SlideShare a Scribd company logo
Dr. Purnima K. Pandit
Department of Applied Mathematics,
Faculty of Technology and Engineering,
The M. S. University of Baroda,
Kalabhavan,
Vadodara-390001
Controllability
of
Linear Dynamical System
Outline
 Introduction
 Dynamical Systems
 Controllability of Linear Systems
Introduction - Dynamical Systems
 Any physical phenomena whose state changes over time can be
mathematically modelled as dynamical systems. It is simply a
model describing the temporal evolution of a system.
 Dynamical systems are mathematical objects used to model physical
phenomena whose state changes over time.
 Examples of the dynamical system are the swinging of a clock
pendulum, the flow of water in a pipe and the number of fish each
spring time in a lake.
 The general form of dynamical system is
 
 
.
0 0
,X f X t
X t X


 A dynamical system can be classified as follows:
(1) Linear dynamical system
In this system evaluation functions are linear.
(2) Non-linear dynamical system
In this system evaluation functions are not linear.
(3) Time variant system
System whose output depends explicitly on time or if it’s
characteristics change with time.
(4)Time invariant system
System whose output does not depend explicitly on time or if it’s
characteristics change with time.
(5) Discrete time system
The state variable representing the current state of discrete time system
(digital) is where is discrete point at which system is being
evaluated. The discrete time state equations are
which describe the next state of system
with respect to current state and inputs of system.
(6) Continuous time system
The state variable representing the current state of a continuous time
system (analog) is and the continuous time state equations are
which describe the next state of system with respect to current state
and inputs of system.
 x n
 1 [ ] [ ]x n Ax n Bu n  
  1x n
[ ]u n
 x t
 
   
dx t
Ax t Bu t
dt
 
 dx t
dt
Existence and Uniqueness
 Consider the initial value problem
where, f is some arbitrary function defined and continuous in some
neighbourhood.
 Theorem : A function is a solution of the initial value problem
(2.1) on an interval if and only if it is a solution of an integral
equation
0 0' ( , ( )), ( ) (2.1)x f t x t x t x 
0
0( ) ( , ( ))
t
t
x t x f s x s ds  
Lipschitz Condition
Gronwalls Inequality
2
1 2 1
A function ( , ) defined in a region is said to satisfy a Lipschitz
condition w.r.t in if there exists a positive constant such that
| ( , ) ( , ) | |
f t x D R
x D k
f t x f t x k x

  
   
2
1 2
|
for every , and , . 0 is called the Lipschitz constant.
x
t x t x k 
0
0
0
Let ( ) and ( ) be two non-negative continuous functions for .Let
be any non negative constant. Then the inequality
( ) ( ) ( ) ,
implies the
t
t
f t g t t t k
f t k g s f s ds t t

  
0
0
inequality ( ) exp ( ) ,
t
f t k g s ds t t 
Picard’s Theorem
 0 0
i) Let ( , ) be a continuous real valued real valued function defined on
the closed rectangle
( , ):| | , | | , , 0
and let | ( , ) | ( , )
ii) Let ( , ) satisfy Li
f t x
R t x t t a x x b a b
f t x M t x R
f t x
     
  
0
1 2 1 2
1 2
0 0 1 0
pschitz condition | ( , ) ( , ) | | |
( , ) and ( , ) in with Lipschitz constant then the successive
approximations ( ) , ( ) ( , ( )) converge in the interval
|
t
n n
t
f t x f t x k x x
t x t x R x k
x t x x t x f t x s ds
I t t

  
 
  
 

0
'
0 0 0
| min , to a unique solution ( ) of the IVP
( ) ( , ), ( ) on .
b
h a x t
M
x t f t x x t x I
 
   
 
 
System of Differential Equations
0 0
The solution of the above system is given as
Consider the initial value problem
( ) ( ), ( ) ,
be a non singular matrix
x t Ax t x t x t I
A n n
  

&
   
0
1
0 0
0
0
0
The matrix ( , ) called as the state transition matrix can be defined as follows:
( , ) (t) ( ) , in (- , ).
Here, ( ) is th
,x t t t x
t t
t t t t t
t

 


 
   

matrix formed by the linearly independent solutions
o
e fundamental
f the system.
HOMOGENEOUS:
Calculation of fundamental matrix
1
Case 1: For different and real eigen values
6 5
Let
1 2
Eigen values of are =1 and =7 and the corresponding
1 5
eigen vectors are and
Thus the two indep
.
1 1
endent solutions are
( )
A
A
t
 

 
  
 
   
   
   
7
2
7
7
1 5
and ( )
1 1
Therefore, the fundamental matrix is given by
5
( )
t
t t
t
t t
t e
e e
t
e
e e


   
   
   
 
  
 

2
1
Case 2: For real repeated eigen values
6 5
Let
1 2
Eigen values of are =2 and =2.
1
For =2 the corresponding eigen vector is given by
1
1
1
Thus the two independent solutions are
( ) t
t
A
e
A




 
  
 
 
 

 



2
2
2 2
2 2
1
and ( )
1
Therefore, the fundamental matrix is given by
( )
t
t t
t t
t te
e te
t
e te


  
  
  
 
  
 
Case 3: For complex eigen values
1 1
Let
1 1
Eigen values of are =1 and =1 .
For =1 the corresponding eigen vector is given by
1
For =1+ the corresponding eigen vector is given by
A
A i i
i
i
i
 


 
  
 
 
 
  
 
 
 
1
1
=
1 1
cos sin
= cos sin =
1 cos sin
sin
Thus the solutions can be computed as
( )
=
cos
t it
t t
t
i t
i
i i
e e
i i t t
e t i t e
t i t
t
e
e
t
t  
 
 
 
   
   
   
   
    


  


cos
sin
t
i
t
   
    
   
   
 
1 2
Thus the two independent solutions are
sin cos
and
cos sin
Hence the fundamental matrix is given by
sin cos
cos sin
t t
t t
t t
t t
t e t e
t t
e t e t
t
e t e t
 

   
    
   
 
  
 
0 0
Consider the initial value problem
( ) ( ) , ( ) ,
be a continuous matrix defined on a closed and bounded interval I.
The solution of the abo
x t Ax t B x t x t I
A n n
   

&
     
0
0 0
ve system is given as
, ,
t
o
t
x t t t x t Bd   
 
  
  

NONHOMOGENEOUS:
Controllability
 In the world of control engineering, there are large amount of
systems available that need to be controlled.
 The task of a control engineer is to design controller and
compensator units to interact with this pre-existing systems.
 A dynamical system is said to be completely controllable, if for
any initial and final states and in the state space X, there
exist control u that will steer the system from
ix Tx
0( ) to ( )i Tx t x x T x 
 Consider linear time variant system given as
where A is n dimensional square matrix called evolution matrix and
B is matrix of dimension called as control matrix.
 The system (3.1) is controllable if the controllability Grammian is
invertible.
 The controllability Grammian for (3.1) is given by
 The system is controllable if the rank of the controllability
Grammian is the same as the rank of the evolution matrix:
0 0
( ) ( ) ( ) ( ) ( ) (3.1)
( )
X t A t X t B t u t
X t X
 

&
n p
1
0
0 1 0 0( , ) ( , ) ( ) ( ) ( , )
t
T T
t
W t t t t B t B t t t dt  
( ) ( )rank W n rank A 
 The minimum norm steering control for the system (3.1) is given
by
 If A(t) and B(t) are time invariant in system (3.1) then the
controllability Grammian is given by
 And the minimum norm steering control is given by
 1
0 0 1 0 0 1 1( ) ( ) ( , ) ( , ) ( , )T
u t B t t t W t t x t t x 
  
0
0 0 1 1
0 0 0
This control steer the system (3.1) from ( ) to ( ) with the
state evolution given as
( ) ( , ) ( , ) ( )
t
t
x t x x t x
x t t t x t Bu d    
 
 
  
  

1
0 0
0
( ) ( )
0 1( , )
T
t
t t A t t AT
t
W t t e BB e dt 
 
0 0 1( ) ( )1
0 1 0 1( ) ( , )
T
t t A t t AT
u t B e W t t x e x 
    
 This controller steers the state from .The state transition for
all t is given by
0 1tox x
0 0
0
( ) ( )
0( ) ( )
t
t t A t A
t
x t e x e Bu d
  
 
  
  

 Example of Time Invariant case
.
0 1
1
2
1 2
1 2
1
1 0 1
Consider the equation where and with
0 2 1
0 1
condition and
0 1
1 0
Sol:
0 2
and 2
andt
X AX Bu A B
X X
x
AX
x
dx dx
x x
dt dt
x e x
   
      
   
   
    
   
   
   
  
   
 2
2
2
0 02 2
0
Therefore the fundmental matrix is ( )
0
And the state transition matrix is given by
0 0
( , ) and similarly ( , )
0 0
t
t
t
t t
t t
e
e
t
e
e e
t t t t
e e

 






 
  
 
   
    
   
 
0 0
0
1 1
2 2 2 2
0 0
2 2
The controllability Grammian matrix is given by
(0, ) ( , ) ( , )
1 1 10 0 0 0
(0,1) 1 1 =
1 1 10 0 0 0
=
t
T T
t t t t
t t t t
t t
t t
W t t t BB t t dt
e e e e
W dt dt
e e e e
e e
e e
 
          
           
          
 

 

 
11 1 2 3 2 3
2 3 4 3 4
0 0 0
1
1
0
= =
0
3.1945 6.3618
(0,1)
6.3618 13.3995
13.3995 6.36181
(0,1)
6.3618 3.19452.3322
5.7454 2.7278
(0,1) =
2.7278 1.3697
|
t t t t t
t t t t t
e e e e e
dt dt
e e e e e
W
W
W
W


     
     
     
 
  
 
 
  
 
 
 
 
 
(0,1) | =2.3322 0
The system is therefore controllable.

 
 
1 1
0 0 1 0 0 1
1
2 2
2
We can find the controller ( ) as follows
( ) ( , ) ( , )[ ( , ) ]
5.7454 2.7278 0 10 0
= 1 1
2.7278 1.3697 0 10 0
5.7454 2.
=
T T
t
t
t t
u t
u t B t t W t t X t t X
e e
e e
e e
 
  
         
          
           

 
 2
2
7278 2.7183
2.7278 1.3697 7.3891
4.5383
=
2.7059
( )= 4.5383 2.7059
t t
t t
e e
u t e e
  
  
   
 
   
 
 
 
0 0 0
0
2
2 2
0
2
2
We can find the solution ( ) as follows
( ) ( , )[ ( , ) ]
0 10 0
= 4.5383 2.7059
0 10 0
0 4.5383 2.7059
=
0
t
tt
t
t
t
X t
X t t t X t Bu d
e e
e e d
e e
e e e
e

 


   





 
       
         
        
   
 
 


3
3 4
0
2 3
2 3 4
0
2 3
2 3 4
4.5383 2.7059
0 2.2691 0.9020
=
0 1.5128 0.6765
0 2.2691 0.9020 1.3671
=
0 1.5128 0.6765 0.8363
t
tt
t
t t t
t t t
d
e e
e e e
e e e
e e e
e e e
X

 
 
 





  
  
    
   
  
   
    
  
    

2
2 2
2.2691 0.9020 1.3671
( )=
1.5128 0.6765 0.8363
t t t
t t t
e e e
t
e e e


   
 
   
.
0 1
1
2
1 2
1 2 2
2
2
1 0
Consider the equation where and with
0 11
0 1
condition and
0 1
1
Sol:
0 1
and
Now
t
t
t
e
X AX Bu A B
X X
xe
AX
x
dx dx
x x e x
dt dt
dx
dt
x



  
     
  
   
    
   
 
  
  
   
 

1
2 1 2
2
1 1 2 1
2 2 22
1 1 1
2 1
2
21 1
1 12
and
=
= 2 = 2
2 =0 ( 2) 0 ( 2)( 1) 0
1, 2
t t
t t t t
t
dx
x e x x e
dt
d x dx dx dx
x e e x e x e
dt dt dt dt
dx dx dx
x e x
dt dt dt
d x dx
x D D x D D
dt dt
D
 
   

  
     
 
   
 
          
  
• Example of Time Variant Case
2
1 1 2
21
1 2
1
1 2
2 2
1 2 1 2 2
2
2 2
2 2
2
( )
2
Now
2
3
( ) 3
Therefore the fundmental matrix is ( )
0 3
and
t t
t t
t
t t t t t
t t
t
t t
t
x t c e c e
dx
c e c e
dt
dx
x x e
dt
c e c e c e c e x e
c e x e
x t c e
e e
t
e





  
 




  
  
 
    
  
  
 
  
 
0 0
0
2
1
0
1
0 0
31
( )
3 0
And the state transition matrix is given by
( , ) ( ) ( )
t t
t
e e
t
e
t t t t  
 

  
  
  

0 0
0
0 0 0
0
0 0 0
0
22
0
2 2
2 2
2 2
31
( , )
3 0 3 0
31
=
3 0 3
1
( )
= 3
0
1
( )
( , ) 3
0
t tt t
tt
t t t t t t
t t
t t t t t t
t t
t t t
t
e e e e
t t
e e
e e e
e
e e e
e
e e e
t
e
  


 
 

    

    

    

    
    
  
   
  
 
 
   
  
 
 
   

 
21
( )
(0, ) 3
0
e e e
e
  

 
 

 
 
  
 
 
0
0 1 0 0
1
0
21
2
0
The controllability Grammian matrix is given by
( , ) ( , ) ( , )
(0,1) (0, ) (0, )
1 10
0( ) (
= 0 1 =3 31
1 ( )0 3
t
T T
t
T T
W t t t t BB t t dt
W BB d
e
e e e e
d
e e ee

   
  

 
    


  



  
     
         
   



21
2
0
4 2 2
21 1
2
2 20 0
0
0 0)
1
0 1 ( )0 3
1 1
1 ( 2 ) ( )0
0 ( ) 9 3
= 3 1
1( )
0 ( )3
3
e
e e
d
e e ee
e e e e ee
e e
d
e e e
e e e e

 
  

    
 
  
   





  



  
    
       
   
 
             
           
 

 
1
4 2 2
2 2
0
1 1
2
9 4 2 3 2
=
1
3 2 2
0.2417 0.8541
(0,1)=
0.8541 3.1945
| (0,1) | 0
System is controllable at 0.
e e e
e e
e e
e
W
W
t
  
 
 


 

    
       
    
  
    
  
 
 
 


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
x1(t)
x2(t)
The state evolution for both the components of state vector
1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
x-axis
y-axis
graph of u(t)
Steering controller
Steering controllerSteering controller

More Related Content

What's hot (20)

PDF
TIME DOMAIN ANALYSIS
Syed Saeed
 
PDF
Phase plane analysis (nonlinear stability analysis)
Bindutesh Saner
 
PPTX
Root locus method
Ravi Patel
 
PDF
Ch2 mathematical modeling of control system
Elaf A.Saeed
 
PPTX
Frequency Response Techniques
AwaisAli161
 
PDF
Time domain specifications of second order system
Syed Saeed
 
PPTX
Lecture 6 modelling-of_electrical__electronic_systems
Saifullah Memon
 
PDF
Time domain analysis
Hussain K
 
PPT
Fourier analysis of signals and systems
Babul Islam
 
PDF
Ch5 transient and steady state response analyses(control)
Elaf A.Saeed
 
PPTX
Control system lectures
Naqqash Sajid
 
PPT
Mechanical translational rotational systems and electrical analogous circuit...
SATHEESH C S
 
PPT
Frequency response analysis
SATHEESH C S
 
PPTX
Discrete Time Systems & its classifications
karthikkkk2
 
PDF
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Amr E. Mohamed
 
PDF
Frequency Response Analysis
Hussain K
 
PPT
Chapter 7 1
Kiya Alemayehu
 
PPT
digital control Chapter 2 slide
asyrafjpk
 
PPTX
PID Controller and its design
KonirDom1
 
PPTX
Modern control system
Pourya Parsa
 
TIME DOMAIN ANALYSIS
Syed Saeed
 
Phase plane analysis (nonlinear stability analysis)
Bindutesh Saner
 
Root locus method
Ravi Patel
 
Ch2 mathematical modeling of control system
Elaf A.Saeed
 
Frequency Response Techniques
AwaisAli161
 
Time domain specifications of second order system
Syed Saeed
 
Lecture 6 modelling-of_electrical__electronic_systems
Saifullah Memon
 
Time domain analysis
Hussain K
 
Fourier analysis of signals and systems
Babul Islam
 
Ch5 transient and steady state response analyses(control)
Elaf A.Saeed
 
Control system lectures
Naqqash Sajid
 
Mechanical translational rotational systems and electrical analogous circuit...
SATHEESH C S
 
Frequency response analysis
SATHEESH C S
 
Discrete Time Systems & its classifications
karthikkkk2
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Amr E. Mohamed
 
Frequency Response Analysis
Hussain K
 
Chapter 7 1
Kiya Alemayehu
 
digital control Chapter 2 slide
asyrafjpk
 
PID Controller and its design
KonirDom1
 
Modern control system
Pourya Parsa
 

Viewers also liked (16)

PDF
Linear Programming Problems : Dr. Purnima Pandit
Purnima Pandit
 
PPTX
Introduction to mathematical control theory - Dr. Purnima Pandit
Purnima Pandit
 
PPTX
Chaotic Theory
Kevin Izaguirre
 
PDF
Chaos
majo tiongson
 
PDF
On the Dynamics and Synchronization of a Class of Nonlinear High Frequency Ch...
Université de Dschang
 
PPT
NLO
kiti123
 
PPTX
Powerpoint slides
ranjithkumarbs
 
PPTX
Soft computing (ANN and Fuzzy Logic) : Dr. Purnima Pandit
Purnima Pandit
 
PPTX
Chaos Presentation
Albert Yang
 
PPTX
Types of nonlinearities
nida unapprochablestair
 
PPTX
The Butterfly Effect: Analysis
Rica Angelica Adarlo
 
PPTX
The Butterfly Effect
julieadamen
 
PPTX
Chaos Theory And Strategy: Theory Application And Managerial Implications
Taimur Khan
 
PPT
Chaos Theory
Julie Goldman
 
PDF
Chaos Theory: An Introduction
Antha Ceorote
 
PPT
non linear optics
Sandeep K Nair
 
Linear Programming Problems : Dr. Purnima Pandit
Purnima Pandit
 
Introduction to mathematical control theory - Dr. Purnima Pandit
Purnima Pandit
 
Chaotic Theory
Kevin Izaguirre
 
On the Dynamics and Synchronization of a Class of Nonlinear High Frequency Ch...
Université de Dschang
 
NLO
kiti123
 
Powerpoint slides
ranjithkumarbs
 
Soft computing (ANN and Fuzzy Logic) : Dr. Purnima Pandit
Purnima Pandit
 
Chaos Presentation
Albert Yang
 
Types of nonlinearities
nida unapprochablestair
 
The Butterfly Effect: Analysis
Rica Angelica Adarlo
 
The Butterfly Effect
julieadamen
 
Chaos Theory And Strategy: Theory Application And Managerial Implications
Taimur Khan
 
Chaos Theory
Julie Goldman
 
Chaos Theory: An Introduction
Antha Ceorote
 
non linear optics
Sandeep K Nair
 
Ad

Similar to Controllability of Linear Dynamical System (20)

PPT
State_space_represenation_&_analysis.ppt
stevemwirigi77
 
PPTX
State space techniques for discrete control systems.
HugoGustavoGonzlezHe
 
PDF
A Solution Manual And Notes For Kalman Filtering Theory And Practice Using ...
Daniel Wachtel
 
PPTX
Modern control 2
cairo university
 
PDF
09-LQR.pdf
mouli9
 
PDF
On problem-of-parameters-identification-of-dynamic-object
Cemal Ardil
 
PDF
CH3.2 control systens 2 slides study.pdf
zaidthepro04
 
PDF
International Journal of Mathematics and Statistics Invention (IJMSI)
inventionjournals
 
PDF
Modern Control System (BE)
PRABHAHARAN429
 
PDF
Unsolved Problems In Mathematical Systems And Control Theory Course Book Vinc...
pavikbonuskd
 
PDF
Unsolved Problems In Mathematical Systems And Control Theory Course Book Vinc...
pavikbonuskd
 
PPTX
lec-7_phase_plane_analysis.pptx
datamboli
 
PDF
501 lecture8
Vladmir Tavares
 
PDF
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
sipij
 
PDF
Optimal control problem for processes
IJCI JOURNAL
 
PPSX
linear algebra in control systems
Ganesh Bhat
 
PDF
B02609013
inventionjournals
 
PDF
Bounded solutions of certain (differential and first order
Alexander Decker
 
PDF
State space courses
KAMEL HEMSAS
 
State_space_represenation_&_analysis.ppt
stevemwirigi77
 
State space techniques for discrete control systems.
HugoGustavoGonzlezHe
 
A Solution Manual And Notes For Kalman Filtering Theory And Practice Using ...
Daniel Wachtel
 
Modern control 2
cairo university
 
09-LQR.pdf
mouli9
 
On problem-of-parameters-identification-of-dynamic-object
Cemal Ardil
 
CH3.2 control systens 2 slides study.pdf
zaidthepro04
 
International Journal of Mathematics and Statistics Invention (IJMSI)
inventionjournals
 
Modern Control System (BE)
PRABHAHARAN429
 
Unsolved Problems In Mathematical Systems And Control Theory Course Book Vinc...
pavikbonuskd
 
Unsolved Problems In Mathematical Systems And Control Theory Course Book Vinc...
pavikbonuskd
 
lec-7_phase_plane_analysis.pptx
datamboli
 
501 lecture8
Vladmir Tavares
 
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
sipij
 
Optimal control problem for processes
IJCI JOURNAL
 
linear algebra in control systems
Ganesh Bhat
 
Bounded solutions of certain (differential and first order
Alexander Decker
 
State space courses
KAMEL HEMSAS
 
Ad

Recently uploaded (20)

DOCX
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
PDF
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
PPTX
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
PPTX
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
PPTX
Electrophysiology_of_Heart. Electrophysiology studies in Cardiovascular syste...
Rajshri Ghogare
 
PPTX
ENGLISH 8 WEEK 3 Q1 - Analyzing the linguistic, historical, andor biographica...
OliverOllet
 
PPTX
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
PDF
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
PPTX
Basics and rules of probability with real-life uses
ravatkaran694
 
PPTX
Gupta Art & Architecture Temple and Sculptures.pptx
Virag Sontakke
 
PPTX
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PPTX
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
PDF
John Keats introduction and list of his important works
vatsalacpr
 
PDF
My Thoughts On Q&A- A Novel By Vikas Swarup
Niharika
 
PPTX
LDP-2 UNIT 4 Presentation for practical.pptx
abhaypanchal2525
 
DOCX
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
PDF
Module 2: Public Health History [Tutorial Slides]
JonathanHallett4
 
PPTX
Cybersecurity: How to Protect your Digital World from Hackers
vaidikpanda4
 
PPTX
Applied-Statistics-1.pptx hardiba zalaaa
hardizala899
 
Modul Ajar Deep Learning Bahasa Inggris Kelas 11 Terbaru 2025
wahyurestu63
 
The Minister of Tourism, Culture and Creative Arts, Abla Dzifa Gomashie has e...
nservice241
 
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
Electrophysiology_of_Heart. Electrophysiology studies in Cardiovascular syste...
Rajshri Ghogare
 
ENGLISH 8 WEEK 3 Q1 - Analyzing the linguistic, historical, andor biographica...
OliverOllet
 
Introduction to pediatric nursing in 5th Sem..pptx
AneetaSharma15
 
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
Basics and rules of probability with real-life uses
ravatkaran694
 
Gupta Art & Architecture Temple and Sculptures.pptx
Virag Sontakke
 
Applications of matrices In Real Life_20250724_091307_0000.pptx
gehlotkrish03
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
John Keats introduction and list of his important works
vatsalacpr
 
My Thoughts On Q&A- A Novel By Vikas Swarup
Niharika
 
LDP-2 UNIT 4 Presentation for practical.pptx
abhaypanchal2525
 
Unit 5: Speech-language and swallowing disorders
JELLA VISHNU DURGA PRASAD
 
Module 2: Public Health History [Tutorial Slides]
JonathanHallett4
 
Cybersecurity: How to Protect your Digital World from Hackers
vaidikpanda4
 
Applied-Statistics-1.pptx hardiba zalaaa
hardizala899
 

Controllability of Linear Dynamical System

  • 1. Dr. Purnima K. Pandit Department of Applied Mathematics, Faculty of Technology and Engineering, The M. S. University of Baroda, Kalabhavan, Vadodara-390001 Controllability of Linear Dynamical System
  • 2. Outline  Introduction  Dynamical Systems  Controllability of Linear Systems
  • 3. Introduction - Dynamical Systems  Any physical phenomena whose state changes over time can be mathematically modelled as dynamical systems. It is simply a model describing the temporal evolution of a system.  Dynamical systems are mathematical objects used to model physical phenomena whose state changes over time.  Examples of the dynamical system are the swinging of a clock pendulum, the flow of water in a pipe and the number of fish each spring time in a lake.  The general form of dynamical system is     . 0 0 ,X f X t X t X  
  • 4.  A dynamical system can be classified as follows: (1) Linear dynamical system In this system evaluation functions are linear. (2) Non-linear dynamical system In this system evaluation functions are not linear. (3) Time variant system System whose output depends explicitly on time or if it’s characteristics change with time. (4)Time invariant system System whose output does not depend explicitly on time or if it’s characteristics change with time.
  • 5. (5) Discrete time system The state variable representing the current state of discrete time system (digital) is where is discrete point at which system is being evaluated. The discrete time state equations are which describe the next state of system with respect to current state and inputs of system. (6) Continuous time system The state variable representing the current state of a continuous time system (analog) is and the continuous time state equations are which describe the next state of system with respect to current state and inputs of system.  x n  1 [ ] [ ]x n Ax n Bu n     1x n [ ]u n  x t       dx t Ax t Bu t dt    dx t dt
  • 6. Existence and Uniqueness  Consider the initial value problem where, f is some arbitrary function defined and continuous in some neighbourhood.  Theorem : A function is a solution of the initial value problem (2.1) on an interval if and only if it is a solution of an integral equation 0 0' ( , ( )), ( ) (2.1)x f t x t x t x  0 0( ) ( , ( )) t t x t x f s x s ds  
  • 7. Lipschitz Condition Gronwalls Inequality 2 1 2 1 A function ( , ) defined in a region is said to satisfy a Lipschitz condition w.r.t in if there exists a positive constant such that | ( , ) ( , ) | | f t x D R x D k f t x f t x k x         2 1 2 | for every , and , . 0 is called the Lipschitz constant. x t x t x k  0 0 0 Let ( ) and ( ) be two non-negative continuous functions for .Let be any non negative constant. Then the inequality ( ) ( ) ( ) , implies the t t f t g t t t k f t k g s f s ds t t     0 0 inequality ( ) exp ( ) , t f t k g s ds t t 
  • 8. Picard’s Theorem  0 0 i) Let ( , ) be a continuous real valued real valued function defined on the closed rectangle ( , ):| | , | | , , 0 and let | ( , ) | ( , ) ii) Let ( , ) satisfy Li f t x R t x t t a x x b a b f t x M t x R f t x          0 1 2 1 2 1 2 0 0 1 0 pschitz condition | ( , ) ( , ) | | | ( , ) and ( , ) in with Lipschitz constant then the successive approximations ( ) , ( ) ( , ( )) converge in the interval | t n n t f t x f t x k x x t x t x R x k x t x x t x f t x s ds I t t             0 ' 0 0 0 | min , to a unique solution ( ) of the IVP ( ) ( , ), ( ) on . b h a x t M x t f t x x t x I          
  • 9. System of Differential Equations 0 0 The solution of the above system is given as Consider the initial value problem ( ) ( ), ( ) , be a non singular matrix x t Ax t x t x t I A n n     &     0 1 0 0 0 0 0 The matrix ( , ) called as the state transition matrix can be defined as follows: ( , ) (t) ( ) , in (- , ). Here, ( ) is th ,x t t t x t t t t t t t t             matrix formed by the linearly independent solutions o e fundamental f the system. HOMOGENEOUS:
  • 10. Calculation of fundamental matrix 1 Case 1: For different and real eigen values 6 5 Let 1 2 Eigen values of are =1 and =7 and the corresponding 1 5 eigen vectors are and Thus the two indep . 1 1 endent solutions are ( ) A A t                       7 2 7 7 1 5 and ( ) 1 1 Therefore, the fundamental matrix is given by 5 ( ) t t t t t t t e e e t e e e                      
  • 11. 2 1 Case 2: For real repeated eigen values 6 5 Let 1 2 Eigen values of are =2 and =2. 1 For =2 the corresponding eigen vector is given by 1 1 1 Thus the two independent solutions are ( ) t t A e A                      2 2 2 2 2 2 1 and ( ) 1 Therefore, the fundamental matrix is given by ( ) t t t t t t te e te t e te                  
  • 12. Case 3: For complex eigen values 1 1 Let 1 1 Eigen values of are =1 and =1 . For =1 the corresponding eigen vector is given by 1 For =1+ the corresponding eigen vector is given by A A i i i i i                         1 1 = 1 1 cos sin = cos sin = 1 cos sin sin Thus the solutions can be computed as ( ) = cos t it t t t i t i i i e e i i t t e t i t e t i t t e e t t                                     cos sin t i t             
  • 13.       1 2 Thus the two independent solutions are sin cos and cos sin Hence the fundamental matrix is given by sin cos cos sin t t t t t t t t t e t e t t e t e t t e t e t                       
  • 14. 0 0 Consider the initial value problem ( ) ( ) , ( ) , be a continuous matrix defined on a closed and bounded interval I. The solution of the abo x t Ax t B x t x t I A n n      &       0 0 0 ve system is given as , , t o t x t t t x t Bd             NONHOMOGENEOUS:
  • 15. Controllability  In the world of control engineering, there are large amount of systems available that need to be controlled.  The task of a control engineer is to design controller and compensator units to interact with this pre-existing systems.  A dynamical system is said to be completely controllable, if for any initial and final states and in the state space X, there exist control u that will steer the system from ix Tx 0( ) to ( )i Tx t x x T x 
  • 16.  Consider linear time variant system given as where A is n dimensional square matrix called evolution matrix and B is matrix of dimension called as control matrix.  The system (3.1) is controllable if the controllability Grammian is invertible.  The controllability Grammian for (3.1) is given by  The system is controllable if the rank of the controllability Grammian is the same as the rank of the evolution matrix: 0 0 ( ) ( ) ( ) ( ) ( ) (3.1) ( ) X t A t X t B t u t X t X    & n p 1 0 0 1 0 0( , ) ( , ) ( ) ( ) ( , ) t T T t W t t t t B t B t t t dt   ( ) ( )rank W n rank A 
  • 17.  The minimum norm steering control for the system (3.1) is given by  If A(t) and B(t) are time invariant in system (3.1) then the controllability Grammian is given by  And the minimum norm steering control is given by  1 0 0 1 0 0 1 1( ) ( ) ( , ) ( , ) ( , )T u t B t t t W t t x t t x     0 0 0 1 1 0 0 0 This control steer the system (3.1) from ( ) to ( ) with the state evolution given as ( ) ( , ) ( , ) ( ) t t x t x x t x x t t t x t Bu d                1 0 0 0 ( ) ( ) 0 1( , ) T t t t A t t AT t W t t e BB e dt    0 0 1( ) ( )1 0 1 0 1( ) ( , ) T t t A t t AT u t B e W t t x e x      
  • 18.  This controller steers the state from .The state transition for all t is given by 0 1tox x 0 0 0 ( ) ( ) 0( ) ( ) t t t A t A t x t e x e Bu d            
  • 19.  Example of Time Invariant case . 0 1 1 2 1 2 1 2 1 1 0 1 Consider the equation where and with 0 2 1 0 1 condition and 0 1 1 0 Sol: 0 2 and 2 andt X AX Bu A B X X x AX x dx dx x x dt dt x e x                                             2 2 2 0 02 2 0 Therefore the fundmental matrix is ( ) 0 And the state transition matrix is given by 0 0 ( , ) and similarly ( , ) 0 0 t t t t t t t e e t e e e t t t t e e                             
  • 20.   0 0 0 1 1 2 2 2 2 0 0 2 2 The controllability Grammian matrix is given by (0, ) ( , ) ( , ) 1 1 10 0 0 0 (0,1) 1 1 = 1 1 10 0 0 0 = t T T t t t t t t t t t t t t W t t t BB t t dt e e e e W dt dt e e e e e e e e                                             11 1 2 3 2 3 2 3 4 3 4 0 0 0 1 1 0 = = 0 3.1945 6.3618 (0,1) 6.3618 13.3995 13.3995 6.36181 (0,1) 6.3618 3.19452.3322 5.7454 2.7278 (0,1) = 2.7278 1.3697 | t t t t t t t t t t e e e e e dt dt e e e e e W W W W                                           (0,1) | =2.3322 0 The system is therefore controllable. 
  • 21.     1 1 0 0 1 0 0 1 1 2 2 2 We can find the controller ( ) as follows ( ) ( , ) ( , )[ ( , ) ] 5.7454 2.7278 0 10 0 = 1 1 2.7278 1.3697 0 10 0 5.7454 2. = T T t t t t u t u t B t t W t t X t t X e e e e e e                                           2 2 7278 2.7183 2.7278 1.3697 7.3891 4.5383 = 2.7059 ( )= 4.5383 2.7059 t t t t e e u t e e                    
  • 22.   0 0 0 0 2 2 2 0 2 2 We can find the solution ( ) as follows ( ) ( , )[ ( , ) ] 0 10 0 = 4.5383 2.7059 0 10 0 0 4.5383 2.7059 = 0 t tt t t t X t X t t t X t Bu d e e e e d e e e e e e                                                      3 3 4 0 2 3 2 3 4 0 2 3 2 3 4 4.5383 2.7059 0 2.2691 0.9020 = 0 1.5128 0.6765 0 2.2691 0.9020 1.3671 = 0 1.5128 0.6765 0.8363 t tt t t t t t t t d e e e e e e e e e e e e e e X                                                 2 2 2 2.2691 0.9020 1.3671 ( )= 1.5128 0.6765 0.8363 t t t t t t e e e t e e e            
  • 23. . 0 1 1 2 1 2 1 2 2 2 2 1 0 Consider the equation where and with 0 11 0 1 condition and 0 1 1 Sol: 0 1 and Now t t t e X AX Bu A B X X xe AX x dx dx x x e x dt dt dx dt x                                            1 2 1 2 2 1 1 2 1 2 2 22 1 1 1 2 1 2 21 1 1 12 and = = 2 = 2 2 =0 ( 2) 0 ( 2)( 1) 0 1, 2 t t t t t t t dx x e x x e dt d x dx dx dx x e e x e x e dt dt dt dt dx dx dx x e x dt dt dt d x dx x D D x D D dt dt D                                       • Example of Time Variant Case
  • 24. 2 1 1 2 21 1 2 1 1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 ( ) 2 Now 2 3 ( ) 3 Therefore the fundmental matrix is ( ) 0 3 and t t t t t t t t t t t t t t t t x t c e c e dx c e c e dt dx x x e dt c e c e c e c e x e c e x e x t c e e e t e                                         0 0 0 2 1 0 1 0 0 31 ( ) 3 0 And the state transition matrix is given by ( , ) ( ) ( ) t t t e e t e t t t t               
  • 25. 0 0 0 0 0 0 0 0 0 0 0 22 0 2 2 2 2 2 2 31 ( , ) 3 0 3 0 31 = 3 0 3 1 ( ) = 3 0 1 ( ) ( , ) 3 0 t tt t tt t t t t t t t t t t t t t t t t t t t t e e e e t t e e e e e e e e e e e e e t e                                                                       21 ( ) (0, ) 3 0 e e e e                  
  • 26.   0 0 1 0 0 1 0 21 2 0 The controllability Grammian matrix is given by ( , ) ( , ) ( , ) (0,1) (0, ) (0, ) 1 10 0( ) ( = 0 1 =3 31 1 ( )0 3 t T T t T T W t t t t BB t t dt W BB d e e e e e d e e ee                                                   21 2 0 4 2 2 21 1 2 2 20 0 0 0 0) 1 0 1 ( )0 3 1 1 1 ( 2 ) ( )0 0 ( ) 9 3 = 3 1 1( ) 0 ( )3 3 e e e d e e ee e e e e ee e e d e e e e e e e                                                                                      1 4 2 2 2 2 0 1 1 2 9 4 2 3 2 = 1 3 2 2 0.2417 0.8541 (0,1)= 0.8541 3.1945 | (0,1) | 0 System is controllable at 0. e e e e e e e e W W t                                                 
  • 27. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 x1(t) x2(t) The state evolution for both the components of state vector
  • 28. 1 2 3 4 5 6 7 8 9 10 11 -1 0 1 2 3 4 5 6 x-axis y-axis graph of u(t) Steering controller Steering controllerSteering controller