SlideShare a Scribd company logo
24. Combinatorial Analysis
                         'M         E.
                K. GOLDBERG. . NEWMAN,' HAYNSWORTH~
                                      Contents
                                                                                              page
Mathematical Properties . . . . . . . . . . . . . . .             . . . . .                   822
    24.1. Basic Numbers . . . . . . . . . . . . . . .               . .    .    .    .        822
         24.1.1 Binomial Coefficients . . . . . . . .             . .     .    .    .    .    822
         24.1.2 Multinomial Coefficients . . . . . . .            . .     .    .    .    .    823
         24.1.3 Stirling Numbers of the First Kind . .            . .     .    .    .    .    824
         24.1.4 Stirling Numbers of the Second Kind .             . .     .    .    .    .    824
    24.2. Partitions . . . . . . . . . . . . . . . . .             . .     .   .    .         825
         24.2.1 Unrestricted Partitions . . . . . . . .           . .     .    .    .    .    825
         24.2.2 Partitions Into Distinct Parts . . . . .          . .     .    .    .    .    825
    24.3. Number Theoretic Functions . . . . . . . .              . .     .    .    .    .    826
         24.3.1 The Mobius Function . . . . . . . .                . .     .    .    .    .   826
         24.3.2 The Euler Function . . . . . . . . .              . .     .    .    .    .    826
         24.3.3 Divisor Functions . . . . . . . . . .              . .     .    .    .    .   827
         24.3.4 Primitive Roots . . . . . . . . . . .             . .     .    .    .    .    827
References . . . . . . . . . . . . . . . . . . . . .               . .    .    .    .         827

Table 24.1. Binomial Coefficients      (;)    . . . . . . . . . . . . . .                     828
   n 1 5 0 .m 1 2 5

Table 24.2. Multinomials (Including a List of Partitions) . . . . . .                         831
   nllO
Table 24.3. Stirling Numbers of the First Kind Si"') . . . . . . . .
                                                  .                                           833
   n525
Table 24.4. Stirling Numbers of the Second Kind          si"')
                                                             .    . . . . . .                 835
   n125
Table 24.5. Number of Partitions and Partitions Into Distinct Parts . .                       836
   P b ) . n )n1500
          d   .
Table 24.6. Arithmetic Functions         . . . . . . . . . . . . . . . .                      840
   d n )4 n ) ui(n>.
          .     .    n51000
Table 24.7. Factorizations . . . . . . . . . . . . . . . . . . . .                            844
   n<10000
Table 24.8. Primitive Roots. Factorization of p- 1 . . . . . . . . .                          864
   n<10000
Table 24.9. Primes . . . . . . . . . . . . . . . . . . . . . . .                              870
   pll06

   1. 2 National Bureau of Standards.
   3   National Bureau of Standards. (Presently. Auburn Univenrity.)

                                                                                                     821
24. Combinatorial Analysis
                                                Mathematical Properties
  In ench sub-section of this chnpter we use                      a special nncl easily recognizable symbol, and
a fised format wliicli etnplinsizes tlic use and                  yet t h n t s-mbol must be easy to write. We have
methods or" cstcnding the nccotnpnriyinp tables.                  settled on a script capital 3 without any certainty
Thc format follows this forin :                                   that we 11ave settled tliis question permanently.
1. Definitions                                                      We feel that tlie subscript-superscript notation
  A. Combinntorinl                                                emplinsizes tlie generating friiictioris (wliicli are
  B. Generating functions                                         p6wers of mutunlly inverse functions) from which
  C. Closed form                                                  most of the important relations flow.
11. Relations
                                                                                 24.1. Basic Numbers
  A. Recurrences
  B. Checks in comput.ing                                         24.1.1         Binomial Coefficients
  C. Basic use in numerical analysis                                                  1. Definitions
111. Asymptotic and Special Values
   In general tlie notations used ore stsndnrd.
This includes the difference operator A defined on
                                                           A.           (z)
                                                                    is the number of yays of choosing m
                                                         objects from a collection of n distinct objects
functions of t by Af(z)=f(r+I)-f(;t), An+y(r) without regard to order.
=A(A.J(z)), the Kronecker deltu           the Rieninriri   13. Generating furictioiis
zeta function {(s) and the grentest common
divisor symbol (m, n), The range of the summands                                              n=O,l,. . .
for n summation sign without limits is explained
to the right of the formula.
   The notations which are not stnndnrd are those
for tlie multinomials whicli nre arbitrary sliort-
hand for use in this chapter, and those for the            C. Closed form
Stirling numbers which have never been stand-
ardized. A short table of various notations for
these numbers follows :
                                                                                                    n> m
           Notations for the Stirling Numbers                             n(n-1). . . (n-m+l) -
                                                                        -
          Reference             First Kind Second Kind                                m!
        This chapter               'S
                                   .!           %!-)                      11. Relations
 124.21 Fort                        S:-'      yy *



                 }
 (24.71 Jordan                       A
                                     S
                                     :         e: *        A. Recurrences
(24.101 bIoser and Wyman               S.:             0::

 124.91 Milne-Thomson           (
                                :I     :)B!% (:) B:Z                                                           n>m>l
(24.151 Riordan                      d n , m)        S(n, m)
 (24.11 Carlitz
 [24.3] Could
        Miksa
                     (-1)n-"Sl(n-l,n-m)
                         S(n-m+1,     n)
                                                  S2(m, n-m)
                                                       mSn
                                                                           =( :)+( :)+.            .   .   +rim) m
                                                                                                               n>

(Unpublished                                                        B. Checks
  tables)
124.171 Gupta                                        u(n, m)
                                                                                                                r+sL n
  We feel that a capital S is natural for Stirling
numbers of the first kind; it is infrequently used
for other notation in this contest.. But once it                                                                r 2 ir+l
is used we have difficulty finding a suitable
symbol for Stirling numbers of tlie second kind.
The numbers are sufficiently important to warrant
                                                                            "D>
                                                                       (:')=(-
                                                                            mo
                                                                                    ('''I)
                                                                                        in.,
                                                                                               . . . (Inodp)   pa prime

      a22                                         *Rev pnge XI.
COMBINATORIAL ANALYSIS                                                                     823
  where
         m                        m
                                                                                    5 (-om
                                                                                    m=O   (;)f(z-m)
  n = E n,$,                m = C mkpk                                 2Q                                               n-k-1
                                                                                                                                 )
        k-0                      k-0
                                                     p>mk,     n k
                                                                                            =f:=O
                                                                                              k         (-1)S-f           8-k        ~kj(z--s)          e
                                                                                                                                                        n
                                                                                                                                                        <
    C. Numerical analysis
                                                                                I                                 111. Special Values




                                                                                                                  2"(2n-1)(2n-3)        .   . . 3-1
                                                                                              ("n">=                        n!
                                             24.1.2          Multinomial Coefficients
                                                                        I. DefinitiOM

    A. (n; nl, %, . . ., n,) is the number of ways of putting n=nl+nz+. . . +nm different objects
  into m different boxes with nk in the k-th box, k=I, 2, . . ., m.
     (n; all %, . . ., a,,)* is the number of permutations of n=a1+2%+. . . +nu, symbols composed
  of a k cycles of length k for k=1, 2, . . ., n.
     (n; al, %, . . ., an)' is the number of ways of partitioning a set of n=a1+2az+. . . +na. dif-
  ferent objects into ak subsets containing k objects for k=1, 2, . . ., n.
    B. Generating functions
  (zl+%+. . . +z,)"=Z(n; nl, 121,                      .   . ., nm)z;%P . . .         z3                    summed over a+-+.                   . .   +nm=n

              (2 P)
              k-1
                            m
                                =m!
                                        OD   t"
                                       n-m 12.
                                                  Z(n;al,a2, . .     ., a ) z 1 ; .
                                                                         n*;zr.       .:
                                                                                       z-
                                                                                                            summed over a1+2%+ . . . +m,,=n




     C. Closed forms
   (n; nl, Q, . . ., n,) =n!/w!n,! . . . n,!                                                                                   nl+%+. . .+nm=n
  (n; all az, . . ., a,,) *=n!/lal@!2"Iag! . . . n".cr,,!                                                                    a1+2%+ . . .+m,=n




                                                                        {{ {
  (n;al,az, . . ., ~ , ) ' = n ! / ( l ! ) ~ l a ~ ! ( 2 ! . ~ ! (n!)"a,!
                                                           ). .                                                               al+%+. . . +m,=n
                                                                         11. Relatiom
     A. Recurrence
                                                                   m
              (n+m;nl+l,nz+l,. . . , n m + l ) = C (n+m-l;nl+l,                              . . .,nk-l+l,nk,nk+l+l, . . . ,n,,,+l)
                                                                k-1
     B. Checks
                                                    all ni     1
* Z(n;nl,%, . . .,n,,,)=                                                                                          summed over nl -]-nz+ . . . +nm=n

  Z(n;al,%, . . ., ~,,)*=(-1)"-?3~~'                           summed over a1+2%+                 . . .       +m,,=n and al+az+. . . +an=m
  Z(n;a,,az, . . ., a,)'= SP)
     C. Numerical analysis (FaA di Bruno's formula)
   d"                  n
                    = C f("'(g(z))W; al,G, . . , an)' g'b) 1'1 g"(z) 1'2 .                                 g'"'(z) 1
  dz"g b ) )
  -f(
                      m-0
                                          .                                                       . .                  'I




         summed over al+2%+ . . . +nun=n and al+az+. . . +an=m.
824                                                  COMBINATORIAL ANALYSIS

            P,          1        0                ...      0
            Pz          Pl       2                ...

            P,          Pz       Pl               ...
                                                  ...              =2(-1)"-mi(n; u,, &, . . ., u,)*PflP,"2.. . P,
                                                                                                                :
                                                  ...      0
                                                  . ..     n-1
            Pn          Pn-1 Pn-2                 ...      P,




                        I. Definitions                                   I Sin)I   -
                                                                                   (n- I)! (r+ln n)m-l/ -1) !
                                                                                                      (m
  A. (-l)n-mSim) number of permutations
                  is the                                                                                        for m=o(ln n)
of n symbols which have exactly m cycles.
  B. Generating functions
                                             n
        z(x-1) . . . (x-n+l)=C S!,m)z"
                                            m-0


      {ln (1+r)jm=m!
                                 m

                                n-m
                                         a
                                         2"
                                      Sim)           bl
                                                      <

  C. Closed form (see closed form for                    $3,"'))


                            11. Relations                            I
  A. Recurrences                                                         24.1.4 Stirling Numbers of the Second Kind
        S;y),= Sj,m-l)_nS;m)                              n2.mrl                              I. Definitions


  (:)   ~ i m ) =-m-r
                   ~        c)   S Lk i - )
                                  A ) Smr                 nzmzr
                                                                           A. aim'isthe number of ways of partitioning a
                                                                         set of n elements into m non-empty subsets.
                                                                           B. Generating functions
  B. Checks
                                                                                        n
                                                                                   z"=C gpX(x-1)         . . . (2-m+l)
                                                                                       m -0




  C. Numerical analysis
                                                                                                                     I lm'
                                                                                                                     z< -
                                                                            C. Closed form

if convergent.
COMBINATORIAL ANALYSIS                                        825
                                                            B. Generating function




  B. Checks
                   n
                         (-1)"-=m! s =
                                    p 1                   where
                  m-0




                                                                    ((z))=z-[z]-& if z is not an integer
                                                                         =O       if x is an integer
                                                                                    11. Relationa
                                                                A. Recurrence

                                                           p(n)=         &       (-l)k-lp (-)
                                                                                          n?             p(0)=1
                                                                    1-
                                                                     s   1 In


                                                                     5
                                                                  =I ol(k)p(n-k)
                                                                   n k-1
                                                                B. Check

             111. Asymptotics and Special Velum

      *                 lim m-" sAm)=(mt)-l
                        n-m                                                       111. Aapptoties
                                                                                         1        *d%&
                                                                                 P(4- -
                                                                                       4nd3e
                                                                  24.2.2 Partitions Into Distinct Parte
                                                                                    I. Definitiono
                                                             A. q(n) is the number of decompositions of n
                                                           into distinct integer summands without regard to
                                                           order. E.g., 5=1+4=2+3 so that q(5)=3.
                                                             B. Generating function
                                                            m               m                OD


                         24.2. Partitions                  qq(n)z"= II (l+x")=
                                                           n-              n-1
                                                                                          n-1n             11
                                                                                                           z<
                                                                                                            1

              24.2.1     Unrestricted Partitions                C. Closed form
                           I. Definitions
  A. p(n) is the number of decompositions of n
into integer summands without regard to order.             where Jo(x) is the Bessel function of order 0 and
E.g.,5=1+4=2+3=1+1+3=1+2+2=1+1+                                     was defined in part IC. of the previous
 1+2=1+1+1+1+1 so that p(5)=7.                             subsection.
*See page   11.
826                                             COMBINATORIAL ANUYBIS

                         11. Relations
                                                                    =2
                                                             g(z) f(m)for all z>O if and only if
                                                                      n-1
  A. Recurrences
                                                                                      m=5
                                                                                       n-1
                                                                                                 for all
                                                                                           r(n)g(7=) z>o

                                                             and if
                                                                        m      a
                                                                                        1
                                                                                   If(mnz)
                                                                                             -
                                                                                         =c If(nz) I converges.
                                                                                          q(n)
                                                                      tu-1   n-1           n-1
                                   =O otherwise
                                                                The cyclotomic polynomial of order n             ie
                                                             II ($- l)r(n/d)
                                                             dln

  B. Check                                                                           111. Aeymptotics
                                       f-r
                 (-l)'q(n-(3k'~kf))=l
                                 if n
                                    =-
    O<;tkktk<n                                       2
                                           =O otherwise.
                    111. Aspptotics




      24.3. Number Theoretic Functions                                24.3.2 The Euler Totient Function
            24.3.1 The Mobius Function                                                1. Definitions

                         I. Definition8                        A. p(n)the number of integers not exceeding
                                                                        is
  A. p(n)=l              if n=l                              and relatively prime to n.
            =(-l)& n is the product of k distinct
                 if                                            B. Generating functions
                     primes
        =O        if n is divisible by a square >1.                                                       aa>2
  B. Generating functions
                   2p(n)n-s=l/r(s)
                   a-1
                                                     ~'s>I
                                                                                                          14<1

                                                                   C. Closed form

                         11. Relations
  A. Recurrence                                              over distinct primes p dividing n.
         p(mn)=p(m)p(n)
                   if (m,n)=l
                                                                                      11. Relations
                =O if (m, n)>l
                                                                   A. Recurrence
  B. Check                                                                                              (m, n)=1
                                                                                (P(m4 =dm)&)
                             cc(d)=b
                                                                   B. Checks
  C. Numerical analysis
g(n)=pf(d)  for all n if and only if
        n
                                   =g
                            f(4 r(d)g(n/d) n
                                       for all

  =11
g(n) f(d) for all n if and only if
    dln                 f(n) =n g(n/d)r(" n
                                      for all                                        ar(") 1 (mod n)
                                                                                         =              (a, = 1
                                                                                                          n)
                                         dln

g(z)=Ej(z/n) z>O if and only if
         for all                                                                     111. Asymptotics
      a-1

                         j(x> =gp(n)g(z/n) z>o
                                  a-1
                                      for all
COMBINATORIAL ANALYSIB                                                  827
                                                             1 "
           24.3.3   Divisor Functions
                    I. Definitions
                                                             -
                                                             n2 m=l
                                                                    u1(m)=-+O
                                                                           12
                                                                           u2       CY>
                                                                                      -

   A. uk(n) the sum of the k-th powers of the
            is                                                             24.3.4    Primitive Roots
divisors of n. Often udn) denoted by d(n),
                          is              and
U l b )b y 4%).
                                                                                    I. Definitions
   B. Generating functions                                     The integers not exceeding and relatively prime
                                                             to a fixed integer n form a group; the group is
                                                             cyclic if and only if n=2,4 or n is of the form pk or
                                                             2pkwhere p is an odd prime. Then g is a primitive
                                                             root of n if it generates that group; i.e., if g, g2, . . .,
                                                             g+'(")distinct modulo n. There are cp(cp(n))
                                                                   are
  C. Closed form                                             primitive roots of n.
                                                                                    11. Relations
                                                                A. Recurrences. If g is a primitive root of a
                                                             prime p and gp-l$ l(mod p2) g is a primitive
                                                                                              then
                                                             root of pk for all k. If gp-' = 1(mod p2) then g+p
                                                             is a primitive root of pkfor all k.
                                                                If g is a primitive root of pk then either g or
                                                             g+pk,whichever is odd, is a primitive root of 2p'.
                                                                B. Checks. If g is a primitive root of n then gk
                                                             is a primitive root of n if and pnly if (k, cp(n),
                                                                                                             = 1,
                                                             and each primitive root of n is of this form.
                                                  References
                         Texts                               [24.13] H . Rademacher, On the partition function, Proc.
                                                                        London Math. SOC. 241-254 (1937).
                                                                                           43,
 [24.1] L. Carlitr, Note on Norlunds polynomial B$),
                                                             [24.14] H. Rademacher and A. Whiteman, Theorems on
           Proc. Amer. Math. SOC. 452-455 (1960).
                                    11,
                                                                        Dedekind sums, Amer. J. Math. 63, 377-407
 [24.2] T. Fort, Finite differences (Clarendon Press,                   (1941).
           Oxford, England, 1948).
                                                             [24.15] J. Riordan, An introduction to combinatorial
 [24.3] H. W. Gould, Stirling number representation                     analysis (John Wiley & Sons, Inc., New York,
           problems, Proc. Amer. Math. SOC.11, 447-451                  N.Y., 1958).
           (1960).
                                                             [24.16] J. V. Uspensky and M. A. Heaslet, Elementary
 [24.4] G. H. Hardy, Ramanujan (Chelsea Publishing Co.,                 number theory (McGraw-Hill Book Co., Inc.,
           New York, N.Y., 1959).                                       New York, N.Y., 1939).
 [24.5] G. H. Hardy and E. M. Wright, An introduction
           to the theory of numbers, 4th ed. (Clarendon                                 Tables
           Press, Oxford, England, 1960).                    [24.17] British Association for the Advancement of Science,
 [24.6] L. K. Hua, On the number of partitions of a num-               Mathematical Tables, vol. VIII, Number-divisor
           ber into unequal parts, Trans. Amer. Math. SOC.             tables (Cambridge Univ. Press, Cambridge,
           51, 194-201 (1942).                                         England, 1940). n S l 0 ' .
 [24.7] C. Jordan, Calculus of finite differences, 2d ed.    [24.18] H. Gupta, Tables of distributions, Res. Bull. East
           (Chelsea Publishing Co., New York, N.Y.,                    Panjab Univ. 13-44 (1950); 750 (1951).
           1960).                                            [24.19] H. Gupta, A table of partitions, Proc. London
  [24.8] K. Knopp, Theory and application of infinite                  Math. SOC.39, 142-149 (1935) and 11. 42,
           series (Blackie and Son, Ltd., London, England,             546-549 (1937). p(n), n=1(1)300; p(n), n=301
           1951).                                                      (1)600.
  [24.9] L. M. Milne-Thomson, The calculus of finite         [24.20] G. KavBn, Factor tables (Macmillan and Co., Ltd.,
           differences (Macmillan and Co., Ltd., London,               London, England, 1937). n 1256,000.
           England, 1951).                                   [24.21] D. N. Lehmer, List of prime numbers from 1 to
[24.10] L. Moser and M. Wyman, Stirling numbers of the                 10,006,721, Carnegie Institution of Washington,
           second kind, Duke Math. J. 25, 29-43 (1958).                Publication No. 165, Washington, D.C. (1914).
[24.11] L. Moser and M. Wyman, Asymptotic develop-           [24.22] Royal Society Mathematical Tables, vol. 3, Table
           ment of the Stirling numbers of the first kind,             of binomial coefficients (Cambridge Univ. Press,
           J. London Math. SOC. 133-146 (1958).
                                   33,                                 Cambridge, England, 1954). (:).for r <*n<    100.
i24.121 H. H. Ostmann, Additive Zahlentheorie, vol. I        [24.23] G. N. Watson, Two tables of partitions, Proc.
            (Springer-Verlag, Berlin, Germany, 1956).                  London Math. SOC. 550-556 (1937).
                                                                                             42,

More Related Content

PDF
Image Processing
yuvhashree
 
PDF
Variable aleatoria apuntes
RodolfoAbantoCanto1
 
PDF
Sistem pertidaksamaan kuadrat 2 variabel
Alya Titania Annisaa
 
PDF
Suppression enhancement
Leonardo Auslender
 
PPTX
numarial analysis presentation
Osama Tahir
 
PDF
Taller parcial 2
RubenAlfredoTomalaVe
 
PDF
11X1 T10 01 graphing quadratics (2010)
Nigel Simmons
 
PPT
First order differential equations
Dr.Summiya Parveen
 
Image Processing
yuvhashree
 
Variable aleatoria apuntes
RodolfoAbantoCanto1
 
Sistem pertidaksamaan kuadrat 2 variabel
Alya Titania Annisaa
 
Suppression enhancement
Leonardo Auslender
 
numarial analysis presentation
Osama Tahir
 
Taller parcial 2
RubenAlfredoTomalaVe
 
11X1 T10 01 graphing quadratics (2010)
Nigel Simmons
 
First order differential equations
Dr.Summiya Parveen
 

What's hot (19)

PDF
Statistics lecture 13 (chapter 13)
jillmitchell8778
 
PDF
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
P singh
 
PDF
Stationary Points Handout
coburgmaths
 
PDF
Statistics lecture 11 (chapter 11)
jillmitchell8778
 
PDF
Lesson 11: Implicit Differentiation (Section 21 slides)
Matthew Leingang
 
PPTX
4 6 radical equations-x
math123b
 
PDF
Ch9-Gauss_Elimination4.pdf
RahulUkhande
 
PDF
Midterm I Review
Matthew Leingang
 
PDF
Lesson 23: The Definite Integral (slides)
Matthew Leingang
 
PPTX
3 6 2 d linear inequalities-x
math123b
 
PPTX
5 2 solving 2nd degree equations-x
math123b
 
PDF
Lesson 19: Curve Sketching
Matthew Leingang
 
PDF
Jacobi and gauss-seidel
arunsmm
 
KEY
Integrated Math 2 Section 3-8
Jimbo Lamb
 
PPT
1627 simultaneous equations and intersections
Dr Fereidoun Dejahang
 
PDF
Lesson 13: Exponential and Logarithmic Functions (Section 041 slides)
Matthew Leingang
 
Statistics lecture 13 (chapter 13)
jillmitchell8778
 
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
P singh
 
Stationary Points Handout
coburgmaths
 
Statistics lecture 11 (chapter 11)
jillmitchell8778
 
Lesson 11: Implicit Differentiation (Section 21 slides)
Matthew Leingang
 
4 6 radical equations-x
math123b
 
Ch9-Gauss_Elimination4.pdf
RahulUkhande
 
Midterm I Review
Matthew Leingang
 
Lesson 23: The Definite Integral (slides)
Matthew Leingang
 
3 6 2 d linear inequalities-x
math123b
 
5 2 solving 2nd degree equations-x
math123b
 
Lesson 19: Curve Sketching
Matthew Leingang
 
Jacobi and gauss-seidel
arunsmm
 
Integrated Math 2 Section 3-8
Jimbo Lamb
 
1627 simultaneous equations and intersections
Dr Fereidoun Dejahang
 
Lesson 13: Exponential and Logarithmic Functions (Section 041 slides)
Matthew Leingang
 
Ad

Viewers also liked (16)

PDF
Confluent hypergeometricfunctions
Chumphol Mahattanakul
 
PPT
Indes = Les cavernes d'Ajanta
Ben Garneau
 
PPTX
What the Facebook?
Kuca Moraes
 
PDF
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
PPT
Paula,Fabiane,Josiane Camila, Emanueli
smoothlene
 
PPT
SéRgio,ViníCius,Jean,Lucas
smoothlene
 
PDF
Bernoulli eulerriemannzeta
Chumphol Mahattanakul
 
PPS
Aurora borealis
Ben Garneau
 
PPT
Milena, JanaíNa
smoothlene
 
PDF
Bessel functionsofintegerorder1
Chumphol Mahattanakul
 
PPT
G nation
guest1dbda9
 
PPT
PatríCia,Jaqueline E Nilsielly
smoothlene
 
PDF
Multimedia Project Slides
guest6b64c3
 
PDF
Ip valuation presentation
Chumphol Mahattanakul
 
PPT
How to restrategize your company in an economic crisis.
Ouke Arts
 
PPT
How to restrategize your company in an economic crisis - updated and expanded
Ouke Arts
 
Confluent hypergeometricfunctions
Chumphol Mahattanakul
 
Indes = Les cavernes d'Ajanta
Ben Garneau
 
What the Facebook?
Kuca Moraes
 
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
Paula,Fabiane,Josiane Camila, Emanueli
smoothlene
 
SéRgio,ViníCius,Jean,Lucas
smoothlene
 
Bernoulli eulerriemannzeta
Chumphol Mahattanakul
 
Aurora borealis
Ben Garneau
 
Milena, JanaíNa
smoothlene
 
Bessel functionsofintegerorder1
Chumphol Mahattanakul
 
G nation
guest1dbda9
 
PatríCia,Jaqueline E Nilsielly
smoothlene
 
Multimedia Project Slides
guest6b64c3
 
Ip valuation presentation
Chumphol Mahattanakul
 
How to restrategize your company in an economic crisis.
Ouke Arts
 
How to restrategize your company in an economic crisis - updated and expanded
Ouke Arts
 
Ad

Similar to Combinatorial analysis (20)

PDF
Elementary Number Theory with Applications Koshy.pdf
Itamar Franco Bohorquez
 
PDF
Algebra Through Problem Solving.pdf
Sabrina Ball
 
PDF
Number Theory An Introduction To Mathematics 2nd Edition Coppel
takoedeus
 
PDF
Discrete strucures
Madhav Deshpande
 
PPT
tutorial5.ppt
jvjfvvoa
 
PDF
R. Bartle, D. Sherbert - Instructors Manual - Introduction to Real Analysis-J...
ArnavBishnoi2
 
PDF
R. Bartle, D. Sherbert - Instructors Manual - Introduction to Real Analysis-J...
ArnavBishnoi2
 
PDF
R. Bartle, D. Sherbert - Instructors Manual - Introduction to Real Analysis-J...
ArnavBishnoi2
 
PDF
Compiled Report
Sam McStay
 
PDF
Introduction to abstract algebra
Elmedin Zejnelovic
 
PDF
Discrete mathematics
Abubakar Sadiq Kabir
 
PDF
Basic calculus
eakbordin
 
PDF
Basic calculus
Ashu1310
 
PDF
Abstract algebra
Emmanuel Mukupa
 
PDF
abstract algebra
angelito1994
 
PDF
ABSTRACT ALGEBRA A STUDY GUIDE FOR BEGINNERS
Angie Miller
 
PDF
Math17 Reference
Elise Angela Espinosa
 
PDF
Multiplicative number theory i.classical theory cambridge
Manuel Jesùs Saavedra Jimènez
 
PDF
andreescu-andrica-problems-on-number-theory.pdf
Aradhya76
 
PDF
An introduction to higher mathematics
Yohannis Masresha
 
Elementary Number Theory with Applications Koshy.pdf
Itamar Franco Bohorquez
 
Algebra Through Problem Solving.pdf
Sabrina Ball
 
Number Theory An Introduction To Mathematics 2nd Edition Coppel
takoedeus
 
Discrete strucures
Madhav Deshpande
 
tutorial5.ppt
jvjfvvoa
 
R. Bartle, D. Sherbert - Instructors Manual - Introduction to Real Analysis-J...
ArnavBishnoi2
 
R. Bartle, D. Sherbert - Instructors Manual - Introduction to Real Analysis-J...
ArnavBishnoi2
 
R. Bartle, D. Sherbert - Instructors Manual - Introduction to Real Analysis-J...
ArnavBishnoi2
 
Compiled Report
Sam McStay
 
Introduction to abstract algebra
Elmedin Zejnelovic
 
Discrete mathematics
Abubakar Sadiq Kabir
 
Basic calculus
eakbordin
 
Basic calculus
Ashu1310
 
Abstract algebra
Emmanuel Mukupa
 
abstract algebra
angelito1994
 
ABSTRACT ALGEBRA A STUDY GUIDE FOR BEGINNERS
Angie Miller
 
Math17 Reference
Elise Angela Espinosa
 
Multiplicative number theory i.classical theory cambridge
Manuel Jesùs Saavedra Jimènez
 
andreescu-andrica-problems-on-number-theory.pdf
Aradhya76
 
An introduction to higher mathematics
Yohannis Masresha
 

More from Chumphol Mahattanakul (8)

PDF
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
PDF
Ip aspects of valuation malaysia
Chumphol Mahattanakul
 
PDF
Textile syllabus tu rangsit
Chumphol Mahattanakul
 
PDF
A riddle of liquidity and interest rate public
Chumphol Mahattanakul
 
PDF
Bessel functionsoffractionalorder1
Chumphol Mahattanakul
 
PDF
Cosmetics0290 09
Chumphol Mahattanakul
 
Textile syllabus 4 tu sci&tech
Chumphol Mahattanakul
 
Ip aspects of valuation malaysia
Chumphol Mahattanakul
 
Textile syllabus tu rangsit
Chumphol Mahattanakul
 
A riddle of liquidity and interest rate public
Chumphol Mahattanakul
 
Bessel functionsoffractionalorder1
Chumphol Mahattanakul
 
Cosmetics0290 09
Chumphol Mahattanakul
 

Recently uploaded (20)

PPTX
Care of patients with elImination deviation.pptx
AneetaSharma15
 
PDF
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
PDF
Virat Kohli- the Pride of Indian cricket
kushpar147
 
PPTX
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
PDF
Health-The-Ultimate-Treasure (1).pdf/8th class science curiosity /samyans edu...
Sandeep Swamy
 
PDF
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
DOCX
SAROCES Action-Plan FOR ARAL PROGRAM IN DEPED
Levenmartlacuna1
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PPTX
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
PDF
1.Natural-Resources-and-Their-Use.ppt pdf /8th class social science Exploring...
Sandeep Swamy
 
PPTX
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
PDF
Study Material and notes for Women Empowerment
ComputerScienceSACWC
 
PDF
What is CFA?? Complete Guide to the Chartered Financial Analyst Program
sp4989653
 
DOCX
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
PPTX
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
PPTX
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
DOCX
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
PPTX
CDH. pptx
AneetaSharma15
 
PPTX
How to Manage Leads in Odoo 18 CRM - Odoo Slides
Celine George
 
PPTX
Odoo 18 Sales_ Managing Quotation Validity
Celine George
 
Care of patients with elImination deviation.pptx
AneetaSharma15
 
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
Virat Kohli- the Pride of Indian cricket
kushpar147
 
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
Health-The-Ultimate-Treasure (1).pdf/8th class science curiosity /samyans edu...
Sandeep Swamy
 
The-Invisible-Living-World-Beyond-Our-Naked-Eye chapter 2.pdf/8th science cur...
Sandeep Swamy
 
SAROCES Action-Plan FOR ARAL PROGRAM IN DEPED
Levenmartlacuna1
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
An introduction to Dialogue writing.pptx
drsiddhantnagine
 
1.Natural-Resources-and-Their-Use.ppt pdf /8th class social science Exploring...
Sandeep Swamy
 
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
Study Material and notes for Women Empowerment
ComputerScienceSACWC
 
What is CFA?? Complete Guide to the Chartered Financial Analyst Program
sp4989653
 
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
TEF & EA Bsc Nursing 5th sem.....BBBpptx
AneetaSharma15
 
Kanban Cards _ Mass Action in Odoo 18.2 - Odoo Slides
Celine George
 
Action Plan_ARAL PROGRAM_ STAND ALONE SHS.docx
Levenmartlacuna1
 
CDH. pptx
AneetaSharma15
 
How to Manage Leads in Odoo 18 CRM - Odoo Slides
Celine George
 
Odoo 18 Sales_ Managing Quotation Validity
Celine George
 

Combinatorial analysis

  • 1. 24. Combinatorial Analysis 'M E. K. GOLDBERG. . NEWMAN,' HAYNSWORTH~ Contents page Mathematical Properties . . . . . . . . . . . . . . . . . . . . 822 24.1. Basic Numbers . . . . . . . . . . . . . . . . . . . . 822 24.1.1 Binomial Coefficients . . . . . . . . . . . . . . 822 24.1.2 Multinomial Coefficients . . . . . . . . . . . . . 823 24.1.3 Stirling Numbers of the First Kind . . . . . . . . 824 24.1.4 Stirling Numbers of the Second Kind . . . . . . . 824 24.2. Partitions . . . . . . . . . . . . . . . . . . . . . . 825 24.2.1 Unrestricted Partitions . . . . . . . . . . . . . . 825 24.2.2 Partitions Into Distinct Parts . . . . . . . . . . . 825 24.3. Number Theoretic Functions . . . . . . . . . . . . . . 826 24.3.1 The Mobius Function . . . . . . . . . . . . . . 826 24.3.2 The Euler Function . . . . . . . . . . . . . . . 826 24.3.3 Divisor Functions . . . . . . . . . . . . . . . . 827 24.3.4 Primitive Roots . . . . . . . . . . . . . . . . . 827 References . . . . . . . . . . . . . . . . . . . . . . . . . . 827 Table 24.1. Binomial Coefficients (;) . . . . . . . . . . . . . . 828 n 1 5 0 .m 1 2 5 Table 24.2. Multinomials (Including a List of Partitions) . . . . . . 831 nllO Table 24.3. Stirling Numbers of the First Kind Si"') . . . . . . . . . 833 n525 Table 24.4. Stirling Numbers of the Second Kind si"') . . . . . . . 835 n125 Table 24.5. Number of Partitions and Partitions Into Distinct Parts . . 836 P b ) . n )n1500 d . Table 24.6. Arithmetic Functions . . . . . . . . . . . . . . . . 840 d n )4 n ) ui(n>. . . n51000 Table 24.7. Factorizations . . . . . . . . . . . . . . . . . . . . 844 n<10000 Table 24.8. Primitive Roots. Factorization of p- 1 . . . . . . . . . 864 n<10000 Table 24.9. Primes . . . . . . . . . . . . . . . . . . . . . . . 870 pll06 1. 2 National Bureau of Standards. 3 National Bureau of Standards. (Presently. Auburn Univenrity.) 821
  • 2. 24. Combinatorial Analysis Mathematical Properties In ench sub-section of this chnpter we use a special nncl easily recognizable symbol, and a fised format wliicli etnplinsizes tlic use and yet t h n t s-mbol must be easy to write. We have methods or" cstcnding the nccotnpnriyinp tables. settled on a script capital 3 without any certainty Thc format follows this forin : that we 11ave settled tliis question permanently. 1. Definitions We feel that tlie subscript-superscript notation A. Combinntorinl emplinsizes tlie generating friiictioris (wliicli are B. Generating functions p6wers of mutunlly inverse functions) from which C. Closed form most of the important relations flow. 11. Relations 24.1. Basic Numbers A. Recurrences B. Checks in comput.ing 24.1.1 Binomial Coefficients C. Basic use in numerical analysis 1. Definitions 111. Asymptotic and Special Values In general tlie notations used ore stsndnrd. This includes the difference operator A defined on A. (z) is the number of yays of choosing m objects from a collection of n distinct objects functions of t by Af(z)=f(r+I)-f(;t), An+y(r) without regard to order. =A(A.J(z)), the Kronecker deltu the Rieninriri 13. Generating furictioiis zeta function {(s) and the grentest common divisor symbol (m, n), The range of the summands n=O,l,. . . for n summation sign without limits is explained to the right of the formula. The notations which are not stnndnrd are those for tlie multinomials whicli nre arbitrary sliort- hand for use in this chapter, and those for the C. Closed form Stirling numbers which have never been stand- ardized. A short table of various notations for these numbers follows : n> m Notations for the Stirling Numbers n(n-1). . . (n-m+l) - - Reference First Kind Second Kind m! This chapter 'S .! %!-) 11. Relations 124.21 Fort S:-' yy * } (24.71 Jordan A S : e: * A. Recurrences (24.101 bIoser and Wyman S.: 0:: 124.91 Milne-Thomson ( :I :)B!% (:) B:Z n>m>l (24.151 Riordan d n , m) S(n, m) (24.11 Carlitz [24.3] Could Miksa (-1)n-"Sl(n-l,n-m) S(n-m+1, n) S2(m, n-m) mSn =( :)+( :)+. . . +rim) m n> (Unpublished B. Checks tables) 124.171 Gupta u(n, m) r+sL n We feel that a capital S is natural for Stirling numbers of the first kind; it is infrequently used for other notation in this contest.. But once it r 2 ir+l is used we have difficulty finding a suitable symbol for Stirling numbers of tlie second kind. The numbers are sufficiently important to warrant "D> (:')=(- mo ('''I) in., . . . (Inodp) pa prime a22 *Rev pnge XI.
  • 3. COMBINATORIAL ANALYSIS 823 where m m 5 (-om m=O (;)f(z-m) n = E n,$, m = C mkpk 2Q n-k-1 ) k-0 k-0 p>mk, n k =f:=O k (-1)S-f 8-k ~kj(z--s) e n < C. Numerical analysis I 111. Special Values 2"(2n-1)(2n-3) . . . 3-1 ("n">= n! 24.1.2 Multinomial Coefficients I. DefinitiOM A. (n; nl, %, . . ., n,) is the number of ways of putting n=nl+nz+. . . +nm different objects into m different boxes with nk in the k-th box, k=I, 2, . . ., m. (n; all %, . . ., a,,)* is the number of permutations of n=a1+2%+. . . +nu, symbols composed of a k cycles of length k for k=1, 2, . . ., n. (n; al, %, . . ., an)' is the number of ways of partitioning a set of n=a1+2az+. . . +na. dif- ferent objects into ak subsets containing k objects for k=1, 2, . . ., n. B. Generating functions (zl+%+. . . +z,)"=Z(n; nl, 121, . . ., nm)z;%P . . . z3 summed over a+-+. . . +nm=n (2 P) k-1 m =m! OD t" n-m 12. Z(n;al,a2, . . ., a ) z 1 ; . n*;zr. .: z- summed over a1+2%+ . . . +m,,=n C. Closed forms (n; nl, Q, . . ., n,) =n!/w!n,! . . . n,! nl+%+. . .+nm=n (n; all az, . . ., a,,) *=n!/lal@!2"Iag! . . . n".cr,,! a1+2%+ . . .+m,=n {{ { (n;al,az, . . ., ~ , ) ' = n ! / ( l ! ) ~ l a ~ ! ( 2 ! . ~ ! (n!)"a,! ). . al+%+. . . +m,=n 11. Relatiom A. Recurrence m (n+m;nl+l,nz+l,. . . , n m + l ) = C (n+m-l;nl+l, . . .,nk-l+l,nk,nk+l+l, . . . ,n,,,+l) k-1 B. Checks all ni 1 * Z(n;nl,%, . . .,n,,,)= summed over nl -]-nz+ . . . +nm=n Z(n;al,%, . . ., ~,,)*=(-1)"-?3~~' summed over a1+2%+ . . . +m,,=n and al+az+. . . +an=m Z(n;a,,az, . . ., a,)'= SP) C. Numerical analysis (FaA di Bruno's formula) d" n = C f("'(g(z))W; al,G, . . , an)' g'b) 1'1 g"(z) 1'2 . g'"'(z) 1 dz"g b ) ) -f( m-0 . . . 'I summed over al+2%+ . . . +nun=n and al+az+. . . +an=m.
  • 4. 824 COMBINATORIAL ANALYSIS P, 1 0 ... 0 Pz Pl 2 ... P, Pz Pl ... ... =2(-1)"-mi(n; u,, &, . . ., u,)*PflP,"2.. . P, : ... 0 . .. n-1 Pn Pn-1 Pn-2 ... P, I. Definitions I Sin)I - (n- I)! (r+ln n)m-l/ -1) ! (m A. (-l)n-mSim) number of permutations is the for m=o(ln n) of n symbols which have exactly m cycles. B. Generating functions n z(x-1) . . . (x-n+l)=C S!,m)z" m-0 {ln (1+r)jm=m! m n-m a 2" Sim) bl < C. Closed form (see closed form for $3,"')) 11. Relations I A. Recurrences 24.1.4 Stirling Numbers of the Second Kind S;y),= Sj,m-l)_nS;m) n2.mrl I. Definitions (:) ~ i m ) =-m-r ~ c) S Lk i - ) A ) Smr nzmzr A. aim'isthe number of ways of partitioning a set of n elements into m non-empty subsets. B. Generating functions B. Checks n z"=C gpX(x-1) . . . (2-m+l) m -0 C. Numerical analysis I lm' z< - C. Closed form if convergent.
  • 5. COMBINATORIAL ANALYSIS 825 B. Generating function B. Checks n (-1)"-=m! s = p 1 where m-0 ((z))=z-[z]-& if z is not an integer =O if x is an integer 11. Relationa A. Recurrence p(n)= & (-l)k-lp (-) n? p(0)=1 1- s 1 In 5 =I ol(k)p(n-k) n k-1 B. Check 111. Asymptotics and Special Velum * lim m-" sAm)=(mt)-l n-m 111. Aapptoties 1 *d%& P(4- - 4nd3e 24.2.2 Partitions Into Distinct Parte I. Definitiono A. q(n) is the number of decompositions of n into distinct integer summands without regard to order. E.g., 5=1+4=2+3 so that q(5)=3. B. Generating function m m OD 24.2. Partitions qq(n)z"= II (l+x")= n- n-1 n-1n 11 z< 1 24.2.1 Unrestricted Partitions C. Closed form I. Definitions A. p(n) is the number of decompositions of n into integer summands without regard to order. where Jo(x) is the Bessel function of order 0 and E.g.,5=1+4=2+3=1+1+3=1+2+2=1+1+ was defined in part IC. of the previous 1+2=1+1+1+1+1 so that p(5)=7. subsection. *See page 11.
  • 6. 826 COMBINATORIAL ANUYBIS 11. Relations =2 g(z) f(m)for all z>O if and only if n-1 A. Recurrences m=5 n-1 for all r(n)g(7=) z>o and if m a 1 If(mnz) - =c If(nz) I converges. q(n) tu-1 n-1 n-1 =O otherwise The cyclotomic polynomial of order n ie II ($- l)r(n/d) dln B. Check 111. Aeymptotics f-r (-l)'q(n-(3k'~kf))=l if n =- O<;tkktk<n 2 =O otherwise. 111. Aspptotics 24.3. Number Theoretic Functions 24.3.2 The Euler Totient Function 24.3.1 The Mobius Function 1. Definitions I. Definition8 A. p(n)the number of integers not exceeding is A. p(n)=l if n=l and relatively prime to n. =(-l)& n is the product of k distinct if B. Generating functions primes =O if n is divisible by a square >1. aa>2 B. Generating functions 2p(n)n-s=l/r(s) a-1 ~'s>I 14<1 C. Closed form 11. Relations A. Recurrence over distinct primes p dividing n. p(mn)=p(m)p(n) if (m,n)=l 11. Relations =O if (m, n)>l A. Recurrence B. Check (m, n)=1 (P(m4 =dm)&) cc(d)=b B. Checks C. Numerical analysis g(n)=pf(d) for all n if and only if n =g f(4 r(d)g(n/d) n for all =11 g(n) f(d) for all n if and only if dln f(n) =n g(n/d)r(" n for all ar(") 1 (mod n) = (a, = 1 n) dln g(z)=Ej(z/n) z>O if and only if for all 111. Asymptotics a-1 j(x> =gp(n)g(z/n) z>o a-1 for all
  • 7. COMBINATORIAL ANALYSIB 827 1 " 24.3.3 Divisor Functions I. Definitions - n2 m=l u1(m)=-+O 12 u2 CY> - A. uk(n) the sum of the k-th powers of the is 24.3.4 Primitive Roots divisors of n. Often udn) denoted by d(n), is and U l b )b y 4%). I. Definitions B. Generating functions The integers not exceeding and relatively prime to a fixed integer n form a group; the group is cyclic if and only if n=2,4 or n is of the form pk or 2pkwhere p is an odd prime. Then g is a primitive root of n if it generates that group; i.e., if g, g2, . . ., g+'(")distinct modulo n. There are cp(cp(n)) are C. Closed form primitive roots of n. 11. Relations A. Recurrences. If g is a primitive root of a prime p and gp-l$ l(mod p2) g is a primitive then root of pk for all k. If gp-' = 1(mod p2) then g+p is a primitive root of pkfor all k. If g is a primitive root of pk then either g or g+pk,whichever is odd, is a primitive root of 2p'. B. Checks. If g is a primitive root of n then gk is a primitive root of n if and pnly if (k, cp(n), = 1, and each primitive root of n is of this form. References Texts [24.13] H . Rademacher, On the partition function, Proc. London Math. SOC. 241-254 (1937). 43, [24.1] L. Carlitr, Note on Norlunds polynomial B$), [24.14] H. Rademacher and A. Whiteman, Theorems on Proc. Amer. Math. SOC. 452-455 (1960). 11, Dedekind sums, Amer. J. Math. 63, 377-407 [24.2] T. Fort, Finite differences (Clarendon Press, (1941). Oxford, England, 1948). [24.15] J. Riordan, An introduction to combinatorial [24.3] H. W. Gould, Stirling number representation analysis (John Wiley & Sons, Inc., New York, problems, Proc. Amer. Math. SOC.11, 447-451 N.Y., 1958). (1960). [24.16] J. V. Uspensky and M. A. Heaslet, Elementary [24.4] G. H. Hardy, Ramanujan (Chelsea Publishing Co., number theory (McGraw-Hill Book Co., Inc., New York, N.Y., 1959). New York, N.Y., 1939). [24.5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed. (Clarendon Tables Press, Oxford, England, 1960). [24.17] British Association for the Advancement of Science, [24.6] L. K. Hua, On the number of partitions of a num- Mathematical Tables, vol. VIII, Number-divisor ber into unequal parts, Trans. Amer. Math. SOC. tables (Cambridge Univ. Press, Cambridge, 51, 194-201 (1942). England, 1940). n S l 0 ' . [24.7] C. Jordan, Calculus of finite differences, 2d ed. [24.18] H. Gupta, Tables of distributions, Res. Bull. East (Chelsea Publishing Co., New York, N.Y., Panjab Univ. 13-44 (1950); 750 (1951). 1960). [24.19] H. Gupta, A table of partitions, Proc. London [24.8] K. Knopp, Theory and application of infinite Math. SOC.39, 142-149 (1935) and 11. 42, series (Blackie and Son, Ltd., London, England, 546-549 (1937). p(n), n=1(1)300; p(n), n=301 1951). (1)600. [24.9] L. M. Milne-Thomson, The calculus of finite [24.20] G. KavBn, Factor tables (Macmillan and Co., Ltd., differences (Macmillan and Co., Ltd., London, London, England, 1937). n 1256,000. England, 1951). [24.21] D. N. Lehmer, List of prime numbers from 1 to [24.10] L. Moser and M. Wyman, Stirling numbers of the 10,006,721, Carnegie Institution of Washington, second kind, Duke Math. J. 25, 29-43 (1958). Publication No. 165, Washington, D.C. (1914). [24.11] L. Moser and M. Wyman, Asymptotic develop- [24.22] Royal Society Mathematical Tables, vol. 3, Table ment of the Stirling numbers of the first kind, of binomial coefficients (Cambridge Univ. Press, J. London Math. SOC. 133-146 (1958). 33, Cambridge, England, 1954). (:).for r <*n< 100. i24.121 H. H. Ostmann, Additive Zahlentheorie, vol. I [24.23] G. N. Watson, Two tables of partitions, Proc. (Springer-Verlag, Berlin, Germany, 1956). London Math. SOC. 550-556 (1937). 42,