This document compares the performance of several image segmentation techniques: global thresholding, adaptive thresholding, region growing, and level set segmentation. It applies these techniques to medical and synthetic images corrupted with noise and evaluates the segmentation results using binary classification metrics like sensitivity, specificity, accuracy, and precision. The results show that level set segmentation best preserves object boundaries, adaptive thresholding captures most image details, and global thresholding has the highest success rate at extracting regions of interest. Overall, the study aims to determine the optimal segmentation method for medical images from CT scans.