SlideShare a Scribd company logo
Meetup Bratislava
This is a group for anyone who wants to explore the area of data science, artificial intelligence, machine learning. All skill
and experience levels are welcome. I started this group to meet other outdoor enthusiasts of areas as:
• build systems that use machine learning techniques in Clojure, Java, Node.js
• understand machine learning problems such as regression, classification, and clustering
• discover the data structures used in machine learning techniques such as artificial neural networks and support vector
machines
• implement machine learning algorithms in real scientific or business cases
• learn more about software libraries to build machine learning systems
• discover techniques to improve and debug solutions built on machine learning techniques
• use machine learning techniques in a cloud architecture for the modern Web
branislav.majernik@oracle.com
DataData
Meetup Bratislava
Vážení priaznivci moderného IT,
Prijmite naše pozvanie na dobrú kávu s crossisantom v priestoroch kaviarne KORZO na Hviezdoslavovom námestí 3 v Starom
Meste, dňa 14.2.2018 od 9:00 – 11:00. Naštartujeme deň diskusiou o aktuálnych trendoch v informačných technológiách,
o data science, machine learning a IT s tým súvisiacim.
• Support Vector Machine – prečo je úspešná v segmentácii komplikovaného zákazníka
• Markov chains a ich využitie v predikcii správania sa zákazníka
Ak ste sa v téme nenašli, nezúfajte, nasledovať bude:
Lambda Coffee - venovaný funkcionálnej paradigme a technológiám.
Registrácia na adrese:
branislav.majernik@oracle.com
klaudia.blaskovicova@oracle.com
DataData
What is data science ?
What is data science?
Tasks of regression, interpolation
What is data science?
Tasks of classification
What is data science?
How to learn computer a new function without explicit programming
Data science needs
Platform
Mathematical
Native Language Speed
Data Structures
Language Constructs
Data Connectivity
End-2-End Quality Control
Interactive Environment
Visualization
Linear Algebra
Statistics
Machine Learning
Optimizers
R, Mathlab, Mathematica
C++, Java, Python
Excel
Data science needs
 Productive and fun
 Portability, good parts of JVM ( )
 REPL – interactive experiments
 Functional programing
 DSL's with composable abstractions
 Data is code, code is data
and deployment in ...
spread of platform,
on the fly profiling,
inlining, loop-unrolling,
de-opt/reopt,
escape analysis,
dead code elimination,
proven GC
Support Vector Machine
Tasks of classification
Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
Support Vector Machine
Tasks of classification
Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
Support Vector Machine
Tasks of classification
Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
Support Vector Machine
Tasks of classification
Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
Support Vector Machine
Tasks of classification and regression
Support Vector Machine
Tasks of classification and regression
Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
Support Vector Machine
Tasks of classification and regression
Source of this picture: http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
Support Vector Machine
Tasks of classification and regression
Source of this picture: http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
Support Vector Machine
Tasks of classification and regression
Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
Support Vector Machine
Tasks of classification
Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
Support Vector Machine
Tasks of classification
Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
Support Vector Machine
Tasks of classification
Source of this picture: http://scikit-learn.org/stable/_images/sphx_glr_plot_rbf_parameters_001.png
Support Vector Machine
Tasks of regression
Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
Support Vector Machine
Tasks of regression
Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
Support Vector Machine
Tasks of regression
Source of this picture: https://www.svm-tutorial.com/2014/10/support-vector-regression-r/
Support Vector Machine
Correspondence with Radial Basis Neural Network
Source of this picture: http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/
Support Vector Machine
With genetic programing evolution
Source of this picture: https://github.com/ssusnic/Machine-Learning-Flappy-Bird
Markov chain
When probability depend on previous outcome
Hidden Markov chain
When probability depend on previous outcome and is hidden from observable state
Hidden Markov chain
When probability depend on previous outcome and is hidden from observable state
calculus
branislav.majernik@oracle.com
Lambda
calculus
branislav.majernik@oracle.com
Lambda

More Related Content

What's hot (7)

PDF
CAW Resume August2016
Caleb Withers
 
PDF
alphablues - ML applied to text and image in chat bots
André Karpištšenko
 
PDF
Data! Data! Data! I Can't Make Bricks Without Clay!
Turi, Inc.
 
PPTX
Journey to learn Machine Learning & Neural Network - Basics
Arocom IT Solutions Pvt. Ltd
 
PPTX
Towards a Comprehensive Machine Learning Benchmark
Turi, Inc.
 
PPTX
Projects in MATLAB Research Help
Matlab Simulation
 
PDF
techResume2015winter
Ben Plotke
 
CAW Resume August2016
Caleb Withers
 
alphablues - ML applied to text and image in chat bots
André Karpištšenko
 
Data! Data! Data! I Can't Make Bricks Without Clay!
Turi, Inc.
 
Journey to learn Machine Learning & Neural Network - Basics
Arocom IT Solutions Pvt. Ltd
 
Towards a Comprehensive Machine Learning Benchmark
Turi, Inc.
 
Projects in MATLAB Research Help
Matlab Simulation
 
techResume2015winter
Ben Plotke
 

Similar to Data coffee - Support vector machine usage with complex data (20)

PPTX
Designing Artificial Intelligence
David Chou
 
DOC
MS Word file resumes16869r.doc.doc
butest
 
PDF
EkaterinaGusevaCV
Ekaterina Guseva
 
DOCX
Resume - Shashesh Silwal
Shashesh Silwal
 
PPTX
Microsoft AI Platform Overview
David Chou
 
PDF
Lead Data Scientist | Machine Learning & AI Expert | Predictive Maintenance &...
Akshay Kakkar
 
PDF
cv-2016-23
Sergei Vorobyov
 
PPTX
Azure Batch AI for Neural Networks
Cameron Vetter
 
PDF
Resume
Qi Wen
 
PDF
cv_HamidBarakat_ArendTech
Hamid Barakat
 
DOCX
Resume 20170119WithoutGPA
Xuetao Fan
 
PDF
B040101007012
ijceronline
 
PDF
Open source ai_technical_trend
Mario Cho
 
PDF
Shubhangi nov20
Shubhangi Tandon
 
PDF
Deep Dive on Deep Learning (June 2018)
Julien SIMON
 
DOCX
Sainath_Resume_updated
sainath devara
 
PDF
Novi sad ai event 1-2018
Jovan Stojanovic
 
PDF
Data science presentation
MSDEVMTL
 
PDF
research Paper face recognition attendance system
AnkitRao82
 
Designing Artificial Intelligence
David Chou
 
MS Word file resumes16869r.doc.doc
butest
 
EkaterinaGusevaCV
Ekaterina Guseva
 
Resume - Shashesh Silwal
Shashesh Silwal
 
Microsoft AI Platform Overview
David Chou
 
Lead Data Scientist | Machine Learning & AI Expert | Predictive Maintenance &...
Akshay Kakkar
 
cv-2016-23
Sergei Vorobyov
 
Azure Batch AI for Neural Networks
Cameron Vetter
 
Resume
Qi Wen
 
cv_HamidBarakat_ArendTech
Hamid Barakat
 
Resume 20170119WithoutGPA
Xuetao Fan
 
B040101007012
ijceronline
 
Open source ai_technical_trend
Mario Cho
 
Shubhangi nov20
Shubhangi Tandon
 
Deep Dive on Deep Learning (June 2018)
Julien SIMON
 
Sainath_Resume_updated
sainath devara
 
Novi sad ai event 1-2018
Jovan Stojanovic
 
Data science presentation
MSDEVMTL
 
research Paper face recognition attendance system
AnkitRao82
 
Ad

Recently uploaded (20)

PPT
dsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasassas2.ppt
UzairAfzal13
 
PDF
How to Avoid 7 Costly Mainframe Migration Mistakes
JP Infra Pvt Ltd
 
PDF
apidays Munich 2025 - The life-changing magic of great API docs, Jens Fischer...
apidays
 
PPT
Data base management system Transactions.ppt
gandhamcharan2006
 
PPTX
Rocket-Launched-PowerPoint-Template.pptx
Arden31
 
PPTX
Learning Tendency Analysis of Scratch Programming Course(Entry Class) for Upp...
ryouta039
 
PDF
Incident Response and Digital Forensics Certificate
VICTOR MAESTRE RAMIREZ
 
PPTX
fashion industry boom.pptx an economics project
TGMPandeyji
 
PPTX
Human-Action-Recognition-Understanding-Behavior.pptx
nreddyjanga
 
PDF
apidays Munich 2025 - Geospatial Artificial Intelligence (GeoAI) with OGC API...
apidays
 
PPTX
GLOBAL_Gender-module-5_committing-equity-responsive-budget.pptx
rashmisahu90
 
PPTX
Credit Card Fraud Detection Presentation
rasmilalama
 
PPTX
UPS Case Study - Group 5 with example and implementation .pptx
yasserabdelwahab6
 
PPTX
Spark with anjbnn hfkkjn hbkjbu h jhbk.pptx
nreddyjanga
 
DOCX
Discover the Key Benefits of Implementing Data Mesh Architecture.docx
ajaykumar405166
 
PPTX
apidays Munich 2025 - GraphQL 101: I won't REST, until you GraphQL, Surbhi Si...
apidays
 
DOCX
Online Delivery Restaurant idea and analyst the data
sejalsengar2323
 
PDF
Basotho Satisfaction with Electricity(Statspack)
KatlehoMefane
 
PPTX
Enterprise Architecture and TOGAF Presn
starksolutionsindia
 
PPTX
isaacnewton-250718125311-e7ewqeqweqwa74d99.pptx
MahmoudHalim13
 
dsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasassas2.ppt
UzairAfzal13
 
How to Avoid 7 Costly Mainframe Migration Mistakes
JP Infra Pvt Ltd
 
apidays Munich 2025 - The life-changing magic of great API docs, Jens Fischer...
apidays
 
Data base management system Transactions.ppt
gandhamcharan2006
 
Rocket-Launched-PowerPoint-Template.pptx
Arden31
 
Learning Tendency Analysis of Scratch Programming Course(Entry Class) for Upp...
ryouta039
 
Incident Response and Digital Forensics Certificate
VICTOR MAESTRE RAMIREZ
 
fashion industry boom.pptx an economics project
TGMPandeyji
 
Human-Action-Recognition-Understanding-Behavior.pptx
nreddyjanga
 
apidays Munich 2025 - Geospatial Artificial Intelligence (GeoAI) with OGC API...
apidays
 
GLOBAL_Gender-module-5_committing-equity-responsive-budget.pptx
rashmisahu90
 
Credit Card Fraud Detection Presentation
rasmilalama
 
UPS Case Study - Group 5 with example and implementation .pptx
yasserabdelwahab6
 
Spark with anjbnn hfkkjn hbkjbu h jhbk.pptx
nreddyjanga
 
Discover the Key Benefits of Implementing Data Mesh Architecture.docx
ajaykumar405166
 
apidays Munich 2025 - GraphQL 101: I won't REST, until you GraphQL, Surbhi Si...
apidays
 
Online Delivery Restaurant idea and analyst the data
sejalsengar2323
 
Basotho Satisfaction with Electricity(Statspack)
KatlehoMefane
 
Enterprise Architecture and TOGAF Presn
starksolutionsindia
 
isaacnewton-250718125311-e7ewqeqweqwa74d99.pptx
MahmoudHalim13
 
Ad

Data coffee - Support vector machine usage with complex data

  • 1. Meetup Bratislava This is a group for anyone who wants to explore the area of data science, artificial intelligence, machine learning. All skill and experience levels are welcome. I started this group to meet other outdoor enthusiasts of areas as: • build systems that use machine learning techniques in Clojure, Java, Node.js • understand machine learning problems such as regression, classification, and clustering • discover the data structures used in machine learning techniques such as artificial neural networks and support vector machines • implement machine learning algorithms in real scientific or business cases • learn more about software libraries to build machine learning systems • discover techniques to improve and debug solutions built on machine learning techniques • use machine learning techniques in a cloud architecture for the modern Web [email protected] DataData
  • 2. Meetup Bratislava Vážení priaznivci moderného IT, Prijmite naše pozvanie na dobrú kávu s crossisantom v priestoroch kaviarne KORZO na Hviezdoslavovom námestí 3 v Starom Meste, dňa 14.2.2018 od 9:00 – 11:00. Naštartujeme deň diskusiou o aktuálnych trendoch v informačných technológiách, o data science, machine learning a IT s tým súvisiacim. • Support Vector Machine – prečo je úspešná v segmentácii komplikovaného zákazníka • Markov chains a ich využitie v predikcii správania sa zákazníka Ak ste sa v téme nenašli, nezúfajte, nasledovať bude: Lambda Coffee - venovaný funkcionálnej paradigme a technológiám. Registrácia na adrese: [email protected] [email protected] DataData
  • 3. What is data science ?
  • 4. What is data science? Tasks of regression, interpolation
  • 5. What is data science? Tasks of classification
  • 6. What is data science? How to learn computer a new function without explicit programming
  • 7. Data science needs Platform Mathematical Native Language Speed Data Structures Language Constructs Data Connectivity End-2-End Quality Control Interactive Environment Visualization Linear Algebra Statistics Machine Learning Optimizers R, Mathlab, Mathematica C++, Java, Python Excel
  • 8. Data science needs  Productive and fun  Portability, good parts of JVM ( )  REPL – interactive experiments  Functional programing  DSL's with composable abstractions  Data is code, code is data and deployment in ... spread of platform, on the fly profiling, inlining, loop-unrolling, de-opt/reopt, escape analysis, dead code elimination, proven GC
  • 9. Support Vector Machine Tasks of classification Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
  • 10. Support Vector Machine Tasks of classification Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
  • 11. Support Vector Machine Tasks of classification Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
  • 12. Support Vector Machine Tasks of classification Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
  • 13. Support Vector Machine Tasks of classification and regression
  • 14. Support Vector Machine Tasks of classification and regression Source of this picture: https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
  • 15. Support Vector Machine Tasks of classification and regression Source of this picture: http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
  • 16. Support Vector Machine Tasks of classification and regression Source of this picture: http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
  • 17. Support Vector Machine Tasks of classification and regression Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
  • 18. Support Vector Machine Tasks of classification Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
  • 19. Support Vector Machine Tasks of classification Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
  • 20. Support Vector Machine Tasks of classification Source of this picture: http://scikit-learn.org/stable/_images/sphx_glr_plot_rbf_parameters_001.png
  • 21. Support Vector Machine Tasks of regression Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
  • 22. Support Vector Machine Tasks of regression Source of this picture: http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
  • 23. Support Vector Machine Tasks of regression Source of this picture: https://www.svm-tutorial.com/2014/10/support-vector-regression-r/
  • 24. Support Vector Machine Correspondence with Radial Basis Neural Network Source of this picture: http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/
  • 25. Support Vector Machine With genetic programing evolution Source of this picture: https://github.com/ssusnic/Machine-Learning-Flappy-Bird
  • 26. Markov chain When probability depend on previous outcome
  • 27. Hidden Markov chain When probability depend on previous outcome and is hidden from observable state
  • 28. Hidden Markov chain When probability depend on previous outcome and is hidden from observable state