SlideShare a Scribd company logo
Crime project (Big Data Certification Course #6)
Evaluation
Model
Model Analysis
Data
Preparation
Data
Understanding
Business Case
• Explore potential determinant of arrest rate
• Predict probability of arrest
• To provide insights on arresting performance
• Prediction model of arrest
Column Name Description
Date
Date when the incident occurred. this is sometimes a best
estimate.
Primary Type The primary description of the crime
Description The secondary description of the crime,
Location
Description
Description of the location where the incident occurred.
Arrest Indicates whether an arrest was made.
Domestic Indicates whether the incident was domestic-related
Beat Indicates the beat where the incident occurred.
District Indicates the police district where the incident occurred.
Ward The ward (City Council district) where the incident occurred.
Community Area Indicates the community area where the incident occurred.
Year Year the incident occurred.
Updated On Date and time the record was last updated.
Latitude The latitude of the location where the incident occurred.
Longitude The longitude of the location where the incident occurred.
Location The location where the incident occurred
*Data source : CSV file
*Data Characteristics: Volumes
(6 million records)
*Data format : Structure / Batch
• Define day of week in crime
• Split data 80:20
• Transform data of arrest to ratio of arrest
• Transformation categorical variable to numerical one
( Primary Type, Location )
• Index label of arrest rate
• Feature
• Day of week
• Primary Type
• Location Description
• Label
• Arrest
Decision Tree
Data
Algorithm
ClassificationCategory
• Confusion matrix for model evaluation
Presentation
• Relation of factor crime
• Danger & Safe Zone
• Prediction Model
Proportion
• Arrest
• Planning day for safety
• Location analysis
Crime project (Big Data Certification Course #6)
Crime project (Big Data Certification Course #6)
Location
Description
Map
Location
Description
Type
Crime project (Big Data Certification Course #6)

More Related Content

PPTX
Final presentation
Ryan Wesslen
 
PDF
Predicting the Crimes in Chicago
Swati Arora
 
DOCX
Crime Dataset Analysis for City of Chicago
Stuti Deshpande
 
PPTX
Classifying Shooting Incident Fatality in New York project presentation
Boston Institute of Analytics
 
PPT
Memphis Police Dept
estotts75
 
PDF
Predictive Modeling for Topographical Analysis of Crime Rate
IRJET Journal
 
PDF
HunchLab 2.0 Preview Webinar - Place
Azavea
 
PDF
นิตยสาร Digital Trends ฉบับที่ 14
IMC Institute
 
Final presentation
Ryan Wesslen
 
Predicting the Crimes in Chicago
Swati Arora
 
Crime Dataset Analysis for City of Chicago
Stuti Deshpande
 
Classifying Shooting Incident Fatality in New York project presentation
Boston Institute of Analytics
 
Memphis Police Dept
estotts75
 
Predictive Modeling for Topographical Analysis of Crime Rate
IRJET Journal
 
HunchLab 2.0 Preview Webinar - Place
Azavea
 
นิตยสาร Digital Trends ฉบับที่ 14
IMC Institute
 

More from IMC Institute (20)

PDF
Digital trends Vol 4 No. 13 Sep-Dec 2019
IMC Institute
 
PDF
บทความ The evolution of AI
IMC Institute
 
PDF
IT Trends eMagazine Vol 4. No.12
IMC Institute
 
PDF
เพราะเหตุใด Digitization ไม่ตอบโจทย์ Digital Transformation
IMC Institute
 
PDF
IT Trends 2019: Putting Digital Transformation to Work
IMC Institute
 
PDF
มูลค่าตลาดดิจิทัลไทย 3 อุตสาหกรรม
IMC Institute
 
PDF
IT Trends eMagazine Vol 4. No.11
IMC Institute
 
PDF
แนวทางการทำ Digital transformation
IMC Institute
 
PDF
บทความ The New Silicon Valley
IMC Institute
 
PDF
นิตยสาร IT Trends ของ IMC Institute ฉบับที่ 10
IMC Institute
 
PDF
แนวทางการทำ Digital transformation
IMC Institute
 
PDF
The Power of Big Data for a new economy (Sample)
IMC Institute
 
PDF
บทความ Robotics แนวโน้มใหม่สู่บริการเฉพาะทาง
IMC Institute
 
PDF
IT Trends eMagazine Vol 3. No.9
IMC Institute
 
PDF
Thailand software & software market survey 2016
IMC Institute
 
PPTX
Developing Business Blockchain Applications on Hyperledger
IMC Institute
 
PDF
Digital transformation @thanachart.org
IMC Institute
 
PDF
บทความ Big Data จากบล็อก thanachart.org
IMC Institute
 
PDF
กลยุทธ์ 5 ด้านกับการทำ Digital Transformation
IMC Institute
 
PDF
Thailand 4.0 Reality or Hype
IMC Institute
 
Digital trends Vol 4 No. 13 Sep-Dec 2019
IMC Institute
 
บทความ The evolution of AI
IMC Institute
 
IT Trends eMagazine Vol 4. No.12
IMC Institute
 
เพราะเหตุใด Digitization ไม่ตอบโจทย์ Digital Transformation
IMC Institute
 
IT Trends 2019: Putting Digital Transformation to Work
IMC Institute
 
มูลค่าตลาดดิจิทัลไทย 3 อุตสาหกรรม
IMC Institute
 
IT Trends eMagazine Vol 4. No.11
IMC Institute
 
แนวทางการทำ Digital transformation
IMC Institute
 
บทความ The New Silicon Valley
IMC Institute
 
นิตยสาร IT Trends ของ IMC Institute ฉบับที่ 10
IMC Institute
 
แนวทางการทำ Digital transformation
IMC Institute
 
The Power of Big Data for a new economy (Sample)
IMC Institute
 
บทความ Robotics แนวโน้มใหม่สู่บริการเฉพาะทาง
IMC Institute
 
IT Trends eMagazine Vol 3. No.9
IMC Institute
 
Thailand software & software market survey 2016
IMC Institute
 
Developing Business Blockchain Applications on Hyperledger
IMC Institute
 
Digital transformation @thanachart.org
IMC Institute
 
บทความ Big Data จากบล็อก thanachart.org
IMC Institute
 
กลยุทธ์ 5 ด้านกับการทำ Digital Transformation
IMC Institute
 
Thailand 4.0 Reality or Hype
IMC Institute
 
Ad

Recently uploaded (20)

PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PPTX
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
PDF
Peak of Data & AI Encore - Real-Time Insights & Scalable Editing with ArcGIS
Safe Software
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPTX
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PPTX
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
PPTX
Simple and concise overview about Quantum computing..pptx
mughal641
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PDF
AI-Cloud-Business-Management-Platforms-The-Key-to-Efficiency-Growth.pdf
Artjoker Software Development Company
 
PDF
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
PDF
Doc9.....................................
SofiaCollazos
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
Peak of Data & AI Encore - Real-Time Insights & Scalable Editing with ArcGIS
Safe Software
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
Agile Chennai 18-19 July 2025 Ideathon | AI Powered Microfinance Literacy Gui...
AgileNetwork
 
Simple and concise overview about Quantum computing..pptx
mughal641
 
The Future of Artificial Intelligence (AI)
Mukul
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
AI-Cloud-Business-Management-Platforms-The-Key-to-Efficiency-Growth.pdf
Artjoker Software Development Company
 
Economic Impact of Data Centres to the Malaysian Economy
flintglobalapac
 
Doc9.....................................
SofiaCollazos
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
Ad

Crime project (Big Data Certification Course #6)

  • 3. • Explore potential determinant of arrest rate • Predict probability of arrest • To provide insights on arresting performance • Prediction model of arrest
  • 4. Column Name Description Date Date when the incident occurred. this is sometimes a best estimate. Primary Type The primary description of the crime Description The secondary description of the crime, Location Description Description of the location where the incident occurred. Arrest Indicates whether an arrest was made. Domestic Indicates whether the incident was domestic-related Beat Indicates the beat where the incident occurred. District Indicates the police district where the incident occurred. Ward The ward (City Council district) where the incident occurred. Community Area Indicates the community area where the incident occurred. Year Year the incident occurred. Updated On Date and time the record was last updated. Latitude The latitude of the location where the incident occurred. Longitude The longitude of the location where the incident occurred. Location The location where the incident occurred *Data source : CSV file *Data Characteristics: Volumes (6 million records) *Data format : Structure / Batch
  • 5. • Define day of week in crime • Split data 80:20 • Transform data of arrest to ratio of arrest • Transformation categorical variable to numerical one ( Primary Type, Location ) • Index label of arrest rate
  • 6. • Feature • Day of week • Primary Type • Location Description • Label • Arrest Decision Tree Data Algorithm ClassificationCategory • Confusion matrix for model evaluation
  • 7. Presentation • Relation of factor crime • Danger & Safe Zone • Prediction Model Proportion • Arrest • Planning day for safety • Location analysis