SlideShare a Scribd company logo
CONVOLUTIONAL CODING
Ashish Kumar Meshram: mt1402102002
Devendra Magraiya: mt1402102004
Mohit Singh: mt1402102008
M.Tech. Communication & Signal Processing
Discipline of Electrical EngineeringIIT – Indore | EE646 | Information & Coding Theory
01IIT – Indore | EE646 | Information & Coding Theory
Contents
References5
1 Introduction
Convolutional Encoder2
3 Viterbi Decoder
4 Implementation Issues
Introduction
02IIT – Indore | EE646 | Information & Coding Theory
A convolutional code is specified by three parameters: (𝑛, 𝑘, 𝑣)
the codeword length𝑛 →
𝑘 →
𝑣 →
the message length
the constraint length
The generators for this code are more conveniently
given in octal form
𝐺 =
1 0 1
1 1 1
← 𝑔1
← 𝑔2
↔ 𝐺 = [ 5, 7]
Generator Matrix
𝑛 = 2, 𝑘 = 1, 𝑣 = 3
𝐷 𝐷
⊕
⊕
𝑚 𝑘
𝑚 𝑘−1 𝑚 𝑘−2
𝑐 𝑘
(1)
= 𝑚 𝑘 ⊕ 𝑚 𝑘−2
𝑐 𝑘
(2)
= 𝑚 𝑘 ⊕ 𝑚 𝑘−1 ⊕ 𝑚 𝑘−2
Code Rate, 𝑅 𝑐 =
𝑘
𝑛
= 1/2
Convolution Encoder
03IIT – Indore | EE646 | Information & Coding Theory
𝐷 𝐷
⊕
⊕
𝑚 𝑘
𝑚 𝑘−1 𝑚 𝑘−2
𝑐 𝑘
(1)
= 𝑚 𝑘 ⊕ 𝑚 𝑘−2
𝑐 𝑘
(2)
= 𝑚 𝑘 ⊕ 𝑚 𝑘−1 ⊕ 𝑚 𝑘−2
𝑐(1)
= [1 1 1 1 1 0 0 0 1]
𝑐(2)
= [1 0 0 1 1 1 0 1 1 ]
𝑚 = [1 1 0 0 1 0 1]
𝐼𝑛𝑝𝑢𝑡 𝐵𝑖𝑡𝑠:
𝑐 = [11 10 10 11 11 01 00 01 11]
𝐶𝑜𝑑𝑒 𝑊𝑜𝑟𝑑𝑠:
𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 𝐵𝑖𝑡𝑠
State Diagram & Trellis
04IIT – Indore | EE646 | Information & Coding Theory
Viterbi Decoder
05IIT – Indore | EE646 | Information & Coding Theory
𝑆𝑜𝑢𝑟𝑐𝑒 𝐸𝑛𝑐𝑜𝑑𝑒𝑟
𝐶ℎ𝑎𝑛𝑛𝑒𝑙
𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑟 = [11 11 01 00 10 11]
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐵𝑖𝑡𝑠:
𝑚 = [1 1 0 1 0 0]
𝐼𝑛𝑝𝑢𝑡 𝐵𝑖𝑡𝑠:
𝑚 = [1 1 0 1 0 0]
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐵𝑖𝑡𝑠:
𝑐 = [11 01 01 00 10 11]
𝐶𝑜𝑑𝑒 𝑊𝑜𝑟𝑑𝑠:
References
06IIT – Indore | EE646 | Information & Coding Theory
[1]. Daniel J Costello, Error Control Coding, Shu Lin, 2e
[2]. Tood K Moon, Error Correction Coding Mathematical Methods and Algorithms
THANKS Ashish Meshram, Devendra Magraiya, Mohit Singh

More Related Content

Viewers also liked (20)

ODP
image compression ppt
Shivangi Saxena
 
PPTX
SPIHT(Set Partitioning In Hierarchical Trees)
M.k. Praveen
 
PPT
Underwater channel modelling
Supriya Ankushe
 
PPTX
Hmong Cinderella
4thGradePanthers
 
PDF
Virtual Narrowband NWA calibration from Wideband Error Term Data
Stephen Nibblett
 
PPT
Smart antennas
Umesh Chalva
 
PPTX
Digital modulation techniques updated
Muhammad Mohsin Raza
 
PPTX
Underwater imaging
AndrewJBaker
 
PPT
Wavelet Applications in Image Denoising Using MATLAB
ajayhakkumar
 
PPT
Channel coding
Piyush Mittal
 
PPT
Image Denoising Using Wavelet
Asim Qureshi
 
PPT
5 linear block codes
Jagruti_Ingale
 
PDF
Knowledge Management and Artificial Intelligence
Andrejkovics Zoltán
 
PPTX
Underwater wireless communication
Abhirami P S
 
PDF
Frequency Domain Filtering of Digital Images
Upendra Pratap Singh
 
PPTX
Qudrature Amplitude Modulation by Krishna Teja & Sunil
krishnateja407
 
PPTX
Linear block code
Manish Srivastava
 
PPT
Modulation
sristykp
 
PPTX
Modulation techniques
Sathish Kumar
 
PPTX
Presentation on cyclic redundancy check (crc)
Sudhanshu Srivastava
 
image compression ppt
Shivangi Saxena
 
SPIHT(Set Partitioning In Hierarchical Trees)
M.k. Praveen
 
Underwater channel modelling
Supriya Ankushe
 
Hmong Cinderella
4thGradePanthers
 
Virtual Narrowband NWA calibration from Wideband Error Term Data
Stephen Nibblett
 
Smart antennas
Umesh Chalva
 
Digital modulation techniques updated
Muhammad Mohsin Raza
 
Underwater imaging
AndrewJBaker
 
Wavelet Applications in Image Denoising Using MATLAB
ajayhakkumar
 
Channel coding
Piyush Mittal
 
Image Denoising Using Wavelet
Asim Qureshi
 
5 linear block codes
Jagruti_Ingale
 
Knowledge Management and Artificial Intelligence
Andrejkovics Zoltán
 
Underwater wireless communication
Abhirami P S
 
Frequency Domain Filtering of Digital Images
Upendra Pratap Singh
 
Qudrature Amplitude Modulation by Krishna Teja & Sunil
krishnateja407
 
Linear block code
Manish Srivastava
 
Modulation
sristykp
 
Modulation techniques
Sathish Kumar
 
Presentation on cyclic redundancy check (crc)
Sudhanshu Srivastava
 

Similar to Convolutional Coding (9)

PDF
Fundamentals of Computer 20CS11T.pdf
THANMAY JS
 
PDF
Simulation of convolutional encoder
eSAT Journals
 
PDF
Simulation of convolutional encoder
eSAT Publishing House
 
PDF
Higher Education Entrance Exam Training Workbook.pdf
THANMAY JS
 
PDF
Comparative analysis of multi stage cordic using micro rotation techniq
IAEME Publication
 
PDF
Comparative analysis of multi stage cordic using micro rotation techniq
IAEME Publication
 
PDF
Comparative analysis of multi stage cordic using micro rotation techniq
IAEME Publication
 
PDF
Low Power Elliptic Curve Digital Signature Design for Constrained Devices
CSCJournals
 
PDF
D044042432
IJERA Editor
 
Fundamentals of Computer 20CS11T.pdf
THANMAY JS
 
Simulation of convolutional encoder
eSAT Journals
 
Simulation of convolutional encoder
eSAT Publishing House
 
Higher Education Entrance Exam Training Workbook.pdf
THANMAY JS
 
Comparative analysis of multi stage cordic using micro rotation techniq
IAEME Publication
 
Comparative analysis of multi stage cordic using micro rotation techniq
IAEME Publication
 
Comparative analysis of multi stage cordic using micro rotation techniq
IAEME Publication
 
Low Power Elliptic Curve Digital Signature Design for Constrained Devices
CSCJournals
 
D044042432
IJERA Editor
 
Ad

Convolutional Coding

  • 1. CONVOLUTIONAL CODING Ashish Kumar Meshram: mt1402102002 Devendra Magraiya: mt1402102004 Mohit Singh: mt1402102008 M.Tech. Communication & Signal Processing Discipline of Electrical EngineeringIIT – Indore | EE646 | Information & Coding Theory
  • 2. 01IIT – Indore | EE646 | Information & Coding Theory Contents References5 1 Introduction Convolutional Encoder2 3 Viterbi Decoder 4 Implementation Issues
  • 3. Introduction 02IIT – Indore | EE646 | Information & Coding Theory A convolutional code is specified by three parameters: (𝑛, 𝑘, 𝑣) the codeword length𝑛 → 𝑘 → 𝑣 → the message length the constraint length The generators for this code are more conveniently given in octal form 𝐺 = 1 0 1 1 1 1 ← 𝑔1 ← 𝑔2 ↔ 𝐺 = [ 5, 7] Generator Matrix 𝑛 = 2, 𝑘 = 1, 𝑣 = 3 𝐷 𝐷 ⊕ ⊕ 𝑚 𝑘 𝑚 𝑘−1 𝑚 𝑘−2 𝑐 𝑘 (1) = 𝑚 𝑘 ⊕ 𝑚 𝑘−2 𝑐 𝑘 (2) = 𝑚 𝑘 ⊕ 𝑚 𝑘−1 ⊕ 𝑚 𝑘−2 Code Rate, 𝑅 𝑐 = 𝑘 𝑛 = 1/2
  • 4. Convolution Encoder 03IIT – Indore | EE646 | Information & Coding Theory 𝐷 𝐷 ⊕ ⊕ 𝑚 𝑘 𝑚 𝑘−1 𝑚 𝑘−2 𝑐 𝑘 (1) = 𝑚 𝑘 ⊕ 𝑚 𝑘−2 𝑐 𝑘 (2) = 𝑚 𝑘 ⊕ 𝑚 𝑘−1 ⊕ 𝑚 𝑘−2 𝑐(1) = [1 1 1 1 1 0 0 0 1] 𝑐(2) = [1 0 0 1 1 1 0 1 1 ] 𝑚 = [1 1 0 0 1 0 1] 𝐼𝑛𝑝𝑢𝑡 𝐵𝑖𝑡𝑠: 𝑐 = [11 10 10 11 11 01 00 01 11] 𝐶𝑜𝑑𝑒 𝑊𝑜𝑟𝑑𝑠: 𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 𝐵𝑖𝑡𝑠
  • 5. State Diagram & Trellis 04IIT – Indore | EE646 | Information & Coding Theory
  • 6. Viterbi Decoder 05IIT – Indore | EE646 | Information & Coding Theory 𝑆𝑜𝑢𝑟𝑐𝑒 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟 = [11 11 01 00 10 11] 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐵𝑖𝑡𝑠: 𝑚 = [1 1 0 1 0 0] 𝐼𝑛𝑝𝑢𝑡 𝐵𝑖𝑡𝑠: 𝑚 = [1 1 0 1 0 0] 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐵𝑖𝑡𝑠: 𝑐 = [11 01 01 00 10 11] 𝐶𝑜𝑑𝑒 𝑊𝑜𝑟𝑑𝑠:
  • 7. References 06IIT – Indore | EE646 | Information & Coding Theory [1]. Daniel J Costello, Error Control Coding, Shu Lin, 2e [2]. Tood K Moon, Error Correction Coding Mathematical Methods and Algorithms
  • 8. THANKS Ashish Meshram, Devendra Magraiya, Mohit Singh