SlideShare a Scribd company logo
CREATING VISUALIZATIONS
WITH LINKED OPEN DATA

                  Alvaro Graves
                 @alvarograves
               alvaro@graves.cl
AGENDA


• What   is Linked Data?

• How   can I query Linked Data?

• How   to create visualizations using Visualbox
WHAT IS LINKED DATA?
• Linked Data is a way to
  publish data in a machine-
  readable way

• Itallows you to describe
  information about things on
  the Web and their
  relationships

• Government, NGOs       and
  universities publish Linked
  Data
WHAT IS LINKED DATA?

• Example:

 • London    is the capital of England.

 • London’s   population is 8 million people

 • England   is a Country.
WHAT IS LINKED DATA?
                                    England           is a
                capital of

                                                             Country
       London

                       population

                                          8.000.000



• England   is a Country.

• England   ‘s capital is London.

• London’s   population is 8 million people
ON THE WEB...
•   We create a URI (i.e., “web address”-like identifier) for everything

    •   London → http://dbpedia.org/resource/London

    •   England → http://dbpedia.org/resource/England

    •   Country → http://dbpedia.org/ontology/Country

•   Same for relations!

    •   capital of → http://dbpedia.org/ontology/capital

    •   is a → http://www.w3.org/1999/02/22-rdf-syntax-ns#type

    •   population → http://dbpedia.org/ontology/populationUrban
LINKED DATA
                                                            England           is a
                                        capital of

                                                                                            Country
                            London

                                               population

                                                                  8.000.000




                                                      http://dbpedia.org/resource/England



                            http://dbpedia.org/ontology/capital       http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://dbpedia.org/resource/London


                            http://dbpedia.org/ontology/populationUrban
                                                                                            http://dbpedia.org/ontology/Country



                                                              8.000.000
HOW CAN I QUERY
             LINKED DATA?


• We   can use SPARQL, a query language for Linked Data

• People
       (and governments) publishes Linked Data in SPARQL
 endpoints that can be queried
HOW SPARQL LOOKS
PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/resource/>



SELECT ?city ?population WHERE{

    dbp:England dbo:capital ?city .

    ?city dbo:populationUrban ?population .

}
RESULTS
Executed against http://dbpedia.org/sparql
SCHOOLS IN THE CITY OF
               LONDON
PREFIX sch-ont:    <http://education.data.gov.uk/def/school/>
PREFIX geo:        <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX district: <http://statistics.data.gov.uk/id/local-authority-district/>


SELECT ?school ?name ?lat ?long WHERE {
    ?school a sch-ont:School;
            sch-ont:establishmentName ?name;
            geo:lat ?lat;
            geo:long ?long;
            sch-ont:districtAdministrative district:00AA .
}
ORDER BY ?name
RESULTS
                      Executed against
    http://education.data.gov.uk/sparql/education/query


                  school                                name               lat       long

http://education.data.gov.uk/id/school/581261   Barbican Playgroup      51.51879   -0.09267


                                                Buffer Bear @ Barts &
http://education.data.gov.uk/id/school/531003                           51.51697   -0.10086
                                                the London


                                                Charterhouse Square
http://education.data.gov.uk/id/school/590270                           51.52038   -0.09886
                                                School
APPLY VISUALIZATION

{{models.main|GoogleMaps:”lat,long,name”}}
HOW TO CREATE
                VISUALIZATIONS


• Part   1: Obtain the data ✓

• Part   2: Apply a visualization → Visualbox
VISUALBOX
VISUALBOX

Components
VISUALBOX




            SPARQL
             query
VISUALBOX

            Visualization
               (HTML)
VISUALBOX

            Visualization
               Filters
VISUALBOX
VISUALBOX



             Query
            testing


  Results
VISUALBOX



View & embed
 component
START PLAYING WITH
       VISUALBOX



            Edit: Final demos available at
http://orion.tw.rpi.edu/~agraves/mozfest/index.html

More Related Content

What's hot (20)

ODP
Charper.lawdi.20130531
charper
 
PDF
The Past's Present Future: Emerging Trends in Online Cultural Heritage
Richard Urban
 
PDF
Semantic Web Applications in Libraries: The Road to BIBFRAME
National Information Standards Organization (NISO)
 
PPTX
Beyond MARC: MARC, linked data, and Bibframe
Thomas Meehan
 
PPTX
BIBFRAME and Moving Away From MARC
Thomas Meehan
 
PDF
Peter Webster - Digital History - 11 June 2013
Digital History
 
PDF
Linked open data and libraries
Alison Hitchens
 
PPTX
What is #LODLAM?! (revised January 2015)
Alison Hitchens
 
PPTX
Da Biblissima a Biblissima+ : per un osservatorio delle culture scritte
Equipex Biblissima
 
PDF
Thinking of Linking
Martin Kalfatovic
 
PPTX
The Impact of Bibframe
Thomas Meehan
 
PPTX
Viaf and isni ifla 2013 08-16
Janifer Gatenby
 
PPTX
Nemeth Marton - Widening the limits of cognitive reception with online digita...
BOBCATSSS 2017
 
PPTX
Copac: your union catalogue today and tomorrow
Lisa Jeskins
 
PDF
Peter webster interrogating the archived uk web
Digital History
 
PDF
Provenance in the bibliographic model / Anne Welsh
CILIP MDG
 
PPTX
MARC and BIBFRAME
Thomas Meehan
 
ODP
Wikipedia as Knowledge Organization System
Jakob .
 
PDF
Digital Manuscripts Without Borders: A Discovery Platform of Manuscripts and ...
Equipex Biblissima
 
Charper.lawdi.20130531
charper
 
The Past's Present Future: Emerging Trends in Online Cultural Heritage
Richard Urban
 
Semantic Web Applications in Libraries: The Road to BIBFRAME
National Information Standards Organization (NISO)
 
Beyond MARC: MARC, linked data, and Bibframe
Thomas Meehan
 
BIBFRAME and Moving Away From MARC
Thomas Meehan
 
Peter Webster - Digital History - 11 June 2013
Digital History
 
Linked open data and libraries
Alison Hitchens
 
What is #LODLAM?! (revised January 2015)
Alison Hitchens
 
Da Biblissima a Biblissima+ : per un osservatorio delle culture scritte
Equipex Biblissima
 
Thinking of Linking
Martin Kalfatovic
 
The Impact of Bibframe
Thomas Meehan
 
Viaf and isni ifla 2013 08-16
Janifer Gatenby
 
Nemeth Marton - Widening the limits of cognitive reception with online digita...
BOBCATSSS 2017
 
Copac: your union catalogue today and tomorrow
Lisa Jeskins
 
Peter webster interrogating the archived uk web
Digital History
 
Provenance in the bibliographic model / Anne Welsh
CILIP MDG
 
MARC and BIBFRAME
Thomas Meehan
 
Wikipedia as Knowledge Organization System
Jakob .
 
Digital Manuscripts Without Borders: A Discovery Platform of Manuscripts and ...
Equipex Biblissima
 

Viewers also liked (13)

PDF
Creation of visualizations based on Linked Data
Alvaro Graves
 
PDF
Visualizations using Visualbox
Alvaro Graves
 
PDF
Datos malos, robots tristes
Alvaro Graves
 
PDF
Data Tuesday
Alvaro Graves
 
PDF
Finding data BBC 15
Paul Bradshaw
 
PPT
Integrating and publishing public safety data using semantic technologies
Alvaro Graves
 
KEY
Publishing Linked Data with LODSPeaKr
Alvaro Graves
 
PPT
Towards a better understanding of Social Machines
Alvaro Graves
 
KEY
Como crear aplicaciones basadas en linked data usando lods pea kr
Alvaro Graves
 
PPT
Google
sunil sharma
 
PDF
Creating visualizations using Linked Data
Alvaro Graves
 
PPTX
Querying Linked Data on Android
EUCLID project
 
PPTX
Usage of Linked Data: Introduction and Application Scenarios
EUCLID project
 
Creation of visualizations based on Linked Data
Alvaro Graves
 
Visualizations using Visualbox
Alvaro Graves
 
Datos malos, robots tristes
Alvaro Graves
 
Data Tuesday
Alvaro Graves
 
Finding data BBC 15
Paul Bradshaw
 
Integrating and publishing public safety data using semantic technologies
Alvaro Graves
 
Publishing Linked Data with LODSPeaKr
Alvaro Graves
 
Towards a better understanding of Social Machines
Alvaro Graves
 
Como crear aplicaciones basadas en linked data usando lods pea kr
Alvaro Graves
 
Google
sunil sharma
 
Creating visualizations using Linked Data
Alvaro Graves
 
Querying Linked Data on Android
EUCLID project
 
Usage of Linked Data: Introduction and Application Scenarios
EUCLID project
 
Ad

Similar to Creating Visualizations with Linked Open Data (20)

PPT
Accessing the Linked Open Data Cloud via ODBC
Kingsley Uyi Idehen
 
PDF
Visualisation and linked data applications edf 2013
Ghislain Atemezing
 
PPTX
Lecture linked data cloud & sparql
Dhavalkumar Thakker
 
PPTX
Collaborative Semantic Web Applications and Linked Justifications
Rakebul Hasan
 
PDF
Measuring and Mapping Population
hantsga
 
PDF
Visualize open data with Plone - eea.daviz PLOG 2013
Antonio De Marinis
 
PPT
Linked Data in Learning Analytics Tools
Mathieu d'Aquin
 
PPT
Geo-linked data: towards deep integration of location in the web of data
Andrew Woolf
 
PDF
wimmics and DBpedia FR
JulienCojan
 
PDF
EDF2012 Mariana Damova - Factforge
European Data Forum
 
PPTX
Omitola birmingham cityuniv
Tope Omitola
 
PPT
Radically Open Cultural Heritage Data on the Web
Julie Allinson
 
PDF
Managing Ontologies
IWMW
 
PDF
Intertwingularity, Semantic Web and linked Geo data
Dan Brickley
 
PPT
Exploring the Semantic Web
Roberto García
 
PDF
Informal presentation about RES
Christophe Guéret
 
PDF
Statistical Linked Data
Boris Villazón-Terrazas
 
PPTX
Linked Open Data Utrecht University Library
Ruben Schalk
 
PDF
Linked Open Data for Digital Humanities
Christophe Guéret
 
PDF
2010 05 edinburgh
Jun Zhao
 
Accessing the Linked Open Data Cloud via ODBC
Kingsley Uyi Idehen
 
Visualisation and linked data applications edf 2013
Ghislain Atemezing
 
Lecture linked data cloud & sparql
Dhavalkumar Thakker
 
Collaborative Semantic Web Applications and Linked Justifications
Rakebul Hasan
 
Measuring and Mapping Population
hantsga
 
Visualize open data with Plone - eea.daviz PLOG 2013
Antonio De Marinis
 
Linked Data in Learning Analytics Tools
Mathieu d'Aquin
 
Geo-linked data: towards deep integration of location in the web of data
Andrew Woolf
 
wimmics and DBpedia FR
JulienCojan
 
EDF2012 Mariana Damova - Factforge
European Data Forum
 
Omitola birmingham cityuniv
Tope Omitola
 
Radically Open Cultural Heritage Data on the Web
Julie Allinson
 
Managing Ontologies
IWMW
 
Intertwingularity, Semantic Web and linked Geo data
Dan Brickley
 
Exploring the Semantic Web
Roberto García
 
Informal presentation about RES
Christophe Guéret
 
Statistical Linked Data
Boris Villazón-Terrazas
 
Linked Open Data Utrecht University Library
Ruben Schalk
 
Linked Open Data for Digital Humanities
Christophe Guéret
 
2010 05 edinburgh
Jun Zhao
 
Ad

More from Alvaro Graves (11)

PPT
Democratizing Open Data
Alvaro Graves
 
KEY
Explotando la Web de Datos: Como crear aplicaciones usando Linked Open Data
Alvaro Graves
 
KEY
Improving decision-making based on government data and visualizations
Alvaro Graves
 
KEY
Creating web applications with LODSPeaKr
Alvaro Graves
 
KEY
Publicando RDF y Linked Data con LODSPeaKr
Alvaro Graves
 
PDF
Open Data y participación ciudadana
Alvaro Graves
 
KEY
Web semántica y linked data la web como bd
Alvaro Graves
 
KEY
LODSPeaKr - Use cases Lighting Talk
Alvaro Graves
 
KEY
Publishing Linked Open Data in 15 minutes
Alvaro Graves
 
PPT
TWC LOGD: A Portal for Linking Government Data
Alvaro Graves
 
PPT
POMELo: A PML Online Editor
Alvaro Graves
 
Democratizing Open Data
Alvaro Graves
 
Explotando la Web de Datos: Como crear aplicaciones usando Linked Open Data
Alvaro Graves
 
Improving decision-making based on government data and visualizations
Alvaro Graves
 
Creating web applications with LODSPeaKr
Alvaro Graves
 
Publicando RDF y Linked Data con LODSPeaKr
Alvaro Graves
 
Open Data y participación ciudadana
Alvaro Graves
 
Web semántica y linked data la web como bd
Alvaro Graves
 
LODSPeaKr - Use cases Lighting Talk
Alvaro Graves
 
Publishing Linked Open Data in 15 minutes
Alvaro Graves
 
TWC LOGD: A Portal for Linking Government Data
Alvaro Graves
 
POMELo: A PML Online Editor
Alvaro Graves
 

Recently uploaded (20)

PDF
Apache CloudStack 201: Let's Design & Build an IaaS Cloud
ShapeBlue
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PPTX
Building and Operating a Private Cloud with CloudStack and LINBIT CloudStack ...
ShapeBlue
 
PPTX
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
PDF
TrustArc Webinar - Data Privacy Trends 2025: Mid-Year Insights & Program Stra...
TrustArc
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PDF
July Patch Tuesday
Ivanti
 
PDF
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Persuasive AI: risks and opportunities in the age of digital debate
Speck&Tech
 
PDF
Building Resilience with Digital Twins : Lessons from Korea
SANGHEE SHIN
 
PDF
Empowering Cloud Providers with Apache CloudStack and Stackbill
ShapeBlue
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PPTX
Top Managed Service Providers in Los Angeles
Captain IT
 
PDF
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Rethinking Security Operations - SOC Evolution Journey.pdf
Haris Chughtai
 
PDF
Predicting the unpredictable: re-engineering recommendation algorithms for fr...
Speck&Tech
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
Apache CloudStack 201: Let's Design & Build an IaaS Cloud
ShapeBlue
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Building and Operating a Private Cloud with CloudStack and LINBIT CloudStack ...
ShapeBlue
 
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
TrustArc Webinar - Data Privacy Trends 2025: Mid-Year Insights & Program Stra...
TrustArc
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
July Patch Tuesday
Ivanti
 
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Persuasive AI: risks and opportunities in the age of digital debate
Speck&Tech
 
Building Resilience with Digital Twins : Lessons from Korea
SANGHEE SHIN
 
Empowering Cloud Providers with Apache CloudStack and Stackbill
ShapeBlue
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
Top Managed Service Providers in Los Angeles
Captain IT
 
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Rethinking Security Operations - SOC Evolution Journey.pdf
Haris Chughtai
 
Predicting the unpredictable: re-engineering recommendation algorithms for fr...
Speck&Tech
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 

Creating Visualizations with Linked Open Data

  • 1. CREATING VISUALIZATIONS WITH LINKED OPEN DATA Alvaro Graves @alvarograves [email protected]
  • 2. AGENDA • What is Linked Data? • How can I query Linked Data? • How to create visualizations using Visualbox
  • 3. WHAT IS LINKED DATA? • Linked Data is a way to publish data in a machine- readable way • Itallows you to describe information about things on the Web and their relationships • Government, NGOs and universities publish Linked Data
  • 4. WHAT IS LINKED DATA? • Example: • London is the capital of England. • London’s population is 8 million people • England is a Country.
  • 5. WHAT IS LINKED DATA? England is a capital of Country London population 8.000.000 • England is a Country. • England ‘s capital is London. • London’s population is 8 million people
  • 6. ON THE WEB... • We create a URI (i.e., “web address”-like identifier) for everything • London → http://dbpedia.org/resource/London • England → http://dbpedia.org/resource/England • Country → http://dbpedia.org/ontology/Country • Same for relations! • capital of → http://dbpedia.org/ontology/capital • is a → http://www.w3.org/1999/02/22-rdf-syntax-ns#type • population → http://dbpedia.org/ontology/populationUrban
  • 7. LINKED DATA England is a capital of Country London population 8.000.000 http://dbpedia.org/resource/England http://dbpedia.org/ontology/capital http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/resource/London http://dbpedia.org/ontology/populationUrban http://dbpedia.org/ontology/Country 8.000.000
  • 8. HOW CAN I QUERY LINKED DATA? • We can use SPARQL, a query language for Linked Data • People (and governments) publishes Linked Data in SPARQL endpoints that can be queried
  • 9. HOW SPARQL LOOKS PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://dbpedia.org/resource/> SELECT ?city ?population WHERE{ dbp:England dbo:capital ?city . ?city dbo:populationUrban ?population . }
  • 11. SCHOOLS IN THE CITY OF LONDON PREFIX sch-ont: <http://education.data.gov.uk/def/school/> PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> PREFIX district: <http://statistics.data.gov.uk/id/local-authority-district/> SELECT ?school ?name ?lat ?long WHERE { ?school a sch-ont:School; sch-ont:establishmentName ?name; geo:lat ?lat; geo:long ?long; sch-ont:districtAdministrative district:00AA . } ORDER BY ?name
  • 12. RESULTS Executed against http://education.data.gov.uk/sparql/education/query school name lat long http://education.data.gov.uk/id/school/581261 Barbican Playgroup 51.51879 -0.09267 Buffer Bear @ Barts & http://education.data.gov.uk/id/school/531003 51.51697 -0.10086 the London Charterhouse Square http://education.data.gov.uk/id/school/590270 51.52038 -0.09886 School
  • 14. HOW TO CREATE VISUALIZATIONS • Part 1: Obtain the data ✓ • Part 2: Apply a visualization → Visualbox
  • 17. VISUALBOX SPARQL query
  • 18. VISUALBOX Visualization (HTML)
  • 19. VISUALBOX Visualization Filters
  • 21. VISUALBOX Query testing Results
  • 23. START PLAYING WITH VISUALBOX Edit: Final demos available at http://orion.tw.rpi.edu/~agraves/mozfest/index.html

Editor's Notes