SlideShare a Scribd company logo
Data Integration through
Data Virtualization
Cathrine Wilhelmsen, Inmeta
@cathrinew | cathrinew.net
February 21st 2019
Abstract
Data virtualization is an alternative to Extract, Transform and Load (ETL) processes. It handles the
complexity of integrating different data sources and formats without requiring you to replicate or
move the data itself. Save time, minimize effort, and eliminate duplicate data by creating a virtual
data layer using PolyBase in SQL Server.
In this session, we will first go through fundamental PolyBase concepts such as external data sources
and external tables. Then, we will look at the PolyBase improvements in SQL Server 2019. Finally, we
will create a virtual data layer that accesses and integrates both structured and unstructured data
from different sources. Along the way, we will cover lessons learned, best practices, and known
limitations.
@cathrinew
cathrinew.net
…the next 60 minutes…
PolyBase
Virtual
Data Layer
Data
Virtualization
Data
Integration
Data
Integration
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Combine Data
Extract Transform Load
Extract Load Transform
Data Ingestion
Data Preparation
Data Wrangling
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Different Formats
SQL
TXT
CSV
XLS
XML
JSON
Orc
Parquet
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Separate Sources
SQL Server
Oracle
Teradata
MongoDB
Hadoop
Azure Blob Storage
Azure Data-Lake
Local File System
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Useful Information
Accurate
Complete
Consistent
Timely
Unique
Valid
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Valuable Information
What you need
Answer questions
Solve problems
Timesaving
Reduce effort
Improve efficiency
Combine Data in Different Formats
from Separate Sources into Useful
and Valuable Information
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
ETL – Extract Transform Load
ELT – Extract Load Transform
ETL – Extract Transform Load
ELT – Extract Load Transform
= data movement
Data Movement: Costs
Duplicated storage costs
Need resources to build and maintain
Data Movement: Speed
Takes time to build and maintain
Delays before data can be used
Data Movement: Security
Increased attack surface area
Inconsistent security models
Data Movement: Data Quality
More storage layers and pipelines
Higher complexity
Data movement is a
barrier to faster insights
- Microsoft
Data
Virtualization
Data Virtualization
Logical Layers and Abstractions
(Near) Real-Time View of Data
Store in separate locations
View in one location
Data Virtualization: Costs
Lower storage costs
Fewer resources to build and maintain
Data Virtualization: Speed
No data latency
Rapid iterations and prototypes
Data Virtualization: Security
Smaller attack surface area
Consistent security models
Data Virtualization: Data Quality
Fewer storage layers and pipelines
Less complexity
Data virtualization
creates solutions
- Microsoft
Data Movement = Bad ?
Data Virtualization = Good ?
Data Movement = Bad ?
Data Virtualization = Good ?
no, just different use cases!
PolyBase
PolyBase
Feature in SQL Server 2016 and later
Query tables and files using T-SQL
Used to query, import, and export data
PolyBase Performance
Push-Down Computations
Scale-Out Groups
PolyBase in SQL Server 2016 / 2017
Hadoop
Azure Blob Storage
Azure Data Lake
PolyBase in SQL Server 2019
Hadoop
Azure Blob Storage
Azure Data Lake
SQL Server
Oracle
Teradata
MongoDB
ODBC NoSQL Relational Databases Big Data
PolyBase
How to use PolyBase?
1. Install PolyPase
2. Configure PolyBase Connectivity
3. Create Database Master Key
4. Create Database Scoped Credential
5. ...
How to use PolyBase?
4. ...
5. Create External Data Sources
6. Create External File Formats
7. Create External Tables
8. Create Statistics
Install PolyBase
1. Install Prerequisites
Microsoft .NET Framework 4.5
Oracle Java SE Runtime Environment (JRE) 7 or 8
2. Install PolyBase
Single Node or Scale-Out Group
3. Enable PolyBase
Install Prerequisites
Microsoft .NET Framework 4.5
https://www.microsoft.com/nl-nl/download/details.aspx?id=30653
Oracle Java SE Runtime Environment (JRE) 7 or 8
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
Install PolyBase
Note: PolyBase can be installed on only one SQL
Server instance per machine.
Note: After you install PolyBase either standalone
or in a scale-out group, you have to uninstall and
reinstall to change it.
. . . Ask me how I know : )
Enable PolyBase
sp_configure
'polybase enabled', 1;
RECONFIGURE;
Verify Installation
SELECT SERVERPROPERTY
('IsPolyBaseInstalled');
Configure PolyBase
Connectivity
1. Configure PolyBase Connectivity
2. Restart Services
SQL Server
SQL Server PolyBase Engine
SQL Server PolyBase Data Movement
Configure PolyBase Connectivity
sp_configure
'hadoop connectivity', 7;
RECONFIGURE;
Configure PolyBase Connectivity
Hadoop Connectivity:
• Specify type of data source
• Values: 0-7
• 1, 4, 7: Multiple Data Sources
Configure PolyBase Connectivity
Configure PolyBase Connectivity
Restart Services
Restart Services
Create Database
Master Key
Create Database Master Key
CREATE MASTER KEY ENCRYPTION
BY PASSWORD = '<password>';
Create Database
Scoped Credential
Create Database Scoped Credential
CREATE DATABASE SCOPED CREDENTIAL
<CredentialName>
WITH IDENTITY = '<identity>',
SECRET = '<secret>';
Create External
Data Sources
Create External Data Source
Create External Data Source
Create External Data Source
Create External Data Source
CREATE EXTERNAL DATA SOURCE <HadoopName> WITH (
TYPE = HADOOP,
LOCATION ='<hdfs://...>',
CREDENTIAL = <CredentialName>,
RESOURCE_MANAGER_LOCATION = '<ip>'
);
Create External Data Source
CREATE EXTERNAL DATA SOURCE <AzureBlobName> WITH (
TYPE = HADOOP,
LOCATION ='<wasbs://...>',
CREDENTIAL = <CredentialName>
);
Create External Data Source
CREATE EXTERNAL DATA SOURCE <OracleName> WITH (
LOCATION ='<oracle://...>',
CREDENTIAL = <CredentialName>
);
Create External
File Formats
Create External File Format
Create External File Format
Create External File Format
Create External File Format
CREATE EXTERNAL FILE FORMAT <FileFormatName> WITH (
FORMAT_TYPE = DELIMITEDTEXT,
FORMAT_OPTIONS (
FIELD_TERMINATOR = ';',
USE_TYPE_DEFAULT = TRUE
)
);
Create External
Tables
Create External Table
Create External Table
Create External Table
Create External Table
CREATE EXTERNAL TABLE [SchemaName].[TableName] (
[ColumnName] INT NOT NULL
) WITH (
LOCATION = <FileName>',
DATA_SOURCE = <DataSourceName>,
FILE_FORMAT = <FileFormatName>
)
Create Statistics
Create Statistics
Note: To create statistics, SQL Server imports the
external data into temp table first. Remember to
choose sampling or full scan.
Note: Updating statistics is not supported. Drop
and re-create instead.
Create Statistics
CREATE STATISTICS <StatName>
ON <TableName>(<ColumnName>);
CREATE STATISTICS <StatName>
ON <TableName>(<ColumnName>) WITH FULLSCAN;
All Done
Verify using Catalog Views
SELECT * FROM sys.external_data_sources
SELECT * FROM sys.external_file_formats;
SELECT * FROM sys.external_tables;
T-SQL All The Things :)
…or…?
PolyBase can be grumpy :(
Unexpected error encountered filling record
reader buffer: HadoopExecutionException:
Not enough columns in this line.
Unexpected error encountered filling record
reader buffer: HadoopExecutionException:
Too many columns in the line.
Unexpected error encountered filling record
reader buffer: HadoopExecutionException:
Could not find a delimiter after
string delimiter.
Unexpected error encountered filling record
reader buffer: HadoopExecutionException:
Error converting data type NVARCHAR to INT.
Unexpected error encountered filling record
reader buffer: HadoopExecutionException:
Conversion failed when converting the
NVARCHAR value '"0"' to data type BIT.
Unexpected error encountered filling record
reader buffer: HadoopExecutionException:
Too long string in column [-1]:
Actual len = [4242]. MaxLEN=[4000]
Msg 46518, Level 16, State 12, Line 1:
The type 'nvarchar(max)' is not supported
with external tables.
Msg 2717, Level 16, State 2, Line 1:
The size (10000) given to the parameter
exceeds the maximum allowed (4000).
Msg 131, Level 15, State 2, Line 1:
The size (10000) given to the column
exceeds the maximum allowed for any data
type (8000).
= Know your data :)
SQL Server 2019
Big Data Clusters
SQL Server 2019 Big Data Clusters
SQL Server, Spark, and HDFS
Scalable clusters of containers
Runs on Kubernetes
Kubernetes Pod Kubernetes Pod Kubernetes Pod Kubernetes Pod
SQL Server
Master Instance
SQL Server
HDFS Data Node
SparkSQL Server
HDFS Data Node
Spark SQL Server
HDFS Data Node
Spark SQL Server
HDFS Data Node
Spark
Build Virtual
Data Layer
Build Virtual Data Layer
Scenarios:
1. Text Files in Azure Blob Storage
2. Tables in Oracle Database
Text Files in Azure Blob Storage
Tables in Oracle Database
DEMO
Build Virtual
Data Layer in SSMS
It's as easy as 1, 2, 3!
…4, 5, 6, 7, 8, 9, 10…
Is there an easier way?
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Biml 💚 PolyBase
Ben Weissman:
Using Biml to automagically keep your external
polybase tables in sync!
https://www.solisyon.de/biml-polybase-external-tables/
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Azure Data Studio
1. Install Azure Data Studio
docs.microsoft.com/en-us/sql/azure-data-studio/download
2. Install Extension: SQL Server 2019 (Preview)
docs.microsoft.com/en-us/sql/azure-data-studio/sql-server-2019-extension
Extension: SQL Server 2019 (Preview)
Extension: SQL Server 2019 (Preview)
Double-clicking the .vsix
file doesn't work…
Extension: SQL Server 2019 (Preview)
…install preview
extensions from Azure
Data Studio
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Azure Data Studio
Wizard: CSV Files
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Azure Data Studio
Wizard: Oracle
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
Data Integration through Data Virtualization (SQL Server Konferenz 2019)
DEMO
Build Virtual
Data Layer in ADS
Next Steps
Where can I learn more?
Microsoft SQL Docs:
docs.microsoft.com/sql
Where can I learn more?
Kevin Feasel:
36chambers.wordpress.com/polybase
How can I try PolyBase?
Microsoft Hands-on Labs:
microsoft.com/handsonlabs
How can I try SQL Server 2019?
For Windows, Linux, and containers:
aka.ms/trysqlserver2019
How can I try Big Data Clusters?
SQL Server 2019 Early Adoption Program:
aka.ms/eapsignup
@cathrinew
cathrinew.net
hi@cathrinew.net
Vielen Dank!
Thank you very much for your attention.
Vielen Dank für Eure Aufmerksamkeit.

More Related Content

What's hot (20)

PPTX
Data Modeling on Azure for Analytics
Ike Ellis
 
PPTX
Azure Synapse Analytics Overview (r1)
James Serra
 
PPTX
Data Virtualization and ETL
Lily Luo
 
PDF
Encompassing Information Integration
nguyenfilip
 
PPTX
Introducing Azure SQL Data Warehouse
James Serra
 
PDF
SQL Server 2019 Big Data Cluster
Maximiliano Accotto
 
PPTX
Azure SQL Database Managed Instance
James Serra
 
PPTX
Microsoft cloud big data strategy
James Serra
 
PPTX
Azure data platform overview
Alessandro Melchiori
 
PDF
Designing a modern data warehouse in azure
Antonios Chatzipavlis
 
PPTX
What's new in SQL Server 2016
James Serra
 
ODP
JBoss Enterprise Data Services (Data Virtualization)
plarsen67
 
PDF
Jboss Teiid - The data you have on the place you need
Jackson dos Santos Olveira
 
PDF
How to Build Modern Data Architectures Both On Premises and in the Cloud
VMware Tanzu
 
PPTX
Azure data bricks by Eugene Polonichko
Alex Tumanoff
 
PPTX
Overview of Microsoft Appliances: Scaling SQL Server to Hundreds of Terabytes
James Serra
 
PPTX
Azure data factory
BizTalk360
 
PDF
Azure - Data Platform
giventocode
 
PDF
SQL Server 2017 Enhancements You Need To Know
Quest
 
PDF
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
Denodo
 
Data Modeling on Azure for Analytics
Ike Ellis
 
Azure Synapse Analytics Overview (r1)
James Serra
 
Data Virtualization and ETL
Lily Luo
 
Encompassing Information Integration
nguyenfilip
 
Introducing Azure SQL Data Warehouse
James Serra
 
SQL Server 2019 Big Data Cluster
Maximiliano Accotto
 
Azure SQL Database Managed Instance
James Serra
 
Microsoft cloud big data strategy
James Serra
 
Azure data platform overview
Alessandro Melchiori
 
Designing a modern data warehouse in azure
Antonios Chatzipavlis
 
What's new in SQL Server 2016
James Serra
 
JBoss Enterprise Data Services (Data Virtualization)
plarsen67
 
Jboss Teiid - The data you have on the place you need
Jackson dos Santos Olveira
 
How to Build Modern Data Architectures Both On Premises and in the Cloud
VMware Tanzu
 
Azure data bricks by Eugene Polonichko
Alex Tumanoff
 
Overview of Microsoft Appliances: Scaling SQL Server to Hundreds of Terabytes
James Serra
 
Azure data factory
BizTalk360
 
Azure - Data Platform
giventocode
 
SQL Server 2017 Enhancements You Need To Know
Quest
 
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
Denodo
 

Similar to Data Integration through Data Virtualization (SQL Server Konferenz 2019) (20)

PPTX
Data virtualization using polybase
Antonios Chatzipavlis
 
PPTX
Get started with Microsoft SQL Polybase
Henk van der Valk
 
PDF
Exploring sql server 2016 bi
Antonios Chatzipavlis
 
PPTX
DAC4B 2015 - Polybase
Łukasz Grala
 
PPTX
Andriy Zrobok "MS SQL 2019 - new for Big Data Processing"
Lviv Startup Club
 
PPTX
Introduction to PolyBase
James Serra
 
PDF
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Trivadis
 
PPTX
Geek Sync I Polybase and Time Travel (Temporal Tables)
IDERA Software
 
PPTX
Data Analytics Meetup: Introduction to Azure Data Lake Storage
CCG
 
PPTX
Modernizing Your Data Warehouse using APS
Stéphane Fréchette
 
PDF
SQL Server 2019 Data Virtualization
Matthew W. Bowers
 
PPTX
Microsoft Azure Big Data Analytics
Mark Kromer
 
PDF
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis
 
PDF
Prague data management meetup 2018-03-27
Martin Bém
 
PPTX
Gs08 modernize your data platform with sql technologies wash dc
Bob Ward
 
PDF
Big data analysis concepts and references
Information Security Awareness Group
 
PDF
Shared slides-edbt-keynote-03-19-13
Daniel Abadi
 
PPTX
Azure Data.pptx
FedoRam1
 
PPTX
Big Data in the Real World
Mark Kromer
 
PDF
Vikram Andem Big Data Strategy @ IATA Technology Roadmap
IT Strategy Group
 
Data virtualization using polybase
Antonios Chatzipavlis
 
Get started with Microsoft SQL Polybase
Henk van der Valk
 
Exploring sql server 2016 bi
Antonios Chatzipavlis
 
DAC4B 2015 - Polybase
Łukasz Grala
 
Andriy Zrobok "MS SQL 2019 - new for Big Data Processing"
Lviv Startup Club
 
Introduction to PolyBase
James Serra
 
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Trivadis
 
Geek Sync I Polybase and Time Travel (Temporal Tables)
IDERA Software
 
Data Analytics Meetup: Introduction to Azure Data Lake Storage
CCG
 
Modernizing Your Data Warehouse using APS
Stéphane Fréchette
 
SQL Server 2019 Data Virtualization
Matthew W. Bowers
 
Microsoft Azure Big Data Analytics
Mark Kromer
 
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis
 
Prague data management meetup 2018-03-27
Martin Bém
 
Gs08 modernize your data platform with sql technologies wash dc
Bob Ward
 
Big data analysis concepts and references
Information Security Awareness Group
 
Shared slides-edbt-keynote-03-19-13
Daniel Abadi
 
Azure Data.pptx
FedoRam1
 
Big Data in the Real World
Mark Kromer
 
Vikram Andem Big Data Strategy @ IATA Technology Roadmap
IT Strategy Group
 
Ad

More from Cathrine Wilhelmsen (20)

PDF
Fra utvikler til arkitekt: Skap din egen karrierevei ved å utvikle din person...
Cathrine Wilhelmsen
 
PDF
One Year in Fabric: Lessons Learned from Implementing Real-World Projects (PA...
Cathrine Wilhelmsen
 
PDF
Data Factory in Microsoft Fabric (MsBIP #82)
Cathrine Wilhelmsen
 
PDF
Getting Started: Data Factory in Microsoft Fabric (Microsoft Fabric Community...
Cathrine Wilhelmsen
 
PDF
Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...
Cathrine Wilhelmsen
 
PDF
Website Analytics in My Pocket using Microsoft Fabric (SQLBits 2024)
Cathrine Wilhelmsen
 
PDF
Data Integration using Data Factory in Microsoft Fabric (ESPC Microsoft Fabri...
Cathrine Wilhelmsen
 
PDF
Choosing between Fabric, Synapse and Databricks (Data Left Unattended 2023)
Cathrine Wilhelmsen
 
PDF
Data Integration with Data Factory (Microsoft Fabric Day Oslo 2023)
Cathrine Wilhelmsen
 
PDF
The Battle of the Data Transformation Tools (PASS Data Community Summit 2023)
Cathrine Wilhelmsen
 
PDF
Visually Transform Data in Azure Data Factory or Azure Synapse Analytics (PAS...
Cathrine Wilhelmsen
 
PDF
Building an End-to-End Solution in Microsoft Fabric: From Dataverse to Power ...
Cathrine Wilhelmsen
 
PDF
Website Analytics in my Pocket using Microsoft Fabric (AdaCon 2023)
Cathrine Wilhelmsen
 
PDF
Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...
Cathrine Wilhelmsen
 
PDF
Stressed, Depressed, or Burned Out? The Warning Signs You Shouldn't Ignore (D...
Cathrine Wilhelmsen
 
PDF
Stressed, Depressed, or Burned Out? The Warning Signs You Shouldn't Ignore (S...
Cathrine Wilhelmsen
 
PDF
"I can't keep up!" - Turning Discomfort into Personal Growth in a Fast-Paced ...
Cathrine Wilhelmsen
 
PDF
Lessons Learned: Implementing Azure Synapse Analytics in a Rapidly-Changing S...
Cathrine Wilhelmsen
 
PDF
6 Tips for Building Confidence as a Public Speaker (SQLBits 2022)
Cathrine Wilhelmsen
 
PDF
Lessons Learned: Understanding Pipeline Pricing in Azure Data Factory and Azu...
Cathrine Wilhelmsen
 
Fra utvikler til arkitekt: Skap din egen karrierevei ved å utvikle din person...
Cathrine Wilhelmsen
 
One Year in Fabric: Lessons Learned from Implementing Real-World Projects (PA...
Cathrine Wilhelmsen
 
Data Factory in Microsoft Fabric (MsBIP #82)
Cathrine Wilhelmsen
 
Getting Started: Data Factory in Microsoft Fabric (Microsoft Fabric Community...
Cathrine Wilhelmsen
 
Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...
Cathrine Wilhelmsen
 
Website Analytics in My Pocket using Microsoft Fabric (SQLBits 2024)
Cathrine Wilhelmsen
 
Data Integration using Data Factory in Microsoft Fabric (ESPC Microsoft Fabri...
Cathrine Wilhelmsen
 
Choosing between Fabric, Synapse and Databricks (Data Left Unattended 2023)
Cathrine Wilhelmsen
 
Data Integration with Data Factory (Microsoft Fabric Day Oslo 2023)
Cathrine Wilhelmsen
 
The Battle of the Data Transformation Tools (PASS Data Community Summit 2023)
Cathrine Wilhelmsen
 
Visually Transform Data in Azure Data Factory or Azure Synapse Analytics (PAS...
Cathrine Wilhelmsen
 
Building an End-to-End Solution in Microsoft Fabric: From Dataverse to Power ...
Cathrine Wilhelmsen
 
Website Analytics in my Pocket using Microsoft Fabric (AdaCon 2023)
Cathrine Wilhelmsen
 
Choosing Between Microsoft Fabric, Azure Synapse Analytics and Azure Data Fac...
Cathrine Wilhelmsen
 
Stressed, Depressed, or Burned Out? The Warning Signs You Shouldn't Ignore (D...
Cathrine Wilhelmsen
 
Stressed, Depressed, or Burned Out? The Warning Signs You Shouldn't Ignore (S...
Cathrine Wilhelmsen
 
"I can't keep up!" - Turning Discomfort into Personal Growth in a Fast-Paced ...
Cathrine Wilhelmsen
 
Lessons Learned: Implementing Azure Synapse Analytics in a Rapidly-Changing S...
Cathrine Wilhelmsen
 
6 Tips for Building Confidence as a Public Speaker (SQLBits 2022)
Cathrine Wilhelmsen
 
Lessons Learned: Understanding Pipeline Pricing in Azure Data Factory and Azu...
Cathrine Wilhelmsen
 
Ad

Recently uploaded (20)

PPTX
05_Jelle Baats_Tekst.pptx_AI_Barometer_Release_Event
FinTech Belgium
 
PDF
Technical-Report-GPS_GIS_RS-for-MSF-finalv2.pdf
KPycho
 
PDF
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
PDF
apidays Singapore 2025 - Building a Federated Future, Alex Szomora (GSMA)
apidays
 
PPTX
How to Add Columns and Rows in an R Data Frame
subhashenia
 
PDF
1750162332_Snapshot-of-Indias-oil-Gas-data-May-2025.pdf
sandeep718278
 
PPTX
apidays Singapore 2025 - Generative AI Landscape Building a Modern Data Strat...
apidays
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PDF
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PPTX
Powerful Uses of Data Analytics You Should Know
subhashenia
 
PDF
apidays Singapore 2025 - Surviving an interconnected world with API governanc...
apidays
 
PDF
Data Science Course Certificate by Sigma Software University
Stepan Kalika
 
PPTX
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
PPTX
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
PPTX
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
PDF
Research Methodology Overview Introduction
ayeshagul29594
 
PDF
Driving Employee Engagement in a Hybrid World.pdf
Mia scott
 
PDF
InformaticsPractices-MS - Google Docs.pdf
seshuashwin0829
 
PPTX
BinarySearchTree in datastructures in detail
kichokuttu
 
05_Jelle Baats_Tekst.pptx_AI_Barometer_Release_Event
FinTech Belgium
 
Technical-Report-GPS_GIS_RS-for-MSF-finalv2.pdf
KPycho
 
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
apidays Singapore 2025 - Building a Federated Future, Alex Szomora (GSMA)
apidays
 
How to Add Columns and Rows in an R Data Frame
subhashenia
 
1750162332_Snapshot-of-Indias-oil-Gas-data-May-2025.pdf
sandeep718278
 
apidays Singapore 2025 - Generative AI Landscape Building a Modern Data Strat...
apidays
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
Powerful Uses of Data Analytics You Should Know
subhashenia
 
apidays Singapore 2025 - Surviving an interconnected world with API governanc...
apidays
 
Data Science Course Certificate by Sigma Software University
Stepan Kalika
 
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
Research Methodology Overview Introduction
ayeshagul29594
 
Driving Employee Engagement in a Hybrid World.pdf
Mia scott
 
InformaticsPractices-MS - Google Docs.pdf
seshuashwin0829
 
BinarySearchTree in datastructures in detail
kichokuttu
 

Data Integration through Data Virtualization (SQL Server Konferenz 2019)