SlideShare a Scribd company logo
20 MAR C H , 2018
# M D B l o c a l
THE PATH TO
TRULY UNDERSTANDING
YOUR MONGODB DATA
# M D B l o c a l
# M D B l o c a l
TOM HOLLANDER
PRODUCT MANAGER, MONGODB
@tomhollander
# M D B l o c a l
1. Background: Data Analytics
2. The importance of data visualisation
3. Methods for data visualisation in MongoDB
AGENDA
# M D B l o c a l
BACKGROUND
# M D B l o c a l
TERMINOLOGY
“Business
Intelligence” “Business
Analytics”
ANALYTICS
DATA VISUALISATION
# M D B l o c a l
• More data has been created
in the last 2 years than
entire previous history of the
human race
• By 2020:
• 1.7MB per person every
second
DATA GROWTH IS EXPLOSIVE
# M D B l o c a l
• Analytics is big $!
• $150B in 2017
• $210B+ in 2020
• Less than 0.5% of data is
analysed and used –
imagine the potential!
THE STATE OF ANALYTICS
Source: IDC. https://www.idc.com/getdoc.jsp?containerId=prUS42371417
# M D B l o c a l
EVOLUTION OF ANALYTICS
• Self service
• Mobile access
• Spark
• Real time analytics
• On-prem and cloud
• On demand reporting
2014 20162012
• Dedicated reporting team
• Desktop access
• Hadoop
• Batch analytics
• On prem only
• Monthly reports
2018
# M D B l o c a l
IMPORTANCE OF DATA
VISUALISATION
Data Analytics: Understanding Your MongoDB Data
# M D B l o c a l
# M D B l o c a l
• Charles Minard
(1869)
• Napoleon's march
and retreat on
Moscow in 1812.
EARLY DATA VISUALISATIONS
# M D B l o c a l
I
X Y
10 8.04
8 6.95
13 7.58
9 8.81
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68
9.00 7.50
10.00 3.75
0.816
Mean
Variance
Correlation
# M D B l o c a l
I
X Y
10 8.04
8 6.95
13 7.58
9 8.81
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68
9.00 7.50
10.00 3.75
0.816
Mean
Variance
Correlation
# M D B l o c a l
I
X Y
10 8.04
8 6.95
13 7.58
9 8.81
11 8.33
14 9.96
6 7.24
4 4.26
12 10.84
7 4.82
5 5.68
9.00 7.50
10.00 3.75
0.816
II III IV
X Y X Y X Y
10 9.14 10 7.46 8 6.58
8 8.14 8 6.77 8 5.76
13 8.74 13 12.74 8 7.71
9 8.77 9 7.11 8 8.84
11 9.26 11 7.81 8 8.47
14 8.1 14 8.84 8 7.04
6 6.13 6 6.08 8 5.25
4 3.1 4 5.39 19 12.5
12 9.13 12 8.15 8 5.56
7 7.26 7 6.42 8 7.91
5 4.74 5 5.73 8 6.89
9.00 7.50 9.00 7.50 9.00 7.50
10.00 3.75 10.00 3.75 10.00 3.75
0.816 0.816 0.817
Mean
Variance
Correlation
# M D B l o c a l
# M D B l o c a l
# M D B l o c a l
SO YOU WANT TO VISUALISE?
SO YOU WANT TO VISUALIZE?
# M D B l o c a l
EASY (ish) HARD (er?)
# M D B l o c a l
• Use the correct architecture
• Determine what your needs are
• Multiple data sources?
• Huge amounts of complex data?
• Quick self service?
• Choose the right solution for you
THINGS TO THINK ABOUT
# M D B l o c a l
• Run analytics against your main
deployment used by your Online
Transaction Processing (OLTP) apps
• May be OK in some cases, but watch
out for:
• Poor performing analytics queries
• Analytics impacting OLTP workloads
ARCHITECTURE:
SHARED DEPLOYMENT OLTP Client
DB
Analytics
# M D B l o c a l
• Hidden secondaries maintain a
copy of the primary’s data set
• Hidden secondaries are used for
workloads with different access
patterns
• Contain identical data, but can
have different indexes
• Hidden secondary cannot
become primary
ARCHITECTURE:
HIDDEN REPLICAS OLTP Client Analytics
Primary
Secondary
Secondary
Secondary
P=0
Hidden=true
# M D B l o c a l
• An Extract-Transform-Load tool
retrieves data from one or more
databases, transforms the data
and loads into a data warehouse
• Minimal impact on OLTP
systems; data can be highly
optimised for analysis
• Expensive to setup and maintain
• Data can be stale
ARCHITECTURE:
ETL TO DATA WAREHOUSE Analytics
DB1
DB2
DB3
Data
Warehouse
ETL
OLTP Clients
# M D B l o c a l
TOOLING OPTIONS
TOOLING
# M D B l o c a l
• Pros
• Custom tailored solution: fits
exactly as required!
• Cons
• High investment
• Maintenance
• Deep understanding of the
underlying tech and its
language(s)
BUILD YOUR OWN
# M D B l o c a l
BUILD YOUR OWN
DEMO
# M D B l o c a l
• Day-to-day development/operations
• Data management and manipulation
• Adding indexes
• Viewing server stats
• Schema analysis with visualisations
MONGODB COMPASS
# M D B l o c a l
MONGODB COMPASS
DEMO
# M D B l o c a l
• Understand the range of types and values in your documents
• When you want zero effort visualisations, and don’t need the
ability to customise
MONGODB COMPASS: WHEN TO USE
# M D B l o c a l
• Visualise and explore MongoDB
data in SQL-based BI tools:
• Automatically discovers the schema
• Translates complex SQL statements
issued by the BI tool into MongoDB
aggregation queries
• Converts the results into a tabular
format for rendering inside the BI
tool
MONGODB BI CONNECTOR
# M D B l o c a l
MONGODB BI CONNECTOR
MySQL protocol
MongoDB
mongosqld
etc.
DRDL
# M D B l o c a l
MONGODB BI CONNECTOR
DEMO
# M D B l o c a l
• Existing investment in BI tools (Tableau, Power BI, Qlik etc.)
• You are analysing data from multiple data sources (not just
MongoDB)
• Your MongoDB datasets are highly structured
• Consistent, minimal nesting, no polymorphism
• You have the time and patience for schema mapping
• Extremely powerful but high ramp
BI CONNECTOR: WHEN TO USE
# M D B l o c a l
• Lightweight and intuitive
• Build visualisations on
MongoDB data (nested,
polymorphic)
• Share content in a
dashboard
• Beta available soon!
MONGODB CHARTS
# M D B l o c a l
MONGODB CHARTS
DEMO
# M D B l o c a l
• Your data is in MongoDB collections
• You don’t want to flatten / ETL your MongoDB data
• When you want quick answers from simple but customisable
visualisations
• Self service for semi-technical audience
MONGODB CHARTS: WHEN TO USE
# M D B l o c a l
DATA VISUALISATION LIFE CYCLE
1. Acquire 2. Prep
- Calcs
- Groups
- Data types
3. Visualise
- Bar
- Pie
- Line
4. Explore
- Dashboards
5. Share
- Export
- Collaborate
- Embed
# M D B l o c a l
• Visualisations are incredibly powerful for understanding your data
• Use them to derive insight
• There are multiple options for visualising your MongoDB data
• Combine the tools for the most power!
SUMMARY
# M D B l o c a l
Q&A
tom.hollander@mongodb.com
@tomhollander
# M D B l o c a l
THANK YOU!
tom.hollander@mongodb.com
@tomhollander

More Related Content

What's hot (20)

PDF
MongoDB .local Munich 2019: Managing a Heterogeneous Stack with MongoDB & SQL
MongoDB
 
PDF
MongoDB .local Munich 2019: A Complete Methodology to Data Modeling for MongoDB
MongoDB
 
PPTX
[MongoDB.local Bengaluru 2018] The Path to Truly Understanding Your MongoDB Data
MongoDB
 
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
MongoDB
 
PDF
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB
 
PDF
MongoDB .local Chicago 2019: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
PPTX
Beyond the Basics 3: Introduction to the MongoDB BI Connector
MongoDB
 
PPTX
Accelerating a Path to Digital With a Cloud Data Strategy
MongoDB
 
PDF
MongoDB .local Munich 2019: MongoDB Atlas Auto-Scaling
MongoDB
 
PPTX
Webinar: Live Data Visualisation with Tableau and MongoDB
MongoDB
 
PDF
MongoDB .local Toronto 2019: MongoDB – Powering the new age data demands
MongoDB
 
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
PPTX
IOOF IT System Modernisation
MongoDB
 
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
PDF
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB
 
PDF
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB
 
PPTX
MongoDB Evenings Minneapolis: MongoDB is Cool But When Should I Use It?
MongoDB
 
PPTX
MongoDB BI Connector & Tableau
MongoDB
 
PDF
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB
 
MongoDB .local Munich 2019: Managing a Heterogeneous Stack with MongoDB & SQL
MongoDB
 
MongoDB .local Munich 2019: A Complete Methodology to Data Modeling for MongoDB
MongoDB
 
[MongoDB.local Bengaluru 2018] The Path to Truly Understanding Your MongoDB Data
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
MongoDB
 
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB
 
MongoDB .local Chicago 2019: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
Beyond the Basics 3: Introduction to the MongoDB BI Connector
MongoDB
 
Accelerating a Path to Digital With a Cloud Data Strategy
MongoDB
 
MongoDB .local Munich 2019: MongoDB Atlas Auto-Scaling
MongoDB
 
Webinar: Live Data Visualisation with Tableau and MongoDB
MongoDB
 
MongoDB .local Toronto 2019: MongoDB – Powering the new age data demands
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
IOOF IT System Modernisation
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB
 
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB Evenings Minneapolis: MongoDB is Cool But When Should I Use It?
MongoDB
 
MongoDB BI Connector & Tableau
MongoDB
 
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB
 

Similar to Data Analytics: Understanding Your MongoDB Data (20)

PPTX
SH 1 - SES 5 - SamW-TelAviv.pptx
MongoDB
 
PPTX
The Path to Truly Understanding Your MongoDB Data
MongoDB
 
PDF
The Path to Truly Understanding your MongoDB Data
MongoDB
 
PDF
Advanced Schema Design Patterns
MongoDB
 
PPTX
Sizing MongoDB Clusters
MongoDB
 
PPTX
Open Source North - MongoDB Advanced Schema Design Patterns
Matthew Kalan
 
PPTX
SH 1 - SES 1 - advanced_schema_design.pptx
MongoDB
 
PPTX
SH 1 - SES 1 - advanced_schema_design.pptx
MongoDB
 
PPTX
Advanced Schema Design Patterns
MongoDB
 
PDF
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
Krishna Sankar
 
PPTX
MongoDB and Spring - Two leaves of a same tree
MongoDB
 
PPTX
MongoDB + Spring
Norberto Leite
 
PDF
Continuum Analytics and Python
Travis Oliphant
 
PDF
MongoDB World 2019: MongoDB Cluster Design: From Redundancy to GDPR
MongoDB
 
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
PPTX
MySQL vs. MonetDB
"FENG "GEORGE"" YU
 
PPTX
Advanced Schema Design Patterns
MongoDB
 
PDF
MongoDB World 2018: Data Analytics with MongoDB
MongoDB
 
PDF
MongoDB World 2019: Simplici-tea: Getting Started with MongoDB Charts on Atlas
MongoDB
 
PPTX
Advanced Schema Design Patterns
MongoDB
 
SH 1 - SES 5 - SamW-TelAviv.pptx
MongoDB
 
The Path to Truly Understanding Your MongoDB Data
MongoDB
 
The Path to Truly Understanding your MongoDB Data
MongoDB
 
Advanced Schema Design Patterns
MongoDB
 
Sizing MongoDB Clusters
MongoDB
 
Open Source North - MongoDB Advanced Schema Design Patterns
Matthew Kalan
 
SH 1 - SES 1 - advanced_schema_design.pptx
MongoDB
 
SH 1 - SES 1 - advanced_schema_design.pptx
MongoDB
 
Advanced Schema Design Patterns
MongoDB
 
Big Data Analytics - Best of the Worst : Anti-patterns & Antidotes
Krishna Sankar
 
MongoDB and Spring - Two leaves of a same tree
MongoDB
 
MongoDB + Spring
Norberto Leite
 
Continuum Analytics and Python
Travis Oliphant
 
MongoDB World 2019: MongoDB Cluster Design: From Redundancy to GDPR
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MySQL vs. MonetDB
"FENG "GEORGE"" YU
 
Advanced Schema Design Patterns
MongoDB
 
MongoDB World 2018: Data Analytics with MongoDB
MongoDB
 
MongoDB World 2019: Simplici-tea: Getting Started with MongoDB Charts on Atlas
MongoDB
 
Advanced Schema Design Patterns
MongoDB
 
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
PDF
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB
 
PDF
MongoDB .local Paris 2020: Adéo @MongoDB : MongoDB Atlas & Leroy Merlin : et ...
MongoDB
 
PDF
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
MongoDB
 
PDF
MongoDB .local Toronto 2019: Keep your Business Safe and Scaling Holistically...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB
 
MongoDB .local Paris 2020: Adéo @MongoDB : MongoDB Atlas & Leroy Merlin : et ...
MongoDB
 
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
MongoDB
 
MongoDB .local Toronto 2019: Keep your Business Safe and Scaling Holistically...
MongoDB
 
Ad

Recently uploaded (20)

PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PPTX
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
PDF
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
PDF
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PDF
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
The Project Compass - GDG on Campus MSIT
dscmsitkol
 
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 

Data Analytics: Understanding Your MongoDB Data

  • 1. 20 MAR C H , 2018 # M D B l o c a l THE PATH TO TRULY UNDERSTANDING YOUR MONGODB DATA
  • 2. # M D B l o c a l
  • 3. # M D B l o c a l TOM HOLLANDER PRODUCT MANAGER, MONGODB @tomhollander
  • 4. # M D B l o c a l 1. Background: Data Analytics 2. The importance of data visualisation 3. Methods for data visualisation in MongoDB AGENDA
  • 5. # M D B l o c a l BACKGROUND
  • 6. # M D B l o c a l TERMINOLOGY “Business Intelligence” “Business Analytics” ANALYTICS DATA VISUALISATION
  • 7. # M D B l o c a l • More data has been created in the last 2 years than entire previous history of the human race • By 2020: • 1.7MB per person every second DATA GROWTH IS EXPLOSIVE
  • 8. # M D B l o c a l • Analytics is big $! • $150B in 2017 • $210B+ in 2020 • Less than 0.5% of data is analysed and used – imagine the potential! THE STATE OF ANALYTICS Source: IDC. https://www.idc.com/getdoc.jsp?containerId=prUS42371417
  • 9. # M D B l o c a l EVOLUTION OF ANALYTICS • Self service • Mobile access • Spark • Real time analytics • On-prem and cloud • On demand reporting 2014 20162012 • Dedicated reporting team • Desktop access • Hadoop • Batch analytics • On prem only • Monthly reports 2018
  • 10. # M D B l o c a l IMPORTANCE OF DATA VISUALISATION
  • 12. # M D B l o c a l
  • 13. # M D B l o c a l • Charles Minard (1869) • Napoleon's march and retreat on Moscow in 1812. EARLY DATA VISUALISATIONS
  • 14. # M D B l o c a l I X Y 10 8.04 8 6.95 13 7.58 9 8.81 11 8.33 14 9.96 6 7.24 4 4.26 12 10.84 7 4.82 5 5.68 9.00 7.50 10.00 3.75 0.816 Mean Variance Correlation
  • 15. # M D B l o c a l I X Y 10 8.04 8 6.95 13 7.58 9 8.81 11 8.33 14 9.96 6 7.24 4 4.26 12 10.84 7 4.82 5 5.68 9.00 7.50 10.00 3.75 0.816 Mean Variance Correlation
  • 16. # M D B l o c a l I X Y 10 8.04 8 6.95 13 7.58 9 8.81 11 8.33 14 9.96 6 7.24 4 4.26 12 10.84 7 4.82 5 5.68 9.00 7.50 10.00 3.75 0.816 II III IV X Y X Y X Y 10 9.14 10 7.46 8 6.58 8 8.14 8 6.77 8 5.76 13 8.74 13 12.74 8 7.71 9 8.77 9 7.11 8 8.84 11 9.26 11 7.81 8 8.47 14 8.1 14 8.84 8 7.04 6 6.13 6 6.08 8 5.25 4 3.1 4 5.39 19 12.5 12 9.13 12 8.15 8 5.56 7 7.26 7 6.42 8 7.91 5 4.74 5 5.73 8 6.89 9.00 7.50 9.00 7.50 9.00 7.50 10.00 3.75 10.00 3.75 10.00 3.75 0.816 0.816 0.817 Mean Variance Correlation
  • 17. # M D B l o c a l
  • 18. # M D B l o c a l
  • 19. # M D B l o c a l SO YOU WANT TO VISUALISE? SO YOU WANT TO VISUALIZE?
  • 20. # M D B l o c a l EASY (ish) HARD (er?)
  • 21. # M D B l o c a l • Use the correct architecture • Determine what your needs are • Multiple data sources? • Huge amounts of complex data? • Quick self service? • Choose the right solution for you THINGS TO THINK ABOUT
  • 22. # M D B l o c a l • Run analytics against your main deployment used by your Online Transaction Processing (OLTP) apps • May be OK in some cases, but watch out for: • Poor performing analytics queries • Analytics impacting OLTP workloads ARCHITECTURE: SHARED DEPLOYMENT OLTP Client DB Analytics
  • 23. # M D B l o c a l • Hidden secondaries maintain a copy of the primary’s data set • Hidden secondaries are used for workloads with different access patterns • Contain identical data, but can have different indexes • Hidden secondary cannot become primary ARCHITECTURE: HIDDEN REPLICAS OLTP Client Analytics Primary Secondary Secondary Secondary P=0 Hidden=true
  • 24. # M D B l o c a l • An Extract-Transform-Load tool retrieves data from one or more databases, transforms the data and loads into a data warehouse • Minimal impact on OLTP systems; data can be highly optimised for analysis • Expensive to setup and maintain • Data can be stale ARCHITECTURE: ETL TO DATA WAREHOUSE Analytics DB1 DB2 DB3 Data Warehouse ETL OLTP Clients
  • 25. # M D B l o c a l TOOLING OPTIONS TOOLING
  • 26. # M D B l o c a l • Pros • Custom tailored solution: fits exactly as required! • Cons • High investment • Maintenance • Deep understanding of the underlying tech and its language(s) BUILD YOUR OWN
  • 27. # M D B l o c a l BUILD YOUR OWN DEMO
  • 28. # M D B l o c a l • Day-to-day development/operations • Data management and manipulation • Adding indexes • Viewing server stats • Schema analysis with visualisations MONGODB COMPASS
  • 29. # M D B l o c a l MONGODB COMPASS DEMO
  • 30. # M D B l o c a l • Understand the range of types and values in your documents • When you want zero effort visualisations, and don’t need the ability to customise MONGODB COMPASS: WHEN TO USE
  • 31. # M D B l o c a l • Visualise and explore MongoDB data in SQL-based BI tools: • Automatically discovers the schema • Translates complex SQL statements issued by the BI tool into MongoDB aggregation queries • Converts the results into a tabular format for rendering inside the BI tool MONGODB BI CONNECTOR
  • 32. # M D B l o c a l MONGODB BI CONNECTOR MySQL protocol MongoDB mongosqld etc. DRDL
  • 33. # M D B l o c a l MONGODB BI CONNECTOR DEMO
  • 34. # M D B l o c a l • Existing investment in BI tools (Tableau, Power BI, Qlik etc.) • You are analysing data from multiple data sources (not just MongoDB) • Your MongoDB datasets are highly structured • Consistent, minimal nesting, no polymorphism • You have the time and patience for schema mapping • Extremely powerful but high ramp BI CONNECTOR: WHEN TO USE
  • 35. # M D B l o c a l • Lightweight and intuitive • Build visualisations on MongoDB data (nested, polymorphic) • Share content in a dashboard • Beta available soon! MONGODB CHARTS
  • 36. # M D B l o c a l MONGODB CHARTS DEMO
  • 37. # M D B l o c a l • Your data is in MongoDB collections • You don’t want to flatten / ETL your MongoDB data • When you want quick answers from simple but customisable visualisations • Self service for semi-technical audience MONGODB CHARTS: WHEN TO USE
  • 38. # M D B l o c a l DATA VISUALISATION LIFE CYCLE 1. Acquire 2. Prep - Calcs - Groups - Data types 3. Visualise - Bar - Pie - Line 4. Explore - Dashboards 5. Share - Export - Collaborate - Embed
  • 39. # M D B l o c a l • Visualisations are incredibly powerful for understanding your data • Use them to derive insight • There are multiple options for visualising your MongoDB data • Combine the tools for the most power! SUMMARY
  • 40. # M D B l o c a l Q&A [email protected] @tomhollander
  • 41. # M D B l o c a l THANK YOU! [email protected] @tomhollander

Editor's Notes

  • #9: 96 DVDs per person per day
  • #13: Eye can process 10million bits per second. Roughly the same as Ethernet.
  • #15: One of the best statistical drawings ever made. Tells of 400,000 army marching on moscow and returning with 10,000. Shows time and loss of life, routes and river crossings etc.