComplStmt lv:st1.
lv:st1 c:hasPattern
[c:subject[spin:varName "m"]; c:predicate schema:actor; c:object[spin:varName "a"]].
lv:st1 c:hasCondition
[c:subject [spin:varName "m"]; c:predicate rdf:type; c:object schema:Movie].
lv:st1 c:hasCondition
[c:subject [spin:varName "m"]; c:predicate schema:director; c:object dbp:Tarantino].

Semantics of completeness statements
For each completeness statement, all the triple patterns defined
via hasPattern are collected into a set P1 and all the triple patterns defined
via hasCondition are collected into a set P2. A completeness statement is
interpreted as: CONSTRUCT {P1} WHERE {P1 . P2}
When a data source has a completeness statement (defined via
hasComplStmt), it means that if the query above is evaluated over
an “ideal” graph then all the results are in the data source.

Users visiting this source can prefer it
to other sources.

Checking query completeness
Given a query Q and a data source with completeness statements S:
1. Create a template answer graph GQ of Q.
2. Over GQ , evaluate all CONSTRUCT queries derived from S
3. Check whether GQ can be obtained after the evaluation.
If yes, the query is complete, otherwise might be incomplete.

However, the completeness
statement verified as complete is
only human readable!

Query completeness in a single data source scenario
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

c: <http://inf.unibz.it/ontologies/completeness#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
spin: <http://spinrdf.org/sp#>
void: <http://rdfs.org/ns/void#>
dv: <http://dbpedia.org/void/>
lv: <http://linkedmdb.org/void/>
dbp: <http://dbpedia.org/resource/>
schema: <http://schema.org>

dv:dbpdataset rdf:type void:Dataset;
dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie
].
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino].

Endpoint IRI
DBPe

lv:lmdbdataset rdf:type void:Dataset;
lv:lmdbdataset c:hasComplStmt lv:st1.
lv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie
].
lv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino ].
lv:lmdbdataset c:hasComplStmt lv:st2.
lv:st2 c:hasPattern
[c:subject[spin:varName "m"];
c:predicate schema:actor; c:object[spin:varName "a"]].
lv:st2 c:hasCondition [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
lv:st2 c:hasCondition [c:subject [spin:varName "m"];
c:predicate schema:director; c:object dbp:Tarantino].

Select all the movies for which
Tarantino is the director and also an actor
SPARQL
endpoint

DBPedia is complete
for all Tarantino's movies

The answer is
incomplete

Endpoint IRI
LMDBe

SELECT ?m
SPARQL
WHERE {?m rdf:type schema:Movie. The answer is
endpoint
complete
?m schema:director dbp:Tarantino.
?m schema:actor dbp:Tarantino}
LinkedMDB is completeall Tarantino’s movies and
LMDB is complete for for all Tarantino's movies
Q
and also moviestheir actors. is an actor
all for which he

Extensions
SPARQL queries with OPT
Completeness with RDFS inference
Federated query completeness

Work In Progress
SPARQL queries with negations and comparisons

Live, Web-based CoRner
Empirical evaluation of query completeness checking

Why is DBpedia
not complete for the query ?
The completeness statement
in DBpedia says that
it is complete for Tarantino’s
movies (dv:st1). However, the
query asks about all movies for
which Tarantino is the director,
and also an actor.
It is not stated that DBpedia
includes all the actors of
Tarantino’s movies.
Therefore, DBpedia is possibly
not complete for this query.

Why is LinkedMDB
complete ?
The completeness statements in
LMDB say that they are complete
for Tarantino’s movies (lv:st1)
and also the actors (lv:st2).

Implementation

CoRner:
Completeness Reasoner
http://rdfcorner.wordpress.com

More Related Content

What's hot (20)

ODP
Web of data
Yves Raimond
 
PDF
Linked Data APIs (Funding Circle May 2015)
Antonio Garrote Hernández
 
PPTX
Fedora Migration Considerations
Avalon Media System
 
PPTX
Introduction to RDF Data Model
Cesar Augusto Nogueira
 
PDF
Consuming Linked Data by Machines - WWW2010
Juan Sequeda
 
ODP
2010 06 ipaw_prv
Jun Zhao
 
PPTX
The Semantic Web #10 - SPARQL
Myungjin Lee
 
PPT
Rdf
Imran Babar
 
PPT
West coastrollout
ramorrismorris
 
PPTX
Aall denver 2010
Diane Hillmann
 
PPTX
Federated Query Formulation and Processing Through BioFed
Muhammad Saleem
 
PDF
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
PDF
Test2
星 金
 
PPT
(Re-) Discovering Lost Web Pages
Michael Nelson
 
PDF
when the link makes sense
Fabien Gandon
 
PPTX
Efficient source selection for sparql endpoint federation
Muhammad Saleem
 
PDF
SPARQL and the Open Linked Data initiative
Fulvio Corno
 
PPTX
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Muhammad Saleem
 
PDF
Tutorial for RDF Graphs
Kishoj Bajracharya
 
PPTX
Introduction to Linked Data
Thomas Meehan
 
Web of data
Yves Raimond
 
Linked Data APIs (Funding Circle May 2015)
Antonio Garrote Hernández
 
Fedora Migration Considerations
Avalon Media System
 
Introduction to RDF Data Model
Cesar Augusto Nogueira
 
Consuming Linked Data by Machines - WWW2010
Juan Sequeda
 
2010 06 ipaw_prv
Jun Zhao
 
The Semantic Web #10 - SPARQL
Myungjin Lee
 
West coastrollout
ramorrismorris
 
Aall denver 2010
Diane Hillmann
 
Federated Query Formulation and Processing Through BioFed
Muhammad Saleem
 
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
Test2
星 金
 
(Re-) Discovering Lost Web Pages
Michael Nelson
 
when the link makes sense
Fabien Gandon
 
Efficient source selection for sparql endpoint federation
Muhammad Saleem
 
SPARQL and the Open Linked Data initiative
Fulvio Corno
 
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Muhammad Saleem
 
Tutorial for RDF Graphs
Kishoj Bajracharya
 
Introduction to Linked Data
Thomas Meehan
 

Viewers also liked (20)

PDF
ESWC 2013 Poster: Representing and Querying Negative Knowledge in RDF
Fariz Darari
 
PDF
Query-Driven Management of Linked Data Quality
Fariz Darari
 
PDF
Managing Completeness of Web Data
Fariz Darari
 
PPTX
Linked Data Quality Assessment – daQ and Luzzu
jerdeb
 
PPS
Linking Open Data with Drupal
emmanuel_jamin
 
PDF
Martin Bardsley: Quality In Austerity-Indicators of Quality
Nuffield Trust
 
PDF
Datalift at SemWebPro
Datalift
 
PPTX
Applied semantic technology and linked data
William Smith
 
PDF
LDQ 2014 DQ Methodology
Amrapali Zaveri, PhD
 
PDF
Amrapali Zaveri Defense
Amrapali Zaveri, PhD
 
PPTX
Linked data for Enterprise Data Integration
Sören Auer
 
PPTX
20100614 ISWSA Keynote
Axel Polleres
 
PDF
Expressing No-Value Information in RDF
Fariz Darari
 
PDF
On the Semantic Web, Completeness does Matter!
Fariz Darari
 
PDF
CORNER: A Completeness Reasoner for SPARQL Queries over RDF Data Sources
Fariz Darari
 
PDF
Semantic Web: "ten year" update
James Hendler
 
PPTX
Managing Completeness of Data
Fariz Darari
 
PPTX
Expressing No-Value Information in RDF
Fariz Darari
 
PDF
"What is left to do?", Dublin Core 2012 Keynote
Dan Brickley
 
PDF
Sieve - Data Quality and Fusion - LWDM2012
Pablo Mendes
 
ESWC 2013 Poster: Representing and Querying Negative Knowledge in RDF
Fariz Darari
 
Query-Driven Management of Linked Data Quality
Fariz Darari
 
Managing Completeness of Web Data
Fariz Darari
 
Linked Data Quality Assessment – daQ and Luzzu
jerdeb
 
Linking Open Data with Drupal
emmanuel_jamin
 
Martin Bardsley: Quality In Austerity-Indicators of Quality
Nuffield Trust
 
Datalift at SemWebPro
Datalift
 
Applied semantic technology and linked data
William Smith
 
LDQ 2014 DQ Methodology
Amrapali Zaveri, PhD
 
Amrapali Zaveri Defense
Amrapali Zaveri, PhD
 
Linked data for Enterprise Data Integration
Sören Auer
 
20100614 ISWSA Keynote
Axel Polleres
 
Expressing No-Value Information in RDF
Fariz Darari
 
On the Semantic Web, Completeness does Matter!
Fariz Darari
 
CORNER: A Completeness Reasoner for SPARQL Queries over RDF Data Sources
Fariz Darari
 
Semantic Web: "ten year" update
James Hendler
 
Managing Completeness of Data
Fariz Darari
 
Expressing No-Value Information in RDF
Fariz Darari
 
"What is left to do?", Dublin Core 2012 Keynote
Dan Brickley
 
Sieve - Data Quality and Fusion - LWDM2012
Pablo Mendes
 
Ad

Similar to Poster - Completeness Statements about RDF Data Sources and Their Use for Query Answering (20)

PPTX
Timbuctoo 2 EASY
henkvandenberg16
 
PDF
Linked Data Fragments
Ruben Verborgh
 
PPT
A hands on overview of the semantic web
Marakana Inc.
 
ODP
2009 0807 Lod Gmod
Jun Zhao
 
PPTX
RDF Stream Processing and the role of Semantics
Jean-Paul Calbimonte
 
ODP
Data Integration And Visualization
Ivan Ermilov
 
PPTX
Hacia la Internet del Futuro: Web Semántica y Open Linked Data, Parte 2
Diego López-de-Ipiña González-de-Artaza
 
PPTX
Inference on the Semantic Web
Myungjin Lee
 
PPT
Data in RDF
Emanuele Della Valle
 
ODP
State of the Semantic Web
Ivan Herman
 
ODP
Bio2RDF@BH2010
François Belleau
 
PDF
A Hands On Overview Of The Semantic Web
Shamod Lacoul
 
PPT
SemanticWeb Nuts 'n Bolts
Rinke Hoekstra
 
KEY
How RDFa works
JISC Netskills
 
PDF
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
PPTX
A Little SPARQL in your Analytics
Dr. Neil Brittliff
 
PPTX
Linked data 101: Getting Caught in the Semantic Web
Morgan Briles
 
PDF
Sustainable queryable access to Linked Data
Ruben Verborgh
 
PPT
Semantic Web
hardchiu
 
PPTX
Usage of Linked Data: Introduction and Application Scenarios
EUCLID project
 
Timbuctoo 2 EASY
henkvandenberg16
 
Linked Data Fragments
Ruben Verborgh
 
A hands on overview of the semantic web
Marakana Inc.
 
2009 0807 Lod Gmod
Jun Zhao
 
RDF Stream Processing and the role of Semantics
Jean-Paul Calbimonte
 
Data Integration And Visualization
Ivan Ermilov
 
Hacia la Internet del Futuro: Web Semántica y Open Linked Data, Parte 2
Diego López-de-Ipiña González-de-Artaza
 
Inference on the Semantic Web
Myungjin Lee
 
State of the Semantic Web
Ivan Herman
 
Bio2RDF@BH2010
François Belleau
 
A Hands On Overview Of The Semantic Web
Shamod Lacoul
 
SemanticWeb Nuts 'n Bolts
Rinke Hoekstra
 
How RDFa works
JISC Netskills
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
A Little SPARQL in your Analytics
Dr. Neil Brittliff
 
Linked data 101: Getting Caught in the Semantic Web
Morgan Briles
 
Sustainable queryable access to Linked Data
Ruben Verborgh
 
Semantic Web
hardchiu
 
Usage of Linked Data: Introduction and Application Scenarios
EUCLID project
 
Ad

More from Fariz Darari (20)

PDF
Data X Museum - Hari Museum Internasional 2022 - WMID
Fariz Darari
 
PDF
[PUBLIC] quiz-01-midterm-solutions.pdf
Fariz Darari
 
PPTX
Free AI Kit - Game Theory
Fariz Darari
 
PPTX
Neural Networks and Deep Learning: An Intro
Fariz Darari
 
PPTX
NLP guest lecture: How to get text to confess what knowledge it has
Fariz Darari
 
PPTX
Supply and Demand - AI Talents
Fariz Darari
 
PPTX
Basic Python Programming: Part 01 and Part 02
Fariz Darari
 
PPTX
AI in education done properly
Fariz Darari
 
PPTX
Artificial Neural Networks: Pointers
Fariz Darari
 
PPTX
Open Tridharma at ICACSIS 2019
Fariz Darari
 
PDF
Defense Slides of Avicenna Wisesa - PROWD
Fariz Darari
 
PPTX
Seminar Laporan Aktualisasi - Tridharma Terbuka - Fariz Darari
Fariz Darari
 
PPTX
Foundations of Programming - Java OOP
Fariz Darari
 
PPTX
Recursion in Python
Fariz Darari
 
PDF
[ISWC 2013] Completeness statements about RDF data sources and their use for ...
Fariz Darari
 
PPTX
Testing in Python: doctest and unittest (Updated)
Fariz Darari
 
PPTX
Testing in Python: doctest and unittest
Fariz Darari
 
PPTX
Dissertation Defense - Managing and Consuming Completeness Information for RD...
Fariz Darari
 
PPTX
Research Writing - 2018.07.18
Fariz Darari
 
PPTX
KOI - Knowledge Of Incidents - SemEval 2018
Fariz Darari
 
Data X Museum - Hari Museum Internasional 2022 - WMID
Fariz Darari
 
[PUBLIC] quiz-01-midterm-solutions.pdf
Fariz Darari
 
Free AI Kit - Game Theory
Fariz Darari
 
Neural Networks and Deep Learning: An Intro
Fariz Darari
 
NLP guest lecture: How to get text to confess what knowledge it has
Fariz Darari
 
Supply and Demand - AI Talents
Fariz Darari
 
Basic Python Programming: Part 01 and Part 02
Fariz Darari
 
AI in education done properly
Fariz Darari
 
Artificial Neural Networks: Pointers
Fariz Darari
 
Open Tridharma at ICACSIS 2019
Fariz Darari
 
Defense Slides of Avicenna Wisesa - PROWD
Fariz Darari
 
Seminar Laporan Aktualisasi - Tridharma Terbuka - Fariz Darari
Fariz Darari
 
Foundations of Programming - Java OOP
Fariz Darari
 
Recursion in Python
Fariz Darari
 
[ISWC 2013] Completeness statements about RDF data sources and their use for ...
Fariz Darari
 
Testing in Python: doctest and unittest (Updated)
Fariz Darari
 
Testing in Python: doctest and unittest
Fariz Darari
 
Dissertation Defense - Managing and Consuming Completeness Information for RD...
Fariz Darari
 
Research Writing - 2018.07.18
Fariz Darari
 
KOI - Knowledge Of Incidents - SemEval 2018
Fariz Darari
 

Recently uploaded (20)

PDF
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
PDF
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 

Poster - Completeness Statements about RDF Data Sources and Their Use for Query Answering

  • 1. Completeness Statements about RDF Data Sources and Their Use for Query Answering Fariz Darari joint work with Werner Nutt, Giuseppe Pirrò, and Simon Razniewski KRDB, Free University of Bozen-Bolzano, Italy Context Problem Thousands of RDF data sources are today available on the Web. Machine-readable qualitative descriptions of their content are crucial. We focus on data completeness, an important aspect of data quality. Contributions How to formalize and express in a machine-readable way completeness information about RDF data sources? How to leverage such completeness information? Completeness statement on the Web 1. Formal framework for expressing completeness information. 2. Study of query completeness from completeness information in various settings. Completeness statement on the Semantic Web lv:lmdbdataset rdf:type void:Dataset. lv:lmdbdataset c:hasComplStmt lv:st1. lv:st1 c:hasPattern [c:subject[spin:varName "m"]; c:predicate schema:actor; c:object[spin:varName "a"]]. lv:st1 c:hasCondition [c:subject [spin:varName "m"]; c:predicate rdf:type; c:object schema:Movie]. lv:st1 c:hasCondition [c:subject [spin:varName "m"]; c:predicate schema:director; c:object dbp:Tarantino]. Semantics of completeness statements For each completeness statement, all the triple patterns defined via hasPattern are collected into a set P1 and all the triple patterns defined via hasCondition are collected into a set P2. A completeness statement is interpreted as: CONSTRUCT {P1} WHERE {P1 . P2} When a data source has a completeness statement (defined via hasComplStmt), it means that if the query above is evaluated over an “ideal” graph then all the results are in the data source. Users visiting this source can prefer it to other sources. Checking query completeness Given a query Q and a data source with completeness statements S: 1. Create a template answer graph GQ of Q. 2. Over GQ , evaluate all CONSTRUCT queries derived from S 3. Check whether GQ can be obtained after the evaluation. If yes, the query is complete, otherwise might be incomplete. However, the completeness statement verified as complete is only human readable! Query completeness in a single data source scenario @prefix @prefix @prefix @prefix @prefix @prefix @prefix @prefix c: <http://inf.unibz.it/ontologies/completeness#> rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> spin: <http://spinrdf.org/sp#> void: <http://rdfs.org/ns/void#> dv: <http://dbpedia.org/void/> lv: <http://linkedmdb.org/void/> dbp: <http://dbpedia.org/resource/> schema: <http://schema.org> dv:dbpdataset rdf:type void:Dataset; dv:dbpdataset c:hasComplStmt dv:st1. dv:st1 c:hasPattern [c:subject [spin:varName "m"]; c:predicate rdf:type; c:object schema:Movie ]. dv:st1 c:hasPattern [c:subject [spin:varName "m"]; c:predicate schema:director;c:object dbp:Tarantino]. Endpoint IRI DBPe lv:lmdbdataset rdf:type void:Dataset; lv:lmdbdataset c:hasComplStmt lv:st1. lv:st1 c:hasPattern [c:subject [spin:varName "m"]; c:predicate rdf:type; c:object schema:Movie ]. lv:st1 c:hasPattern [c:subject [spin:varName "m"]; c:predicate schema:director;c:object dbp:Tarantino ]. lv:lmdbdataset c:hasComplStmt lv:st2. lv:st2 c:hasPattern [c:subject[spin:varName "m"]; c:predicate schema:actor; c:object[spin:varName "a"]]. lv:st2 c:hasCondition [c:subject [spin:varName "m"]; c:predicate rdf:type; c:object schema:Movie]. lv:st2 c:hasCondition [c:subject [spin:varName "m"]; c:predicate schema:director; c:object dbp:Tarantino]. Select all the movies for which Tarantino is the director and also an actor SPARQL endpoint DBPedia is complete for all Tarantino's movies The answer is incomplete Endpoint IRI LMDBe SELECT ?m SPARQL WHERE {?m rdf:type schema:Movie. The answer is endpoint complete ?m schema:director dbp:Tarantino. ?m schema:actor dbp:Tarantino} LinkedMDB is completeall Tarantino’s movies and LMDB is complete for for all Tarantino's movies Q and also moviestheir actors. is an actor all for which he Extensions SPARQL queries with OPT Completeness with RDFS inference Federated query completeness Work In Progress SPARQL queries with negations and comparisons Live, Web-based CoRner Empirical evaluation of query completeness checking Why is DBpedia not complete for the query ? The completeness statement in DBpedia says that it is complete for Tarantino’s movies (dv:st1). However, the query asks about all movies for which Tarantino is the director, and also an actor. It is not stated that DBpedia includes all the actors of Tarantino’s movies. Therefore, DBpedia is possibly not complete for this query. Why is LinkedMDB complete ? The completeness statements in LMDB say that they are complete for Tarantino’s movies (lv:st1) and also the actors (lv:st2). Implementation CoRner: Completeness Reasoner http://rdfcorner.wordpress.com