Complex	
  Strains	
  
Dr	
  Alessandro	
  Palmeri	
  
<A.Palmeri@lboro.ac.uk>	
  
Teaching	
  schedule	
  
Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff
1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- ---
2 Shear centres A P Basic Concepts J E-R Shear Centre A P
3 Principle of Virtual
forces
J E-R Indeterminate Structures J E-R Virtual Forces J E-R
4 The Compatibility
Method
J E-R Examples J E-R Virtual Forces J E-R
5 Examples J E-R Moment Distribution -
Basics
J E-R Comp. Method J E-R
6 The Hardy Cross
Method
J E-R Fixed End Moments J E-R Comp. Method J E-R
7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R
8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R
9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P
10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric
Bending
A P
11 Complex Stress/Strain A P Complex Stress/Strain A P Complex
Stress/Strain
A P
Christmas
Holiday
12 Revision
13
14 Exams
15
2	
  
MoAvaAons	
  (1/3)	
  
•  Similarly	
  to	
  the	
  stresses:	
  
–  Normal	
  strain	
  εn	
  and	
  shear	
  strain	
  γmn	
  change	
  their	
  
values	
  with	
  the	
  orthogonal	
  direcAons	
  m	
  and	
  n	
  being	
  
considered	
  
–  A	
  Mohr’s	
  circle	
  can	
  be	
  used	
  to	
  represent	
  and	
  analyse	
  
the	
  variaAons	
  of	
  εn	
  and	
  γmn,	
  and	
  therefore:	
  
•  Find	
  the	
  principal	
  stresses	
  εp=εmin	
  and	
  εq=εmax	
  
•  Find	
  the	
  maximum	
  shear	
  stress	
  γmax	
  
•  Determine	
  the	
  direcAons	
  upon	
  which	
  they	
  act	
  
3	
  
MoAvaAons	
  (2/3)	
  
•  A	
  strain	
  gauge	
  (SG)	
  is	
  a	
  device	
  used	
  to	
  measure	
  normal	
  strain	
  on	
  test	
  
specimens	
  
•  The	
  most	
  common	
  type	
  of	
  SG	
  consists	
  a	
  metallic	
  foil	
  film	
  in	
  the	
  thickness	
  of	
  a	
  
few	
  microns	
  (the	
  ‘grid’)	
  glued	
  on	
  a	
  thin	
  electrically	
  insulated	
  sheet	
  (the	
  ‘base’)	
  
–  The	
  SG	
  is	
  firmly	
  bonded	
  to	
  the	
  test	
  specimen,	
  so	
  to	
  experience	
  the	
  same	
  normal	
  
strain	
  ε=ΔL/L	
  
–  The	
  SG	
  responds	
  to	
  strain	
  with	
  a	
  linear	
  change	
  ΔR	
  in	
  the	
  electrical	
  resistance	
  R	
  
–  The	
  laUer	
  can	
  be	
  measured	
  during	
  the	
  test,	
  giving	
  the	
  value	
  of	
  the	
  strain	
  through	
  
an	
  appropriate	
  gauge	
  factor	
  (GF)	
  
4	
  
GF =
ΔR / R
ΔL / L
⇒ ε =
ΔR
GF ⋅R
MoAvaAons	
  (3/3)	
  
•  With	
  a	
  single	
  strain	
  gauge	
  (SG)	
  one	
  can	
  measure	
  the	
  
strain	
  in	
  a	
  single	
  direcAon	
  
•  With	
  a	
  ‘roseUe’	
  of	
  three	
  SGs	
  (in	
  three	
  direcAons)	
  on	
  
can	
  know	
  the	
  strain	
  in	
  all	
  the	
  direcAons	
  
	
  
5	
  
‘Delta’	
  SG	
  rose6e	
  ‘Corner’	
  SG	
  rose6e	
  
Learning	
  Outcomes	
  
When	
  we	
  have	
  completed	
  this	
  unit	
  (1	
  lecture	
  +	
  1	
  
tutorial),	
  you	
  should	
  be	
  able	
  to:	
  
•  Use	
  the	
  elas8c	
  cons8tu8ve	
  law	
  for	
  homogeneous	
  and	
  
isotropic	
  solids	
  to	
  relate	
  stresses	
  (σ,	
  τ)	
  and	
  strains	
  (ε,	
  γ)	
  
•  Use	
  the	
  Mohr’s	
  circle	
  to	
  determine:	
  
–  principal	
  strains,	
  and	
  their	
  direcAons;	
  
–  maximum	
  shear	
  strain;	
  
–  normal	
  strain	
  and	
  shear	
  strain	
  in	
  any	
  direcAon	
  
•  Only	
  the	
  case	
  of	
  plane	
  stress	
  will	
  be	
  considered,	
  i.e.	
  no	
  
out-­‐of-­‐plane	
  stresses	
  
	
  
6	
  
Further	
  reading	
  
•  R	
  C	
  Hibbeler,	
  “Mechanics	
  of	
  Materials”,	
  8th	
  
Ed,	
  PrenAce	
  Hall	
  –	
  Chapter	
  9	
  on	
  “Stress	
  
TransformaAon”	
  
•  T	
  H	
  G	
  Megson,	
  “Structural	
  and	
  Stress	
  
Analysis”,	
  2nd	
  Ed,	
  Elsevier	
  –	
  Chapter	
  14	
  on	
  
“Complex	
  Stress	
  and	
  Strain”	
  (eBook)	
  
7	
  
Modes	
  of	
  DeformaAon	
  
•  Material	
  element	
  can	
  be	
  extended,	
  compressed,	
  or	
  
sheared,	
  resulAng	
  in	
  different	
  deformed	
  configuraAons	
  
	
  
8	
  
εx > 0 εz < 0 γ xz > 0
x
z
Extension:	
  
Volume	
  increases	
  
Compression:	
  
Volume	
  decreases	
  
Shearing:	
  
Shape	
  changes	
  
Measures	
  of	
  DeformaAon	
  (1/2)	
  
•  The	
  normal	
  strain	
  εx	
  in	
  a	
  given	
  
direcAon	
  x	
  is	
  the	
  dimensionless	
  
measure	
  of	
  the	
  variaAon	
  in	
  length	
  of	
  
the	
  element	
  in	
  that	
  direcAon,	
  ΔLx,	
  
per	
  unit	
  length	
  of	
  the	
  element	
  
before	
  the	
  deformaAon,	
  Lx	
  
–  PosiAve	
  normal	
  strain	
  means	
  
extension	
  
–  NegaAve	
  normal	
  strain	
  means	
  
compression	
  
9	
  
εx > 0
Lx
ΔLx
2
ΔLx
2
εx = lim
Lx→0
ΔLx
Lx
x
z
Measures	
  of	
  DeformaAon	
  (1/2)	
  
10	
  
γ xz = lim
Lx→0
Lz→0
uz
Lx
+
ux
Lz
⎛
⎝⎜
⎞
⎠⎟γ xz > 0
Lx
Lz
ux
uz
uz Lx
ux Lz
x
z
•  The	
  shear	
  strain	
  γxz	
  is	
  a	
  measure	
  of	
  
how	
  the	
  angle	
  between	
  orthogonal	
  
direcAons	
  x	
  and	
  z	
  in	
  the	
  undeformed	
  
material	
  element	
  changes	
  with	
  the	
  
deformaAon	
  
	
  
ElasAc	
  ConsAtuAve	
  Law	
  (1/2)	
  
11	
  
•  In	
  case	
  of	
  plane	
  stress,	
  assuming	
  that	
  only	
  σx,	
  σz	
  and	
  τxz	
  
act	
  on	
  the	
  material	
  element,	
  elas8c	
  and	
  isotropic,	
  the	
  
stresses	
  are	
  given	
  by:	
  
–  where	
  E=	
  Young’s	
  modulus;	
  ν=	
  Poisson’s	
  raAo	
  (Greek	
  leUer	
  
‘ni’;	
  G=	
  shear	
  modulus	
  
εx =
1
E
σx −νσz( )
εz =
1
E
σz −νσx( ) ; εy = −
ν
E
σx +σz( )
γ xz =
τxz
G
; γ xy = γ yz = 0
⎧
⎨
⎪
⎪
⎪
⎩
⎪
⎪
⎪
ElasAc	
  ConsAtuAve	
  Law	
  (2/2)	
  
12	
  
•  What	
  does	
  ‘elasAc’	
  mean?	
  
–  The	
  material	
  is	
  able	
  to	
  return	
  to	
  its	
  original	
  shape	
  
aCer	
  loading	
  and	
  then	
  unloading	
  
•  What	
  does	
  ‘isotropic’	
  mean?	
  
–  The	
  mechanical	
  properDes	
  of	
  the	
  material	
  are	
  
idenDcal	
  in	
  all	
  direcDons	
  
•  In	
  presence	
  of	
  small	
  deformaAons:	
  
–  Concrete	
  and	
  steel	
  are	
  linear-­‐elasDc	
  and	
  isotropic	
  
–  Masonry	
  and	
  Dmber	
  are	
  linear-­‐elasDc	
  and	
  ‘orthotropic’,	
  
meaning	
  that	
  there	
  are	
  three	
  mutually	
  orthogonally	
  axes	
  
of	
  symmetry	
  for	
  the	
  mechanical	
  properAes	
  
Material	
  TesAng	
  (1/2)	
  
13	
  
•  The	
  Young’s	
  modulus	
  of	
  metals	
  is	
  measured	
  with	
  a	
  
tensile	
  test,	
  using	
  a	
  so-­‐called	
  ‘universal	
  tesAng	
  machine’	
  
Material	
  TesAng	
  (2/2)	
  
14	
  
•  The	
  Young’s	
  modulus	
  of	
  concrete	
  materials	
  is	
  measured	
  
with	
  a	
  compressive	
  test	
  on	
  standard	
  cylinders	
  
ElasAc	
  Parameters	
  
15	
  
•  Only	
  two	
  among	
  the	
  three	
  elasAc	
  parameters	
  E,	
  ν	
  
and	
  G	
  are	
  independent	
  
–  Knowing	
  E	
  and	
  ν,	
  one	
  can	
  compute	
  G:	
  
–  Knowing	
  E	
  and	
  G,	
  one	
  can	
  compute	
  ν:	
  
	
  	
  
G =
E
2 1+ν( )
ν =
E
2G
−1
Mohr’s	
  Circle	
  of	
  Strain	
  
16	
  
•  Similarly	
  to	
  the	
  case	
  of	
  complex	
  stresses,	
  
complex	
  strains	
  (i.e.	
  combined	
  normal	
  and	
  shear	
  
strain)	
  can	
  be	
  analysed	
  with	
  the	
  Mohr’s	
  circle	
  
–  Along	
  the	
  horizontal	
  axis,	
  the	
  normal	
  stress	
  σ	
  is	
  
replaced	
  by	
  the	
  corresponding	
  normal	
  strain	
  ε:	
  
–  Along	
  the	
  verAcal	
  axis,	
  the	
  shear	
  stress	
  τ	
  is	
  replaced	
  
by	
  half	
  of	
  the	
  shear	
  strain,	
  γ/2,	
  not	
  γ:	
  
	
  	
  
σ → ε
τ →
γ
2
Mohr’s	
  Circle	
  of	
  Strain	
  (1/3)	
  
17	
  
•  Similarly	
  to	
  the	
  Mohr’s	
  circle	
  of	
  stress…	
  
ε
Rε
extension	
  compression	
  
γ
2
Cε
εave
εx
εz
X ≡ εx ,γ xz / 2{ }
Z ≡ εz,−γ xz / 2{ }
εave =
εx + εz
2
Cε ≡ εave,0{ } Rε =
1
2
εx − εz( )
2
+γ xz
2
Mohr’s	
  Circle	
  of	
  Strain	
  (2/3)	
  
18	
  
extension	
  compression	
  
γ
2
Cε
εave εqεp
X
Z
ε
P Q
γ max
εp = εave − Rε
εq = εave + Rε
⎧
⎨
⎩
γ max = 2 Rε
Mohr’s	
  Circle	
  of	
  Strain	
  (3/3)	
  
19	
  
extension	
  compression	
  
γ
2
Cε
εave
X
Z
ε
P Q
εm = εave + Rε cos 2αxm − 2αxq( )
γ mn = 2 Rε sin 2αxm − 2αxq( )
⎧
⎨
⎪
⎩⎪
2αxq
2αxm
Rε
M
•  Important:	
  It	
  is	
  
assumed	
  here	
  
that	
  angles	
  α	
  are	
  
posiDve	
  if	
  
anDclockwise	
  
Principal	
  DirecAons	
  
of	
  Stress	
  and	
  Strain	
  
20	
  
•  The	
  orthogonal	
  axes	
  p	
  and	
  q	
  are	
  principal	
  direcAons	
  of	
  
stress	
  if	
  and	
  only	
  if	
  the	
  shear	
  stress	
  is	
  τpq=	
  0	
  
•  According	
  to	
  the	
  elasAc	
  consAtuAve	
  law:	
  
	
   	
  γpq=	
  τpq/G=	
  0	
  
•  The	
  orthogonal	
  axes	
  p	
  and	
  q	
  are	
  principal	
  direcAons	
  of	
  
strain	
  if	
  and	
  only	
  if	
  the	
  shear	
  strain	
  is	
  γpq=	
  0	
  
•  If	
  follows	
  that	
  principal	
  direcAons	
  of	
  stress	
  are	
  also	
  
principal	
  direcAon	
  of	
  strain	
  
–  Therefore,	
  the	
  extreme	
  values	
  of	
  the	
  normal	
  stress	
  happen	
  
along	
  the	
  same	
  direcAons	
  as	
  the	
  extreme	
  values	
  of	
  the	
  
normal	
  strain	
  
	
  
Strain-­‐Gauge	
  RoseUes	
  (1/3)	
  
•  One	
  and	
  only	
  circle	
  passes	
  
through	
  any	
  three	
  non-­‐
aligned	
  points	
  drawn	
  in	
  the	
  
plane	
  
•  It	
  follows	
  that:	
  one	
  and	
  only	
  
one	
  Mohr’s	
  circle	
  of	
  strain	
  
can	
  be	
  drawn	
  knowing	
  the	
  
normal	
  strain	
  along	
  three	
  
given	
  direc8ons	
  
•  RoseUes	
  made	
  of	
  three	
  
strain	
  gauges	
  exploit	
  this	
  
property	
  
•  45°	
  (‘Corner’)	
  Rose6e	
  
21	
  
!x
z
ε0
!ε90
ε45
!45°
!45°
εx = ε0 ; εz = ε90
γ xz = ε0 + ε90 − 2ε45
⎧
⎨
⎩
Strain-­‐Gauge	
  RoseUes	
  (2/3)	
  
•  60°	
  (‘Delta’)	
  Rose6e	
  
22	
  
εx =
2
3
ε30 −
ε90
2
+ ε150
⎛
⎝⎜
⎞
⎠⎟
εz = ε90
γ xz =
2
3
ε150 − ε30( )
⎧
⎨
⎪
⎪⎪
⎩
⎪
⎪
⎪
!ε30
!ε90
!ε150
30°
60° 60°
!x
z
•  Both	
  corner	
  and	
  delta	
  roseUes	
  are	
  largely	
  used	
  when	
  
tested	
  structural	
  elements	
  under	
  complex	
  stress	
  
condiAons	
  
Strain-­‐Gauge	
  RoseUes	
  (2/3)	
  
Experimental	
  
validaDon	
  of	
  strut-­‐
and-­‐De	
  model	
  for	
  
precast	
  RC	
  lintels	
  
	
  	
  
•  Strain	
  was	
  
experimentally	
  
measured	
  using	
  a	
  
corner	
  roseRe	
  
23	
  
Corner	
  
rose(e	
  
G.	
  Robinson,	
  A.	
  Palmeri	
  and	
  S.	
  AusAn,	
  8th	
  RILEM	
  InternaAonal	
  Symposium	
  on	
  
Fibre	
  Reinforced	
  Concrete,	
  BEFIB	
  2012,	
  Guimarães,	
  Portugal,	
  2012	
  
Key	
  Learning	
  Points	
  
1.  Knowing	
  two	
  of	
  the	
  three	
  elasAc	
  constant	
  for	
  elasAc	
  isotropic	
  
solids	
  (E,	
  ν	
  and	
  G),	
  normal	
  strains	
  ε	
  and	
  shear	
  strains	
  γ	
  can	
  be	
  
computed	
  for	
  any	
  plane	
  stress	
  state	
  (σx,	
  σz,	
  τxz)	
  
2.  Similarly	
  to	
  the	
  stresses,	
  normal	
  strains	
  and	
  shear	
  strain	
  on	
  a	
  
given	
  material	
  element	
  change	
  their	
  values	
  depending	
  on	
  
their	
  direcAons	
  
3.  The	
  Mohr’s	
  circle	
  of	
  strain	
  allows	
  evaluaAng	
  
–  The	
  extreme	
  values	
  of	
  the	
  normal	
  stress	
  εp	
  and	
  εq	
  
–  The	
  extreme	
  value	
  of	
  the	
  shear	
  stress	
  γmax	
  
–  The	
  inclinaAon	
  where	
  such	
  values	
  are	
  seen	
  
–  The	
  stresses	
  εm	
  and	
  γmn	
  for	
  an	
  arbitrary	
  inclinaAon	
  
	
   24	
  

Complex strains (2nd year)

  • 1.
    Complex  Strains   Dr  Alessandro  Palmeri   <[email protected]>  
  • 2.
    Teaching  schedule   WeekLecture 1 Staff Lecture 2 Staff Tutorial Staff 1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- --- 2 Shear centres A P Basic Concepts J E-R Shear Centre A P 3 Principle of Virtual forces J E-R Indeterminate Structures J E-R Virtual Forces J E-R 4 The Compatibility Method J E-R Examples J E-R Virtual Forces J E-R 5 Examples J E-R Moment Distribution - Basics J E-R Comp. Method J E-R 6 The Hardy Cross Method J E-R Fixed End Moments J E-R Comp. Method J E-R 7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R 8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R 9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P 10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric Bending A P 11 Complex Stress/Strain A P Complex Stress/Strain A P Complex Stress/Strain A P Christmas Holiday 12 Revision 13 14 Exams 15 2  
  • 3.
    MoAvaAons  (1/3)   • Similarly  to  the  stresses:   –  Normal  strain  εn  and  shear  strain  γmn  change  their   values  with  the  orthogonal  direcAons  m  and  n  being   considered   –  A  Mohr’s  circle  can  be  used  to  represent  and  analyse   the  variaAons  of  εn  and  γmn,  and  therefore:   •  Find  the  principal  stresses  εp=εmin  and  εq=εmax   •  Find  the  maximum  shear  stress  γmax   •  Determine  the  direcAons  upon  which  they  act   3  
  • 4.
    MoAvaAons  (2/3)   • A  strain  gauge  (SG)  is  a  device  used  to  measure  normal  strain  on  test   specimens   •  The  most  common  type  of  SG  consists  a  metallic  foil  film  in  the  thickness  of  a   few  microns  (the  ‘grid’)  glued  on  a  thin  electrically  insulated  sheet  (the  ‘base’)   –  The  SG  is  firmly  bonded  to  the  test  specimen,  so  to  experience  the  same  normal   strain  ε=ΔL/L   –  The  SG  responds  to  strain  with  a  linear  change  ΔR  in  the  electrical  resistance  R   –  The  laUer  can  be  measured  during  the  test,  giving  the  value  of  the  strain  through   an  appropriate  gauge  factor  (GF)   4   GF = ΔR / R ΔL / L ⇒ ε = ΔR GF ⋅R
  • 5.
    MoAvaAons  (3/3)   • With  a  single  strain  gauge  (SG)  one  can  measure  the   strain  in  a  single  direcAon   •  With  a  ‘roseUe’  of  three  SGs  (in  three  direcAons)  on   can  know  the  strain  in  all  the  direcAons     5   ‘Delta’  SG  rose6e  ‘Corner’  SG  rose6e  
  • 6.
    Learning  Outcomes   When  we  have  completed  this  unit  (1  lecture  +  1   tutorial),  you  should  be  able  to:   •  Use  the  elas8c  cons8tu8ve  law  for  homogeneous  and   isotropic  solids  to  relate  stresses  (σ,  τ)  and  strains  (ε,  γ)   •  Use  the  Mohr’s  circle  to  determine:   –  principal  strains,  and  their  direcAons;   –  maximum  shear  strain;   –  normal  strain  and  shear  strain  in  any  direcAon   •  Only  the  case  of  plane  stress  will  be  considered,  i.e.  no   out-­‐of-­‐plane  stresses     6  
  • 7.
    Further  reading   • R  C  Hibbeler,  “Mechanics  of  Materials”,  8th   Ed,  PrenAce  Hall  –  Chapter  9  on  “Stress   TransformaAon”   •  T  H  G  Megson,  “Structural  and  Stress   Analysis”,  2nd  Ed,  Elsevier  –  Chapter  14  on   “Complex  Stress  and  Strain”  (eBook)   7  
  • 8.
    Modes  of  DeformaAon   •  Material  element  can  be  extended,  compressed,  or   sheared,  resulAng  in  different  deformed  configuraAons     8   εx > 0 εz < 0 γ xz > 0 x z Extension:   Volume  increases   Compression:   Volume  decreases   Shearing:   Shape  changes  
  • 9.
    Measures  of  DeformaAon  (1/2)   •  The  normal  strain  εx  in  a  given   direcAon  x  is  the  dimensionless   measure  of  the  variaAon  in  length  of   the  element  in  that  direcAon,  ΔLx,   per  unit  length  of  the  element   before  the  deformaAon,  Lx   –  PosiAve  normal  strain  means   extension   –  NegaAve  normal  strain  means   compression   9   εx > 0 Lx ΔLx 2 ΔLx 2 εx = lim Lx→0 ΔLx Lx x z
  • 10.
    Measures  of  DeformaAon  (1/2)   10   γ xz = lim Lx→0 Lz→0 uz Lx + ux Lz ⎛ ⎝⎜ ⎞ ⎠⎟γ xz > 0 Lx Lz ux uz uz Lx ux Lz x z •  The  shear  strain  γxz  is  a  measure  of   how  the  angle  between  orthogonal   direcAons  x  and  z  in  the  undeformed   material  element  changes  with  the   deformaAon    
  • 11.
    ElasAc  ConsAtuAve  Law  (1/2)   11   •  In  case  of  plane  stress,  assuming  that  only  σx,  σz  and  τxz   act  on  the  material  element,  elas8c  and  isotropic,  the   stresses  are  given  by:   –  where  E=  Young’s  modulus;  ν=  Poisson’s  raAo  (Greek  leUer   ‘ni’;  G=  shear  modulus   εx = 1 E σx −νσz( ) εz = 1 E σz −νσx( ) ; εy = − ν E σx +σz( ) γ xz = τxz G ; γ xy = γ yz = 0 ⎧ ⎨ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪
  • 12.
    ElasAc  ConsAtuAve  Law  (2/2)   12   •  What  does  ‘elasAc’  mean?   –  The  material  is  able  to  return  to  its  original  shape   aCer  loading  and  then  unloading   •  What  does  ‘isotropic’  mean?   –  The  mechanical  properDes  of  the  material  are   idenDcal  in  all  direcDons   •  In  presence  of  small  deformaAons:   –  Concrete  and  steel  are  linear-­‐elasDc  and  isotropic   –  Masonry  and  Dmber  are  linear-­‐elasDc  and  ‘orthotropic’,   meaning  that  there  are  three  mutually  orthogonally  axes   of  symmetry  for  the  mechanical  properAes  
  • 13.
    Material  TesAng  (1/2)   13   •  The  Young’s  modulus  of  metals  is  measured  with  a   tensile  test,  using  a  so-­‐called  ‘universal  tesAng  machine’  
  • 14.
    Material  TesAng  (2/2)   14   •  The  Young’s  modulus  of  concrete  materials  is  measured   with  a  compressive  test  on  standard  cylinders  
  • 15.
    ElasAc  Parameters   15   •  Only  two  among  the  three  elasAc  parameters  E,  ν   and  G  are  independent   –  Knowing  E  and  ν,  one  can  compute  G:   –  Knowing  E  and  G,  one  can  compute  ν:       G = E 2 1+ν( ) ν = E 2G −1
  • 16.
    Mohr’s  Circle  of  Strain   16   •  Similarly  to  the  case  of  complex  stresses,   complex  strains  (i.e.  combined  normal  and  shear   strain)  can  be  analysed  with  the  Mohr’s  circle   –  Along  the  horizontal  axis,  the  normal  stress  σ  is   replaced  by  the  corresponding  normal  strain  ε:   –  Along  the  verAcal  axis,  the  shear  stress  τ  is  replaced   by  half  of  the  shear  strain,  γ/2,  not  γ:       σ → ε τ → γ 2
  • 17.
    Mohr’s  Circle  of  Strain  (1/3)   17   •  Similarly  to  the  Mohr’s  circle  of  stress…   ε Rε extension  compression   γ 2 Cε εave εx εz X ≡ εx ,γ xz / 2{ } Z ≡ εz,−γ xz / 2{ } εave = εx + εz 2 Cε ≡ εave,0{ } Rε = 1 2 εx − εz( ) 2 +γ xz 2
  • 18.
    Mohr’s  Circle  of  Strain  (2/3)   18   extension  compression   γ 2 Cε εave εqεp X Z ε P Q γ max εp = εave − Rε εq = εave + Rε ⎧ ⎨ ⎩ γ max = 2 Rε
  • 19.
    Mohr’s  Circle  of  Strain  (3/3)   19   extension  compression   γ 2 Cε εave X Z ε P Q εm = εave + Rε cos 2αxm − 2αxq( ) γ mn = 2 Rε sin 2αxm − 2αxq( ) ⎧ ⎨ ⎪ ⎩⎪ 2αxq 2αxm Rε M •  Important:  It  is   assumed  here   that  angles  α  are   posiDve  if   anDclockwise  
  • 20.
    Principal  DirecAons   of  Stress  and  Strain   20   •  The  orthogonal  axes  p  and  q  are  principal  direcAons  of   stress  if  and  only  if  the  shear  stress  is  τpq=  0   •  According  to  the  elasAc  consAtuAve  law:      γpq=  τpq/G=  0   •  The  orthogonal  axes  p  and  q  are  principal  direcAons  of   strain  if  and  only  if  the  shear  strain  is  γpq=  0   •  If  follows  that  principal  direcAons  of  stress  are  also   principal  direcAon  of  strain   –  Therefore,  the  extreme  values  of  the  normal  stress  happen   along  the  same  direcAons  as  the  extreme  values  of  the   normal  strain    
  • 21.
    Strain-­‐Gauge  RoseUes  (1/3)   •  One  and  only  circle  passes   through  any  three  non-­‐ aligned  points  drawn  in  the   plane   •  It  follows  that:  one  and  only   one  Mohr’s  circle  of  strain   can  be  drawn  knowing  the   normal  strain  along  three   given  direc8ons   •  RoseUes  made  of  three   strain  gauges  exploit  this   property   •  45°  (‘Corner’)  Rose6e   21   !x z ε0 !ε90 ε45 !45° !45° εx = ε0 ; εz = ε90 γ xz = ε0 + ε90 − 2ε45 ⎧ ⎨ ⎩
  • 22.
    Strain-­‐Gauge  RoseUes  (2/3)   •  60°  (‘Delta’)  Rose6e   22   εx = 2 3 ε30 − ε90 2 + ε150 ⎛ ⎝⎜ ⎞ ⎠⎟ εz = ε90 γ xz = 2 3 ε150 − ε30( ) ⎧ ⎨ ⎪ ⎪⎪ ⎩ ⎪ ⎪ ⎪ !ε30 !ε90 !ε150 30° 60° 60° !x z •  Both  corner  and  delta  roseUes  are  largely  used  when   tested  structural  elements  under  complex  stress   condiAons  
  • 23.
    Strain-­‐Gauge  RoseUes  (2/3)   Experimental   validaDon  of  strut-­‐ and-­‐De  model  for   precast  RC  lintels       •  Strain  was   experimentally   measured  using  a   corner  roseRe   23   Corner   rose(e   G.  Robinson,  A.  Palmeri  and  S.  AusAn,  8th  RILEM  InternaAonal  Symposium  on   Fibre  Reinforced  Concrete,  BEFIB  2012,  Guimarães,  Portugal,  2012  
  • 24.
    Key  Learning  Points   1.  Knowing  two  of  the  three  elasAc  constant  for  elasAc  isotropic   solids  (E,  ν  and  G),  normal  strains  ε  and  shear  strains  γ  can  be   computed  for  any  plane  stress  state  (σx,  σz,  τxz)   2.  Similarly  to  the  stresses,  normal  strains  and  shear  strain  on  a   given  material  element  change  their  values  depending  on   their  direcAons   3.  The  Mohr’s  circle  of  strain  allows  evaluaAng   –  The  extreme  values  of  the  normal  stress  εp  and  εq   –  The  extreme  value  of  the  shear  stress  γmax   –  The  inclinaAon  where  such  values  are  seen   –  The  stresses  εm  and  γmn  for  an  arbitrary  inclinaAon     24