This document compares four statistical methods commonly used in predictive modelling: Logistic Multiple Regression (LMR), Principal Component Regression (PCR), Classification and Regression Tree analysis (CART), and Multivariate Adaptive Regression Splines (MARS). It applies these methods to two ecological data sets to test their accuracy, reliability, ease of use, and implementation in a geographic information system (GIS). The results show that independent data is needed to validate models, and that MARS and CART achieved the best prediction success, although CART models became too complex for cartographic purposes with a large number of data points.