CONJOINT ANALYSIS
By: GROUP -10
Anmol Sahni Chinmay Jagga
Dhruval Dholakia Mayank Sharma
Madhusudan Partani Mudita Maheshwari
Neha Arya Neha Kasturia
Radhika Gupta Shivi Aggarwal
What is ConjointAnalysis?
• Definition : Conjoint Analysis is a multivariate technique
developed specifically to understand how respondents
develop preferences for any type of object.
• Based on the premise that consumers evaluate the value of
an object by combining the separate amounts of value
provided by each attribute.
• Also known as :
o Multi-attribute Compositional Modelling
o Discrete Choice Modelling
o Stated Preference Research
Important Terminology
• Factor: Independent variable the researcher manipulates that
represents a specific attribute
• Level: Specific non-metric value describing a factor. Each factor
must be represented by two or more levels.
• Profile : Combination of all possible levels of factors. For ex: 3
factors with 2 levels each will create (2x2x2) i.e. 8 profiles.
• Utility: An individual’s subjective preference judgment
representing the holistic value or worth of a specific object.
• Part-worth: Estimate from conjoint analysis of the overall
preference or utility associated with each level of each factor
used to define the product or service
Why use Conjoint Analysis ?
Different Perspectives, Different Goals
• Buyers want all of the most desirable features at lowest
possible price
• Sellers want to maximize profits by:
1) minimizing costs of providing features
2) providing products that offer greater overall value than the
competition
Conjoint Analysis is concerned with understanding
how people make choices between products or services or a combination of
product and service, so that businesses can design new products or
services that better meet customers’ underlying needs.
Attributes andLevels
• Attribute: An attribute is a general feature of a
product or service – say size, colour, speed, delivery
time.
• Level: Each attribute is then made up of specific
levels. So for the attribute colour, levels might be red,
green, blue and so on.
Understanding Conjoint Analysis
• Conjoint analysis takes these attribute and level
descriptions of product/services by asking people to
make a number of choices between different products.
Example :
Would you choose phone A or phone B?
Phone A Phone B
Weight 200g 120g
Battery Life 21 hours 10 hours
Price Rs 5000 Rs 8000
• Researcher can work out numerically (from the responses)
how valuable each of the levels is relative to the others
around it – this value is known as the utility of the level.
• We can also compare across attributes to see which attributes
make have the greatest impact in making a choice.
Utility value for each level of
Weight
40
50
35
25
15
40g 80g 120g 160g 200g
Relative importance of attributes
45%
35%
20%
Weight Price Battery
Company’sObjective
How our product/service compares to our
competitors and how we can best optimise the
value we give to the customer?
By Conjoint analysis :
We can total up the utility value our product is
giving the customer and compare it to the
value for the competition
Example (cont.) :
Note : Utility values are in brackets. A lower price has a
higher utility.
Phone A
(Our Product)
Phone B
(Competitor’s
Product)
Weight 200g (15) 120g (35)
Battery Life 21 hours (15) 10 hours (10)
Price Rs 5000 (25) Rs 8000 (15)
Total Utility 55 60
Estimating Part-worth
• Part-worths are calculated by using:
– Multiple Regression with dummy variables
– ANOVA
– Multinomial logit Models
• Calculations are done for each respondent
separately
DeterminingAttribute Importance
• Importance of a factor is represented by the
range of its levels (difference between highest
and lowest values) divided by the sum of the
ranges across all the factors.
• This provides relative importance of each
attribute based on the range of its part-worth
estimates.
Assessing PredictiveAccuracy
To examine the ability of the model to predict the
actual choices of respondents:
• We predict the preference order by summing the
part-worths for the profiles and then rank-
ordering the resulting scores
• Comparing the predictive preference order to the
respondent’s actual preference order assesses
predictive accuracy
Designing profiles
Selecting and defining factors and levels
Its important as it determines
-> effectiveness of the profiles in the task
-> accuracy of results
-> managerial relevance
Generalcharacteristicsof factors
1) Communicable
-> sensory and
multimedia effects
included
2) Actionable
-> should be capable of
being put into
practice
Issues in defining factors
• Number of factors
• Inter attribute correlation
• Unique role of price
Specification issues regarding
levels
1) Number and balance of levels
2) Range of levels
• Two major key decisions involved in
specifying the model are as follows:-
1) Specifying the composition rule used:-
a) Additive rule
b) Interactive rule
2) Selecting the type of part worth relation
ships
a) Linear model
b) Quadratic model
c) Separate part worth model
0
1
2
3
4
Level
Prefernce
0
1
2
3
4
0 2 4
Preferenc
e
0
1
2
3
4
5
 Linear model
Quadratic model

 Separate part worth model
Designing a conjoint analysis
experiment
Conjoint Analysis
Conjoint Analysis
Stage 1:Objectivesof the conjoint
analysis
• To determine the contributions of predictor
variables and their levels in determination
of consumer preference
• To establish a valid model of consumer
judgments
Requirementsfor a successful conjointanalysis
• Defining the total utility of the object
• all attributes that potentially create or detract from
the overall utility of the product or service should
be included
• Specifying the determinant factors
• include the factors that best differentiate between
the objects
Stage 3:Assumptions Of ConjointAnalysis
 The product is a bundle of attributes.
 Utility of a product is a simple function of the utilities
of the attributes.
 Utility predicts behaviour (i.e., purchases).
Least restrictive set of statistical assumptions but highly
critical conceptual assumptions.
Stage 4: Estimating the ConjointModel
• Traditional Estimation Approaches:
– For non metric preference measures:
» MONANOVA, LINMAP
– For metric preference measures:
» Multiple regression with dummy variables
– For more complex consumer preference
measures:
» Logit model and its extensions
• Extension of Basic Estimation Process
– Bayesian Estimation
– Incorporation of additional variables reflecting
characteristics of the individuals
Stage 5: Interpretingthe results
• Generally done at disaggregate level
• For aggregate behavior, such as market share,
aggregate analysis more accurate.
• Two main things considered in interpretation
– Examining the estimated part-worth
• Magnitude and pattern of part-worth for each factor
• Higher the part-worth, higher the impact on overall utility
– Relative importance of attributes
• Factor with greatest range of part-woths has greatest
contribution to overall utility.
ManagerialImplications
Define the object with the optimal
combination of features
Predict market shares of different
objects with different sets of features
Isolate groups of customers who place
differing importance’s on different
features
Identify marketing opportunities by
exploring the market potential for
feature combos not currently available
Show the relative contributions of each
attribute and each level to the overall
evaluation of the object
Types Of Analysis
AggregateAnalysis
• Used to generally determine
– average part worth of each attribute level across
the entire sample of respondents
• This usually helps in determining the
– The importance of each attribute
– The desired level of each attribute
Segment Analysis
• In most marketing situations, strategies are
based on customer segments
• Cluster analysis used to produce “benefit
segments”
• Clusters are formed to group respondent such
that segments have similar within a segment
and different across segments
ScenarioSimulations
• Conjoint Analysis also helps researchers to
simulate various competitive scenarios
• Scenarios are used to estimate how
respondents react to various scenarios
• It is used to understand how the set of
respondents would choose among a specified
set of profiles
Comparingconjoint analysis with other
multivariatemodels
• Its decompositional nature
• Specification of the variate
• The fact that estimates can be made at
individual level
• Its flexibility in terms of relationships
between dependent and independent
variables
Compositionalvsdecompositional
techniques
• In compositional models the researcher collects
ratings from the respondent on many product
characteristics and then relates theses ratings to
the to some overall preference rating to develop
a predictive model
• Conjoint analysis a type of decompositional
model, differs in that the researcher needs to
know only respondents overall preference for a
profile.
Specifyingthe conjointvariate
• Conjoint analysis employs a variate quite similar in
form to what is used in other multivariate techniques.
• The conjoint variate is a linear combination of effects
of the independent variables (levels of each factor) on
a dependent variable.
• The important difference is that in the conjoint
variate the researcher specifies both the independent
variables (factors) and their values (levels).
Separatemodels for eachindividual
• Conjoint analysis can be carried out at the
individual level
• other multivariate methods use each
respondent’s measures as a single
observation and then perform the analysis
using all respondents simultaneously.
Flexibilityin types of relationships
• Conjoint analysis not limited in types of
relationships required between the dependent
and independent variables
• Most dependence methods assume that a
linear relationship exists
• Conjoint analysis can easily handle non linear
relationships as well
Conjoint Analysis

More Related Content

PPTX
conjoint analysis
PPTX
Conjoint analysis
PPTX
Discounting (Transactional analysis / TA is an integrative approach to the th...
DOCX
Sales and distribution model of zydus wellnes
PPT
One Way Anova
PPTX
transmission Electron Microscopy (Tem)
PPTX
Sentiment Analysis Using Machine Learning
PDF
What is DevOps | DevOps Introduction | DevOps Training | DevOps Tutorial | Ed...
conjoint analysis
Conjoint analysis
Discounting (Transactional analysis / TA is an integrative approach to the th...
Sales and distribution model of zydus wellnes
One Way Anova
transmission Electron Microscopy (Tem)
Sentiment Analysis Using Machine Learning
What is DevOps | DevOps Introduction | DevOps Training | DevOps Tutorial | Ed...

What's hot (20)

PPT
Conjoint Analysis
PPTX
Conjoint analysis
PPTX
Lecture9 conjoint analysis
PPTX
Conjoint analysis
PPTX
Marketing Research-Factor Analysis
PDF
Methods for Pricing Research
PPTX
Global marketing
PPTX
INDUSTRIAL MARKETING
PDF
Product mix
DOCX
Comparative and Non-Comparative Scaling Techniques
PPTX
Organized rural retailing
PPSX
Product differentiation
PPTX
Multiple discriminant analysis
PPTX
Cluster analysis in prespective to Marketing Research
PPTX
Role of IMC in Marketing Process
PPTX
Consumer Behaviour
PPTX
Concept of Measurements in Business Research
PPTX
Targeting & positioning
PPT
Consumer Behaviour-Attitude
PPTX
CONSUMER BEHAVIOUR MODELS
Conjoint Analysis
Conjoint analysis
Lecture9 conjoint analysis
Conjoint analysis
Marketing Research-Factor Analysis
Methods for Pricing Research
Global marketing
INDUSTRIAL MARKETING
Product mix
Comparative and Non-Comparative Scaling Techniques
Organized rural retailing
Product differentiation
Multiple discriminant analysis
Cluster analysis in prespective to Marketing Research
Role of IMC in Marketing Process
Consumer Behaviour
Concept of Measurements in Business Research
Targeting & positioning
Consumer Behaviour-Attitude
CONSUMER BEHAVIOUR MODELS
Ad

Similar to Conjoint Analysis (20)

PPT
Chapter 9
PPTX
choice experiments
PPTX
Conjnt analysis
PPT
T21 conjoint analysis
PPTX
Business Analytics Final Capstone Project Presenation PPT.pptx
PPTX
Exploratory factor analysis
PDF
Aaa ped-19-Recommender Systems: Neighborhood-based Filtering
PPTX
classification of various Multivariate techniques
PPT
Attitude scales
PDF
Conjoint.pdf
PPTX
Conjoint by idrees iugc
PPTX
exrec_reinforcement_learning.pptx
PPT
IM426 3A G5.ppt
PPTX
Factor analysis (fa)
PPTX
Market analysis tools in npd (final)
PPTX
Williamson trade off model
PDF
Towards Confidence-aware Calibrated Recommendation (Poster)
PDF
Supercharge your AB testing with automated causal inference - Community Works...
PPTX
sensitivity analysis of transmission.pptx
PPTX
Discriminant analysis and its applications in business decision.pptx
Chapter 9
choice experiments
Conjnt analysis
T21 conjoint analysis
Business Analytics Final Capstone Project Presenation PPT.pptx
Exploratory factor analysis
Aaa ped-19-Recommender Systems: Neighborhood-based Filtering
classification of various Multivariate techniques
Attitude scales
Conjoint.pdf
Conjoint by idrees iugc
exrec_reinforcement_learning.pptx
IM426 3A G5.ppt
Factor analysis (fa)
Market analysis tools in npd (final)
Williamson trade off model
Towards Confidence-aware Calibrated Recommendation (Poster)
Supercharge your AB testing with automated causal inference - Community Works...
sensitivity analysis of transmission.pptx
Discriminant analysis and its applications in business decision.pptx
Ad

More from Madhusudan Partani (20)

PDF
Adidas Brand Study
PPTX
Amul:Brand Audit
PDF
Amul:Brand Audit
PPTX
Arts as Alternative Investment
PDF
Art as Alternate Investment
PPTX
Housing Finance fmg18 Y
PPTX
Euro Birth and Impact on International Trade
PDF
Birth of Euro and Impact on Foriegn Trade
PPTX
Analysis of fixed and Floating Rates
PDF
Analysis of fixed and floating interest rates
PDF
91029 fmg18 a
DOCX
Segmentation
DOCX
Macro Environment
PPTX
Impact of DDT
PPTX
Cloud Computing
PDF
Conjoint Analysis- Multivariate Analysis
PPTX
The Best HR Practices
PPT
Reverse Auction
PPTX
7 Deadly Wastes
Adidas Brand Study
Amul:Brand Audit
Amul:Brand Audit
Arts as Alternative Investment
Art as Alternate Investment
Housing Finance fmg18 Y
Euro Birth and Impact on International Trade
Birth of Euro and Impact on Foriegn Trade
Analysis of fixed and Floating Rates
Analysis of fixed and floating interest rates
91029 fmg18 a
Segmentation
Macro Environment
Impact of DDT
Cloud Computing
Conjoint Analysis- Multivariate Analysis
The Best HR Practices
Reverse Auction
7 Deadly Wastes

Recently uploaded (20)

PDF
The Impact of Historical Events on Legal Communication Styles (www.kiu.ac.ug)
PPTX
Hospitality & tourism management.pptxHospitality & tourism management.pptx
PPTX
PPT Hafizullah Oria- Final Thesis Exam.pptx
DOCX
Center Enamel Enabling Precision and Sustainability in the Netherlands' Advan...
PDF
BeMetals_Presentation_September_2025.pdf
PDF
COVID-19 Primer for business case prep.pdf
PPTX
OS ALL UNITS MATxtdtc5ctc5cycgctERIAL.pptx
PPTX
Side hustles: 14 powerful tips to embrace the future of work
PDF
Investment in CUBA. Basic information for United States businessmen (1957)
PPTX
Accounting Management SystemBatch-4.pptx
PDF
Chembond Chemicals Limited Presentation 2025
PDF
The Dynamic CLOs Shaping the Future of the Legal Industry in 2025.pdf
PDF
El futuro empresarial 2024 una vista gen
PPTX
IndustrialAIGuerillaInnovatorsARCPodcastEp3.pptx
PPTX
Supply Chain under WAR (Managing Supply Chain Amid Political Conflict).pptx
PPTX
Enterprises are Classified into Two Categories
PDF
The Influence of Historical Figures on Legal Communication (www.kiu.ac.ug)
DOCX
“Strategic management process of a selected organization”.Nestle-docx.docx
PDF
Nante Industrial Plug Socket Connector Sustainability Insights
PPTX
UNIT 3 INTERNATIONAL BUSINESS [Autosaved].pptx
The Impact of Historical Events on Legal Communication Styles (www.kiu.ac.ug)
Hospitality & tourism management.pptxHospitality & tourism management.pptx
PPT Hafizullah Oria- Final Thesis Exam.pptx
Center Enamel Enabling Precision and Sustainability in the Netherlands' Advan...
BeMetals_Presentation_September_2025.pdf
COVID-19 Primer for business case prep.pdf
OS ALL UNITS MATxtdtc5ctc5cycgctERIAL.pptx
Side hustles: 14 powerful tips to embrace the future of work
Investment in CUBA. Basic information for United States businessmen (1957)
Accounting Management SystemBatch-4.pptx
Chembond Chemicals Limited Presentation 2025
The Dynamic CLOs Shaping the Future of the Legal Industry in 2025.pdf
El futuro empresarial 2024 una vista gen
IndustrialAIGuerillaInnovatorsARCPodcastEp3.pptx
Supply Chain under WAR (Managing Supply Chain Amid Political Conflict).pptx
Enterprises are Classified into Two Categories
The Influence of Historical Figures on Legal Communication (www.kiu.ac.ug)
“Strategic management process of a selected organization”.Nestle-docx.docx
Nante Industrial Plug Socket Connector Sustainability Insights
UNIT 3 INTERNATIONAL BUSINESS [Autosaved].pptx

Conjoint Analysis

  • 1. CONJOINT ANALYSIS By: GROUP -10 Anmol Sahni Chinmay Jagga Dhruval Dholakia Mayank Sharma Madhusudan Partani Mudita Maheshwari Neha Arya Neha Kasturia Radhika Gupta Shivi Aggarwal
  • 2. What is ConjointAnalysis? • Definition : Conjoint Analysis is a multivariate technique developed specifically to understand how respondents develop preferences for any type of object. • Based on the premise that consumers evaluate the value of an object by combining the separate amounts of value provided by each attribute. • Also known as : o Multi-attribute Compositional Modelling o Discrete Choice Modelling o Stated Preference Research
  • 3. Important Terminology • Factor: Independent variable the researcher manipulates that represents a specific attribute • Level: Specific non-metric value describing a factor. Each factor must be represented by two or more levels. • Profile : Combination of all possible levels of factors. For ex: 3 factors with 2 levels each will create (2x2x2) i.e. 8 profiles. • Utility: An individual’s subjective preference judgment representing the holistic value or worth of a specific object. • Part-worth: Estimate from conjoint analysis of the overall preference or utility associated with each level of each factor used to define the product or service
  • 4. Why use Conjoint Analysis ? Different Perspectives, Different Goals • Buyers want all of the most desirable features at lowest possible price • Sellers want to maximize profits by: 1) minimizing costs of providing features 2) providing products that offer greater overall value than the competition Conjoint Analysis is concerned with understanding how people make choices between products or services or a combination of product and service, so that businesses can design new products or services that better meet customers’ underlying needs.
  • 5. Attributes andLevels • Attribute: An attribute is a general feature of a product or service – say size, colour, speed, delivery time. • Level: Each attribute is then made up of specific levels. So for the attribute colour, levels might be red, green, blue and so on.
  • 6. Understanding Conjoint Analysis • Conjoint analysis takes these attribute and level descriptions of product/services by asking people to make a number of choices between different products. Example : Would you choose phone A or phone B? Phone A Phone B Weight 200g 120g Battery Life 21 hours 10 hours Price Rs 5000 Rs 8000
  • 7. • Researcher can work out numerically (from the responses) how valuable each of the levels is relative to the others around it – this value is known as the utility of the level. • We can also compare across attributes to see which attributes make have the greatest impact in making a choice. Utility value for each level of Weight 40 50 35 25 15 40g 80g 120g 160g 200g Relative importance of attributes 45% 35% 20% Weight Price Battery
  • 8. Company’sObjective How our product/service compares to our competitors and how we can best optimise the value we give to the customer? By Conjoint analysis : We can total up the utility value our product is giving the customer and compare it to the value for the competition
  • 9. Example (cont.) : Note : Utility values are in brackets. A lower price has a higher utility. Phone A (Our Product) Phone B (Competitor’s Product) Weight 200g (15) 120g (35) Battery Life 21 hours (15) 10 hours (10) Price Rs 5000 (25) Rs 8000 (15) Total Utility 55 60
  • 10. Estimating Part-worth • Part-worths are calculated by using: – Multiple Regression with dummy variables – ANOVA – Multinomial logit Models • Calculations are done for each respondent separately
  • 11. DeterminingAttribute Importance • Importance of a factor is represented by the range of its levels (difference between highest and lowest values) divided by the sum of the ranges across all the factors. • This provides relative importance of each attribute based on the range of its part-worth estimates.
  • 12. Assessing PredictiveAccuracy To examine the ability of the model to predict the actual choices of respondents: • We predict the preference order by summing the part-worths for the profiles and then rank- ordering the resulting scores • Comparing the predictive preference order to the respondent’s actual preference order assesses predictive accuracy
  • 13. Designing profiles Selecting and defining factors and levels Its important as it determines -> effectiveness of the profiles in the task -> accuracy of results -> managerial relevance
  • 14. Generalcharacteristicsof factors 1) Communicable -> sensory and multimedia effects included 2) Actionable -> should be capable of being put into practice
  • 15. Issues in defining factors • Number of factors • Inter attribute correlation • Unique role of price
  • 16. Specification issues regarding levels 1) Number and balance of levels 2) Range of levels
  • 17. • Two major key decisions involved in specifying the model are as follows:- 1) Specifying the composition rule used:- a) Additive rule b) Interactive rule 2) Selecting the type of part worth relation ships a) Linear model b) Quadratic model c) Separate part worth model
  • 18. 0 1 2 3 4 Level Prefernce 0 1 2 3 4 0 2 4 Preferenc e 0 1 2 3 4 5  Linear model Quadratic model   Separate part worth model
  • 19. Designing a conjoint analysis experiment
  • 22. Stage 1:Objectivesof the conjoint analysis • To determine the contributions of predictor variables and their levels in determination of consumer preference • To establish a valid model of consumer judgments
  • 23. Requirementsfor a successful conjointanalysis • Defining the total utility of the object • all attributes that potentially create or detract from the overall utility of the product or service should be included • Specifying the determinant factors • include the factors that best differentiate between the objects
  • 24. Stage 3:Assumptions Of ConjointAnalysis  The product is a bundle of attributes.  Utility of a product is a simple function of the utilities of the attributes.  Utility predicts behaviour (i.e., purchases). Least restrictive set of statistical assumptions but highly critical conceptual assumptions.
  • 25. Stage 4: Estimating the ConjointModel • Traditional Estimation Approaches: – For non metric preference measures: » MONANOVA, LINMAP – For metric preference measures: » Multiple regression with dummy variables – For more complex consumer preference measures: » Logit model and its extensions
  • 26. • Extension of Basic Estimation Process – Bayesian Estimation – Incorporation of additional variables reflecting characteristics of the individuals
  • 27. Stage 5: Interpretingthe results • Generally done at disaggregate level • For aggregate behavior, such as market share, aggregate analysis more accurate. • Two main things considered in interpretation – Examining the estimated part-worth • Magnitude and pattern of part-worth for each factor • Higher the part-worth, higher the impact on overall utility – Relative importance of attributes • Factor with greatest range of part-woths has greatest contribution to overall utility.
  • 29. Define the object with the optimal combination of features Predict market shares of different objects with different sets of features Isolate groups of customers who place differing importance’s on different features Identify marketing opportunities by exploring the market potential for feature combos not currently available Show the relative contributions of each attribute and each level to the overall evaluation of the object
  • 31. AggregateAnalysis • Used to generally determine – average part worth of each attribute level across the entire sample of respondents • This usually helps in determining the – The importance of each attribute – The desired level of each attribute
  • 32. Segment Analysis • In most marketing situations, strategies are based on customer segments • Cluster analysis used to produce “benefit segments” • Clusters are formed to group respondent such that segments have similar within a segment and different across segments
  • 33. ScenarioSimulations • Conjoint Analysis also helps researchers to simulate various competitive scenarios • Scenarios are used to estimate how respondents react to various scenarios • It is used to understand how the set of respondents would choose among a specified set of profiles
  • 34. Comparingconjoint analysis with other multivariatemodels • Its decompositional nature • Specification of the variate • The fact that estimates can be made at individual level • Its flexibility in terms of relationships between dependent and independent variables
  • 35. Compositionalvsdecompositional techniques • In compositional models the researcher collects ratings from the respondent on many product characteristics and then relates theses ratings to the to some overall preference rating to develop a predictive model • Conjoint analysis a type of decompositional model, differs in that the researcher needs to know only respondents overall preference for a profile.
  • 36. Specifyingthe conjointvariate • Conjoint analysis employs a variate quite similar in form to what is used in other multivariate techniques. • The conjoint variate is a linear combination of effects of the independent variables (levels of each factor) on a dependent variable. • The important difference is that in the conjoint variate the researcher specifies both the independent variables (factors) and their values (levels).
  • 37. Separatemodels for eachindividual • Conjoint analysis can be carried out at the individual level • other multivariate methods use each respondent’s measures as a single observation and then perform the analysis using all respondents simultaneously.
  • 38. Flexibilityin types of relationships • Conjoint analysis not limited in types of relationships required between the dependent and independent variables • Most dependence methods assume that a linear relationship exists • Conjoint analysis can easily handle non linear relationships as well

Editor's Notes

  • #5: Conjoint Analysis is concerned with understanding how people make choices between products or services or a combination of product and service, so that businesses can design new products or services that better meet customers’ underlying needs.
  • #8: In this instance we can see that for this customer, the optimum weight is 80g. 40g is too light and more than 80g is too heavy. In designing a mobile phone for this customer therefore, we can see that there is no benefit in spending development money to bring the weight of the phone below 80g. Also, we see that getting the weight right is more than twice as important as looking at the battery life.
  • #10: In this example we are 5 utility points behind the competition. If we reduced the weight of the phone to 160g we would gain 10 utility points which would mean we would expect to be chosen over the competition. Alternatively, we could to reduce the price a little to have the same impact.
  • #32: Although one of the virtues of conjoint is its separate treatment of each individual, the most common first interpretation step is to compute average part worth of each attribute level across the entire sample of respondents to give the analyst an overall feeling for which attributes are generally important and what is the most desired level of each.
  • #33: The averages are useful, convenient, and easy to understand summary measure. In most marketing situations, however, strategies are based on customer segments. There are numbers of alternative approaches to derive segments. Since the value system can be derived for each respondent, a cluster analysis can be used to produce “benefit segments”. Idea behind clusters is to group respondent such that segments have similar within a segment and different across segments. Instead of cluster analysis one may use latent class approach to derive statistically meaningful segments. Another alternative is to look at predefined group of customers based on some prior knowledge about them. For example, current versus prospective customers or heavy versus light volume buyers.
  • #34: Conjoint Analysis also helps researchers to simulate various competitive scenarios and then estimate how the respondents would react to each scenario. A conjoint simulation is an attempt to understand how the set of respondents would choose among a specified set of profiles. The process provides the researcher with the ability to utilize the estimated parts worth in evaluating a number of scenarios consisting of a number of possible combinations of the profiles.