SlideShare a Scribd company logo
http://economie.fgov.be
Supplement 1 to the GUM
Propagation of distributions
using a Monte-Carlo method
(JCGM 101:2008)
Dr M. Maeck Belgian National Metrology
http://economie.fgov.be
Supplement 1 to the GUM
 1. Comparison GUM – GUM+1
 2. Monte-Carlo methods
 3. Evaluation of measurement uncertainty using a MC method
 4. Calibration of a thermometer (GUM H3)
http://economie.fgov.be
Comparison GUM – GUM+1 (similarities)
PDF (1)
PDF (2)
PDF (3)
PDF ()
Model
Propagation
of
uncertainties
PDF: probability density function
http://economie.fgov.be
Comparison GUM – GUM+1 (differences)
 1. Propagation of uncertainties:
– GUM: series expansion
– GUM+1: numerical method (Monte Carlo simulations)
 2. The output PDF:
– Supposed to be normal or « Student like » for the GUM
( = ? ; k = ?)
– Obtained explicitly for the GUM+1 (neither  nor k needed)
http://economie.fgov.be
Comparison GUM – GUM+1 (advantages of GUM+1)
 1. Less restrictions:
– The model can be strongly nonlinear
– The output PDF can be almost anything
 2. Easy to program:
– No computation of derivatives
– The programming logic is very simple
 3. Interpretation:
– Based on the CDF
– The confidence interval can be « personalized »
http://economie.fgov.be
Supplement 1 to the GUM
 1. Comparison GUM – GUM+1
 2. Monte-Carlo methods
 3. Evaluation of measurement uncertainty using a MC method
 4. Calibration of a thermometer (GUM H3)
http://economie.fgov.be
Monte-Carlo methods (principle)
Monte Carlo methods (or Monte Carlo experiments) are a
class of computational algorithms that rely on repeated
random sampling to compute their results. Monte Carlo
methods are often used in simulating physical and
mathematical systems. These methods are most suited to
calculation by a computer and tend to be used when it is
infeasible to compute an exact result with a deterministic
algorithm. This method is also used to complement the
theoretical derivations.
(http://en.wikipedia.org/wiki/Monte_Carlo_method)
http://economie.fgov.be
Monte-Carlo method (example)
P
P
S
S
N
N
square
surface
square
surface
square
surface

http://economie.fgov.be
Monte-Carlo methods (evaluation of p)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0 0.2 0.4 0.6 0.8 1.0
N
Nr
S
S
N
N
square
circle
square
circle
square
circle


 4
411
2
p
pp
2.00
2.50
3.00
3.50
4.00
0 20 40 60 80 100
N = 100 p = 3,08
N = 103 p = 3,204
N = 104 p = 3,155
N = 105 p = 3,1389
N = 106 p = 3,1427
N = 107 p = 3,1418
http://economie.fgov.be
Monte-Carlo methods ((pseudo)random generator R[0,1])
Usually based on the remainder of integer divisions:
xi+1 = a * xi mod m (i = 1, 2, …) R[0,m-1]
Example: xi+1 = 75 * xi mod (231 – 1)
12 mod 3 = 0 ↔ 12 = 3.4 + 0
11 mod 3 = 2 ↔ 11 = 3.3 + 2
10 mod 3 = 1 ↔ 10 = 3.3 + 1
9 mod 3 = 0 ↔ 9 = 3.3 + 0
 The GUM+1 proposes a generator (enhanced
Wichmann-Hill) that combines 4 R[0,m-1] generators.
The proposed algorithm can be easily implemented.
 In the following examples, the random generator of VBA
(Excel) has been used for practical reasons.
http://economie.fgov.be
Monte-Carlo methods (Excel VBA generator R[0,1])
0
2000
4000
6000
8000
10000
12000
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0
10
20
30
40
50
60
70
80
90
100
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
PDF CDF (%)
N = 106 function calls: Rnd()
http://economie.fgov.be
Monte-Carlo methods (Excel VBA generator T[0,2])
N = 106 function calls: Rnd() + Rnd()
0
5000
10000
15000
20000
25000
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
0
10
20
30
40
50
60
70
80
90
100
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
PDF CDF (%)
http://economie.fgov.be
Monte-Carlo methods (Excel VBA generator N[0,1])
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
-5,00 -4,00 -3,00 -2,00 -1,00 0,00 1,00 2,00 3,00 4,00 5,00
N = 5.105 function calls: Box-Muller algorithm
r1 = Rnd() : r2 = Rnd(): z1 = (-2.ln(r1))1/2.cos(2.p.r2) : z2 = (-2.ln(r1))1/2.sin(2.p.r2)
0
10
20
30
40
50
60
70
80
90
100
-5,0 -4,0 -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 4,0 5,0
PDF CDF
http://economie.fgov.be
Enhanced Wichmann-Hill generator (C++)
PDF CDF (%)
N = 107 function calls
http://economie.fgov.be
Supplement 1 to the GUM
 1. Comparison GUM – GUM+1
 2. Monte-Carlo methods
 3. Evaluation of measurement uncertainty using a MC method
 4. Calibration of a thermometer (GUM H3)
http://economie.fgov.be
Evaluation of measurement uncertainty (1)
V = p.d2.h/4
Six determinations of diameter and height:
Calculation of the volume of a cylinder
http://economie.fgov.be
Evaluation of measurement uncertainty (2)
http://economie.fgov.be
Program (1)
Dim i, N As Long: Dim Pi As Single : Dim r1, r2, d, h, V, Vmin, Vmax, Bin As Single : Dim Volumes(10000000#) As Single :
Dim DeltaV, AverageV, sV, DeltaVd, AverageVd, sVd, DeltaVh, AverageVh, sVh As Single
Cells(3, 7).Value = "": Cells(5, 7).Value = "": Cells(6, 7).Value = "": Cells(9, 5).Value = "": Cells(10, 5).Value = ""
Cells(8, 7).Value = "": Cells(9, 7).Value = "" : N = Cells(3, 3).Value: Pi = 3.141592654
For i = 1 To N: Cells(3, 7).Value = i
‘Uncertainty of V
r1 = Rnd(): r2 = Rnd()
d = Sqr(-2 * Log(r1)) * Cos(2 * Pi * r2) * Sheets("Data").Cells(14, 6).Value + Sheets("Data").Cells(12, 6).Value
h = Sqr(-2 * Log(r1)) * Sin(2 * Pi * r2) * Sheets("Data").Cells(14, 10).Value + Sheets("Data").Cells(12, 10).Value
V = Pi * d * d * h / 4: Volumes(i) = V
DeltaV = V - AverageV: AverageV = AverageV + DeltaV / i: sV = sV + DeltaV * (V - AverageV)
'Contribution of the diameter
r1 = Rnd(): r2 = Rnd()
d = Sqr(-2 * Log(r1)) * Cos(2 * Pi * r2) * Sheets("Data").Cells(14, 6).Value + Sheets("Data").Cells(12, 6).Value
h = Sheets("Data").Cells(12, 10).Value
V = Pi * d * d * h / 4
DeltaVd = V - AverageVd: AverageVd = AverageVd + DeltaVd / i: sVd = sVd + DeltaVd * (V - AverageVd)
'Contribution of the height
r1 = Rnd(): r2 = Rnd()
d = Sheets("Data").Cells(12, 6).Value
h = Sqr(-2 * Log(r1)) * Sin(2 * Pi * r2) * Sheets("Data").Cells(14, 10).Value + Sheets("Data").Cells(12, 10).Value
V = Pi * d * d * h / 4
DeltaVh = V - AverageVh: AverageVh = AverageVh + DeltaVh / i: sVh = sVh + DeltaVh * (V - AverageVh)
Next i
‘Display uncertainty and contributions
Cells(5, 7).Value = AverageV: Cells(6, 7).Value = Sqr(sV / (N - 1))
Cells(9, 5).Value = 100 * sVd / (N - 1) / Cells(6, 7).Value ^ 2: Cells(10, 5).Value = 100 * sVh / (N - 1) / Cells(6, 7).Value ^ 2
http://economie.fgov.be
Program (2)
'Construction of PDF and CDF
Bin = 12 * Sqr(sV / (N - 1)) / 100
For i = 1 To 100
Sheets("Histograms").Cells(i, 1).Value = (Cells(1, 7).Value - 6 * Sqr(sV / (N - 1))) + i * Bin
Sheets("Histograms").Cells(i, 2).Value = "" ‘Clear CDF cells
Next i
For i = 1 To N: Cells(3, 7).Value = i: j = 1
While Volumes(i) > Sheets("Histograms").Cells(j, 1).Value: j = j + 1: Wend
Sheets("Histograms").Cells(j, 2).Value = Sheets("Histograms").Cells(j, 2).Value + 1
Next i
‘Search the uncertainty limits (CDF < 2.5 % and CDF > 97.5 %)
j = 1: While Sheets("Histograms").Cells(j, 3).Value < 2.5: j = j + 1: Wend
Vmin = Sheets("Histograms").Cells(j, 1) - Sheets("Histograms").Cells(j - 1, 1)
Vmin = Vmin * (2.5 - Sheets("Histograms").Cells(j - 1, 3))
Vmin = Vmin / (Sheets("Histograms").Cells(j, 3) - Sheets("Histograms").Cells(j - 1, 3))
Vmin = Vmin + Sheets("Histograms").Cells(j - 1, 1)
Cells(8, 7).Value = Vmin
j = 1: While Sheets("Histograms").Cells(j, 3).Value < 97.5: j = j + 1: Wend
Vmax = Sheets("Histograms").Cells(j, 1) - Sheets("Histograms").Cells(j - 1, 1)
Vmax = Vmax * (97.5 - Sheets("Histograms").Cells(j - 1, 3))
Vmax = Vmax / (Sheets("Histograms").Cells(j, 3) - Sheets("Histograms").Cells(j - 1, 3))
Vmax = Vmax + Sheets("Histograms").Cells(j - 1, 1)
Cells(9, 7).Value = Vmax
'Normalize contributions
Dim Total As Single
Total = Cells(9, 5).Value + Cells(10, 5).Value
Cells(9, 5).Value = Cells(9, 5).Value / Total * 100: Cells(10, 5).Value = Cells(10, 5).Value / Total * 100
http://economie.fgov.be
Evaluation of measurement uncertainty (3)
0
10000
20000
30000
40000
50000
60000
0,00
20,00
40,00
60,00
80,00
100,00
120,00
PDF CDF
http://economie.fgov.be
Evaluation of measurement uncertainty (4)
Bins
PDF
CDF
http://economie.fgov.be
Evaluation of measurement uncertainty (5)
118,030 cm3  V  116,653 cm3 (95 %)
http://economie.fgov.be
Evaluation of measurement uncertainty (6)
http://economie.fgov.be
Evaluation of measurement uncertainty (7)
Comparison GUM ↔ GUM+1:
 GUM u = 0,350 cm3 → U(k=2) = 0,700 cm3
 GUM+1 U(95%) = 0,694 cm3
The difference is due to the departure from a
normal distribution of the PDF
http://economie.fgov.be
Supplement 1 to the GUM
 1. Comparison GUM – GUM+1
 2. Monte-Carlo methods
 3. Evaluation of measurement uncertainty using a MC method
 4. Calibration of a thermometer (GUM H3)
http://economie.fgov.be
Use of method of least squares to obtain linear
calibration curve for a thermometer
Mathematical model:
Uncertainty of temperature measurements is negligible
→ uncertainty determined by uncertainty of parameters
y1 and y2
Calibration of a thermometer GUM H3 (1)
b(t) = y1 + y2.(t – t0) (t0 = 20 °C)
http://economie.fgov.be
Calibration of a thermometer GUM H3 (2)
k tk (°C) tk-20 (°C) bk (°C)
1 21,521 1,521 -0,171
2 22,012 2,012 -0,169
3 22,512 2,512 -0,166
4 23,003 3,003 -0,159
5 23,507 3,507 -0,164
6 23,999 3,999 -0,165
7 24,513 4,513 -0,156
8 25,002 5,002 -0,157
9 25,503 5,503 -0,159
10 26,010 6,010 -0,161
11 26,511 6,511 -0,160
r2
= 0,5427
-0,173
-0,171
-0,169
-0,167
-0,165
-0,163
-0,161
-0,159
-0,157
-0,155
1 2 3 4 5 6 7
b(tk) (°C) bk - b(tk) (°C)
-0,1679 -0,0031
-0,1668 -0,0022
-0,1657 -0,0003
-0,1646 0,0056
-0,1635 -0,0005
-0,1625 -0,0025
-0,1614 0,0054
-0,1603 0,0033
-0,1592 0,0002
-0,1581 -0,0029
-0,1570 -0,0030
y1 = -0.1712 °C
s(y1) = 0.0029 °C
y2 = 0.00218
s(y2) = 0.00067
b(t) = y1 + y2.(t – t0)
(t0 = 20 °C)
Input for the Monte Carlo simulations
Input for the least squares
http://economie.fgov.be
Calibration of a thermometer GUM H3 (3)
http://economie.fgov.be
Calibration of a thermometer GUM H3 (4)
'Declarations
Dim i, N As Long
Dim y1, y2, sy, sy1, sy2, t, r, r1, r2, b, Deltab, Meanb, sb, bMin, bMax As Single
Dim bValues(10000000#) As Single
Dim j As Integer
'Cleaning and initializing
Cells(13, 11).Value = "": Cells(14, 11).Value = ""
For j = 8 To 18: Cells(j, 4).Value = Cells(j, 2).Value: Next j
y1 = Cells(20, 18).Value
y2 = Cells(21, 18).Value
sy = Cells(23, 18).Value
sy1 = Cells(26, 18).Value
sy2 = Cells(27, 18).Value
'Input
N = Cells(22, 7).Value: t = Cells(20, 7).Value
'Iteration
For i = 1 To N: Cells(22, 7).Value = i
r1 = Rnd() * 2 - 1
r2 = Rnd() * 2 - 1
For j = 8 To 18
Cells(j, 4).Value = y1 + r1 * sy1 + (y2 + r2 * sy2) * (Cells(j, 1).Value - 20)
Next j
b = Cells(7, 11).Value + Cells(8, 11).Value * (t - 20)
bValues(i) = b
Deltab = b - Meanb: Meanb = Meanb + Deltab / i: sb = sb + Deltab * (b - Meanb)
Next i
http://economie.fgov.be
Calibration of a thermometer GUM H3 (5)
'Output
Cells(13, 11).Value = Meanb: Cells(14, 11).Value = Sqr(sb / (N - 1))
'Construction of PDF and CDF
Bin = 12 * Sqr(sb / (N - 1)) / 100
For i = 1 To 100
Sheets("Histograms").Cells(i, 1).Value = (Cells(13, 11).Value - 6 * Sqr(sb / (N - 1))) + i * Bin
Sheets("Histograms").Cells(i, 2).Value = ""
Next i
For i = 1 To N: Cells(3, 7).Value = i: j = 1
While bValues(i) > Sheets("Histograms").Cells(j, 1).Value: j = j + 1: Wend
Sheets("Histograms").Cells(j, 2).Value = Sheets("Histograms").Cells(j, 2).Value + 1
Next i
'Search the uncertainty limits (CDF < 2.5 % and CDF > 97.5 %)
j = 1: While Sheets("Histograms").Cells(j, 3).Value < 2.5: j = j + 1: Wend
bMin = Sheets("Histograms").Cells(j, 1) - Sheets("Histograms").Cells(j - 1, 1)
bMin = bMin * (2.5 - Sheets("Histograms").Cells(j - 1, 3))
bMin = bMin / (Sheets("Histograms").Cells(j, 3) - Sheets("Histograms").Cells(j - 1, 3))
bMin = bMin + Sheets("Histograms").Cells(j - 1, 1)
Cells(13, 14).Value = bMin
j = 1: While Sheets("Histograms").Cells(j, 3).Value < 97.5: j = j + 1: Wend
bMax = Sheets("Histograms").Cells(j, 1) - Sheets("Histograms").Cells(j - 1, 1)
bMax = bMax * (97.5 - Sheets("Histograms").Cells(j - 1, 3))
bMax = bMax / (Sheets("Histograms").Cells(j, 3) - Sheets("Histograms").Cells(j - 1, 3))
bMax = bMax + Sheets("Histograms").Cells(j - 1, 1)
Cells(14, 14).Value = bMax
http://economie.fgov.be
Calibration of a thermometer GUM H3 (6)
GUM
b = - 0,149 4 °C
s(b) = 0,004 1 °C
GUM + 1 (VBA)
b = - 0,149 4 °C
s(b) = 0,004 2 °C
u(k=2) = 0,007 6 °C
GUM + 1 (C++)
b = - 0,149 4 °C
s(b) = 0,004 2 °C
u(k=2) = 0,007 6 °C
http://economie.fgov.be

More Related Content

PPTX
Row Pattern Matching 12c MATCH_RECOGNIZE OOW14
stewashton
 
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Solution of matlab chapter 1
AhsanIrshad8
 
PDF
Yandex wg-talk
Yandex
 
PDF
Solution of matlab chapter 6
AhsanIrshad8
 
PPTX
Jamie Pullar- Cats MTL in action
Ryan Adams
 
PDF
Solution of matlab chapter 4
AhsanIrshad8
 
PPTX
Computer Graphic - Lines, Circles and Ellipse
2013901097
 
Row Pattern Matching 12c MATCH_RECOGNIZE OOW14
stewashton
 
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
The Statistical and Applied Mathematical Sciences Institute
 
Solution of matlab chapter 1
AhsanIrshad8
 
Yandex wg-talk
Yandex
 
Solution of matlab chapter 6
AhsanIrshad8
 
Jamie Pullar- Cats MTL in action
Ryan Adams
 
Solution of matlab chapter 4
AhsanIrshad8
 
Computer Graphic - Lines, Circles and Ellipse
2013901097
 

What's hot (20)

DOCX
Regression &amp; Classification
주영 송
 
PPTX
Ranges, ranges everywhere (Oracle SQL)
Stew Ashton
 
PDF
Vector mechanics for engineers statics 7th chapter 5
Nahla Hazem
 
PDF
Basic concepts of curve fittings
Tarun Gehlot
 
PDF
Deriving and applying direct and cross indicator variograms in SIS (2006)
David F. Machuca-Mory
 
PPTX
Oracle 12c SQL: Date Ranges
Stew Ashton
 
PDF
Applied numerical methods lec14
Yasser Ahmed
 
PPTX
shooting method with Range kutta method
SetuThacker
 
PPTX
Lec05 circle ellipse
Maaz Rizwan
 
PDF
Matlab file
rampal singh
 
PPT
Cs8092 computer graphics and multimedia unit 2
SIMONTHOMAS S
 
PPTX
April 3, 2014
khyps13
 
PDF
Hermite cubic spline curve
Deepak Antil
 
PDF
presentation
Konstantinos Intzes
 
PPTX
Computer Graphic - Transformations in 3d
2013901097
 
PPSX
Advanced row pattern matching
Stew Ashton
 
PPT
Lesson 12 centroid of an area
Lawrence De Vera
 
PDF
Tp problèmes-à-valeurs-initiales
papillontuba
 
PPT
Matrix 2 d
xyz120
 
PPTX
Hermite spline english_20161201_jintaeks
JinTaek Seo
 
Regression &amp; Classification
주영 송
 
Ranges, ranges everywhere (Oracle SQL)
Stew Ashton
 
Vector mechanics for engineers statics 7th chapter 5
Nahla Hazem
 
Basic concepts of curve fittings
Tarun Gehlot
 
Deriving and applying direct and cross indicator variograms in SIS (2006)
David F. Machuca-Mory
 
Oracle 12c SQL: Date Ranges
Stew Ashton
 
Applied numerical methods lec14
Yasser Ahmed
 
shooting method with Range kutta method
SetuThacker
 
Lec05 circle ellipse
Maaz Rizwan
 
Matlab file
rampal singh
 
Cs8092 computer graphics and multimedia unit 2
SIMONTHOMAS S
 
April 3, 2014
khyps13
 
Hermite cubic spline curve
Deepak Antil
 
presentation
Konstantinos Intzes
 
Computer Graphic - Transformations in 3d
2013901097
 
Advanced row pattern matching
Stew Ashton
 
Lesson 12 centroid of an area
Lawrence De Vera
 
Tp problèmes-à-valeurs-initiales
papillontuba
 
Matrix 2 d
xyz120
 
Hermite spline english_20161201_jintaeks
JinTaek Seo
 
Ad

Similar to Comparison GUM versus GUM+1 (16)

PPSX
Introduction to the guide of uncertainty in measurement
Maurice Maeck
 
PPTX
Calculating Uncertainties
mrjdfield
 
PPTX
Maths Modelling
Arun Joseph
 
PPT
Monte carlo
shishirkawde
 
PDF
Lemh1a2
veerankinagesh
 
PDF
Lemh1a2
Nagesh Veeranki
 
PDF
Solutions_Manual_to_accompany_Applied_Nu.pdf
WaleedHussain30
 
PDF
Slides ub-2
Arthur Charpentier
 
PPTX
Monte Carlo Simulation
Deepti Singh
 
PDF
Monte carlo-simulation
jaimarbustos
 
PDF
Probablity ,Statistics and estimation.pdf
dayanand87
 
PDF
An Introduction To Mathematical Modelling
Joe Osborn
 
DOC
Checklist for practicals[1]
shravan900
 
PDF
Monte Carlo Simulation for project estimates v1.0
PMILebanonChapter
 
PPTX
Dimensional Analysis.pptx
IbifubaraHumphrey2
 
PPT
Mathematical modelling
NandiniNandus
 
Introduction to the guide of uncertainty in measurement
Maurice Maeck
 
Calculating Uncertainties
mrjdfield
 
Maths Modelling
Arun Joseph
 
Monte carlo
shishirkawde
 
Solutions_Manual_to_accompany_Applied_Nu.pdf
WaleedHussain30
 
Slides ub-2
Arthur Charpentier
 
Monte Carlo Simulation
Deepti Singh
 
Monte carlo-simulation
jaimarbustos
 
Probablity ,Statistics and estimation.pdf
dayanand87
 
An Introduction To Mathematical Modelling
Joe Osborn
 
Checklist for practicals[1]
shravan900
 
Monte Carlo Simulation for project estimates v1.0
PMILebanonChapter
 
Dimensional Analysis.pptx
IbifubaraHumphrey2
 
Mathematical modelling
NandiniNandus
 
Ad

More from Maurice Maeck (20)

PPSX
Abrégé de surveillance de la qualité des mesures.ppsx
Maurice Maeck
 
DOCX
La fonte des banquises augmente-t-elle le niveau des océans.docx
Maurice Maeck
 
PPTX
Biodiversité Biodiversity Une réflexion sur ce concept trop souvent galvaudé
Maurice Maeck
 
PPTX
Protéines Les acides aminés du vivant Les (poly)peptides Dénombrement des (p...
Maurice Maeck
 
PPTX
Acides aminés et mode de formation des protéines
Maurice Maeck
 
DOCX
Existence de l'entropie comme grandeur d'état Version pour chimistes
Maurice Maeck
 
PDF
Testing for linearity in retention time - Carbon number plots for n-alkanes
Maurice Maeck
 
PDF
A Numerical Interpolation of Kovats Indices without Dead Time Correction
Maurice Maeck
 
PDF
A Fast Multiparametric Least-Squares Adjustment of GC Data.pdf
Maurice Maeck
 
PDF
Présentation et généralisation d’une méthode naïve, inédite, de classificatio...
Maurice Maeck
 
PPSX
La force de Coriolis une force fictive. Démystification pour l'enseignement e...
Maurice Maeck
 
PPSX
Incertitude de mesure avec biais eil ou crm
Maurice Maeck
 
DOCX
Electron claustrophobia and stability of atoms
Maurice Maeck
 
DOCX
Claustrophobie de l'électron et stabilité des atomes
Maurice Maeck
 
DOCX
Détermination des enthalpies molaires de dissolution
Maurice Maeck
 
PPSX
Evaluation des incertitudes de mesure avec biais eil ou crm
Maurice Maeck
 
PPSX
Eléments corps simples et composés
Maurice Maeck
 
PPSX
pH électroneutralité et solveur Excel
Maurice Maeck
 
DOCX
Acides bases pH Exercices
Maurice Maeck
 
PPSX
Les titrages acido basiques
Maurice Maeck
 
Abrégé de surveillance de la qualité des mesures.ppsx
Maurice Maeck
 
La fonte des banquises augmente-t-elle le niveau des océans.docx
Maurice Maeck
 
Biodiversité Biodiversity Une réflexion sur ce concept trop souvent galvaudé
Maurice Maeck
 
Protéines Les acides aminés du vivant Les (poly)peptides Dénombrement des (p...
Maurice Maeck
 
Acides aminés et mode de formation des protéines
Maurice Maeck
 
Existence de l'entropie comme grandeur d'état Version pour chimistes
Maurice Maeck
 
Testing for linearity in retention time - Carbon number plots for n-alkanes
Maurice Maeck
 
A Numerical Interpolation of Kovats Indices without Dead Time Correction
Maurice Maeck
 
A Fast Multiparametric Least-Squares Adjustment of GC Data.pdf
Maurice Maeck
 
Présentation et généralisation d’une méthode naïve, inédite, de classificatio...
Maurice Maeck
 
La force de Coriolis une force fictive. Démystification pour l'enseignement e...
Maurice Maeck
 
Incertitude de mesure avec biais eil ou crm
Maurice Maeck
 
Electron claustrophobia and stability of atoms
Maurice Maeck
 
Claustrophobie de l'électron et stabilité des atomes
Maurice Maeck
 
Détermination des enthalpies molaires de dissolution
Maurice Maeck
 
Evaluation des incertitudes de mesure avec biais eil ou crm
Maurice Maeck
 
Eléments corps simples et composés
Maurice Maeck
 
pH électroneutralité et solveur Excel
Maurice Maeck
 
Acides bases pH Exercices
Maurice Maeck
 
Les titrages acido basiques
Maurice Maeck
 

Recently uploaded (20)

PPTX
Introduction to Biostatistics Presentation.pptx
AtemJoshua
 
PPTX
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
PPTX
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
PPTX
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
PPT
Grade 5 PPT_Science_Q2_W6_Methods of reproduction.ppt
AaronBaluyut
 
PPTX
Multiscale Segmentation of Survey Respondents: Seeing the Trees and the Fores...
Sione Palu
 
PPTX
INFO8116 - Week 10 - Slides.pptx data analutics
guddipatel10
 
PPTX
INFO8116 - Week 10 - Slides.pptx big data architecture
guddipatel10
 
PDF
TIC ACTIVIDAD 1geeeeeeeeeeeeeeeeeeeeeeeeeeeeeer3.pdf
Thais Ruiz
 
PDF
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
PPTX
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
PPTX
Introduction to computer chapter one 2017.pptx
mensunmarley
 
PPTX
Databricks-DE-Associate Certification Questions-june-2024.pptx
pedelli41
 
PDF
oop_java (1) of ice or cse or eee ic.pdf
sabiquntoufiqlabonno
 
PPTX
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
PPTX
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
PPTX
lecture 13 mind test academy it skills.pptx
ggesjmrasoolpark
 
PDF
717629748-Databricks-Certified-Data-Engineer-Professional-Dumps-by-Ball-21-03...
pedelli41
 
PDF
Company Presentation pada Perusahaan ADB.pdf
didikfahmi
 
PPTX
Power BI in Business Intelligence with AI
KPR Institute of Engineering and Technology
 
Introduction to Biostatistics Presentation.pptx
AtemJoshua
 
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
Grade 5 PPT_Science_Q2_W6_Methods of reproduction.ppt
AaronBaluyut
 
Multiscale Segmentation of Survey Respondents: Seeing the Trees and the Fores...
Sione Palu
 
INFO8116 - Week 10 - Slides.pptx data analutics
guddipatel10
 
INFO8116 - Week 10 - Slides.pptx big data architecture
guddipatel10
 
TIC ACTIVIDAD 1geeeeeeeeeeeeeeeeeeeeeeeeeeeeeer3.pdf
Thais Ruiz
 
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
Introduction to computer chapter one 2017.pptx
mensunmarley
 
Databricks-DE-Associate Certification Questions-june-2024.pptx
pedelli41
 
oop_java (1) of ice or cse or eee ic.pdf
sabiquntoufiqlabonno
 
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
lecture 13 mind test academy it skills.pptx
ggesjmrasoolpark
 
717629748-Databricks-Certified-Data-Engineer-Professional-Dumps-by-Ball-21-03...
pedelli41
 
Company Presentation pada Perusahaan ADB.pdf
didikfahmi
 
Power BI in Business Intelligence with AI
KPR Institute of Engineering and Technology
 

Comparison GUM versus GUM+1