SlideShare a Scribd company logo
1
1
Chapter 3: Data Preprocessing
 Data Preprocessing: An Overview
 Data Quality
 Major Tasks in Data Preprocessing
 Data Cleaning
 Data Integration
 Data Reduction
 Data Transformation and Data Discretization
 Summary
2
Data Quality: Why Preprocess the Data?
 Measures for data quality: A multidimensional view
 Accuracy: correct or wrong, accurate or not
 Completeness: not recorded, unavailable, …
 Consistency: some modified but some not, dangling, …
 Timeliness: timely update?

Believability: how trustable the data are correct?
 Interpretability: how easily the data can be
understood?
3
Major Tasks in Data Preprocessing
 Data cleaning

Fill in missing values, smooth noisy data, identify or remove
outliers, and resolve inconsistencies
 Data integration
 Integration of multiple databases, data cubes, or files
 Data reduction

Dimensionality reduction
 Numerosity reduction
 Data compression
 Data transformation and data discretization

Normalization

Concept hierarchy generation
4
4
Chapter 3: Data Preprocessing
 Data Preprocessing: An Overview
 Data Quality
 Major Tasks in Data Preprocessing
 Data Cleaning
 Data Integration
 Data Reduction
 Data Transformation and Data Discretization
 Summary
5
Data Cleaning
 Data in the Real World Is Dirty: Lots of potentially incorrect data,
e.g., instrument faulty, human or computer error, transmission error
 incomplete: lacking attribute values, lacking certain attributes of
interest, or containing only aggregate data

e.g., Occupation=“ ” (missing data)

noisy: containing noise, errors, or outliers

e.g., Salary=“−10” (an error)
 inconsistent: containing discrepancies in codes or names, e.g.,

Age=“42”, Birthday=“03/07/2010”

Was rating “1, 2, 3”, now rating “A, B, C”

discrepancy between duplicate records

Intentional (e.g., disguised missing data)

Jan. 1 as everyone’s birthday?
6
Incomplete (Missing) Data
 Data is not always available

E.g., many tuples have no recorded value for several
attributes, such as customer income in sales data
 Missing data may be due to
 equipment malfunction

inconsistent with other recorded data and thus deleted
 data not entered due to misunderstanding
 certain data may not be considered important at the
time of entry

not register history or changes of the data
 Missing data may need to be inferred
7
How to Handle Missing Data?
 Ignore the tuple: usually done when class label is missing
(when doing classification)—not effective when the % of
missing values per attribute varies considerably
 Fill in the missing value manually: tedious + infeasible?
 Fill in it automatically with

a global constant : e.g., “unknown”, a new class?!

the attribute mean

the attribute mean for all samples belonging to the
same class: smarter

the most probable value: inference-based such as
Bayesian formula or decision tree
8
Noisy Data
 Noise: random error or variance in a measured variable
 Incorrect attribute values may be due to

faulty data collection instruments
 data entry problems
 data transmission problems
 technology limitation
 inconsistency in naming convention
 Other data problems which require data cleaning

duplicate records
 incomplete data

inconsistent data
9
How to Handle Noisy Data?
 Binning

first sort data and partition into (equal-frequency)
bins

then one can smooth by bin means, smooth by bin
median, smooth by bin boundaries, etc.
 Regression

smooth by fitting the data into regression functions
 Clustering

detect and remove outliers
 Combined computer and human inspection

detect suspicious values and check by human (e.g.,
deal with possible outliers)
10
Data Cleaning as a Process
 Data discrepancy detection
 Use metadata (e.g., domain, range, dependency, distribution)
 Check field overloading
 Check uniqueness rule, consecutive rule and null rule
 Use commercial tools

Data scrubbing: use simple domain knowledge (e.g., postal
code, spell-check) to detect errors and make corrections

Data auditing: by analyzing data to discover rules and
relationship to detect violators (e.g., correlation and
clustering to find outliers)
 Data migration and integration
 Data migration tools: allow transformations to be specified
 ETL (Extraction/Transformation/Loading) tools: allow users to
specify transformations through a graphical user interface
 Integration of the two processes
 Iterative and interactive (e.g., Potter’s Wheels)
11
11
Chapter 3: Data Preprocessing
 Data Preprocessing: An Overview
 Data Quality
 Major Tasks in Data Preprocessing
 Data Cleaning
 Data Integration
 Data Reduction
 Data Transformation and Data Discretization
 Summary
12
12
Data Integration
 Data integration:

Combines data from multiple sources into a coherent store
 Schema integration: e.g., A.cust-id  B.cust-#

Integrate metadata from different sources
 Entity identification problem:

Identify real world entities from multiple data sources, e.g., Bill
Clinton = William Clinton
 Detecting and resolving data value conflicts

For the same real world entity, attribute values from different
sources are different

Possible reasons: different representations, different scales, e.g.,
metric vs. British units
13
13
Handling Redundancy in Data Integration
 Redundant data occur often when integration of
multiple databases
 Object identification: The same attribute or object
may have different names in different databases
 Derivable data: One attribute may be a “derived”
attribute in another table, e.g., annual revenue
 Redundant attributes may be able to be detected by
correlation analysis and covariance analysis
 Careful integration of the data from multiple sources
may help reduce/avoid redundancies and
inconsistencies and improve mining speed and quality
14
Correlation Analysis (Numeric Data)
 Correlation coefficient (also called Pearson’s product
moment coefficient)
where n is the number of tuples, and are the respective
means of A and B, σA and σB are the respective standard deviation
of A and B, and Σ(aibi) is the sum of the AB cross-product.
 If rA,B > 0, A and B are positively correlated (A’s values
increase as B’s).
 rA,B = 0: independent; rAB < 0: negatively correlated
B
A
n
i i
i
B
A
n
i i
i
B
A
n
B
A
n
b
a
n
B
b
A
a
r



 )
1
(
)
(
)
1
(
)
)(
( 1
1
,








 

A B
04/01/25 Data Mining: Concepts and Techniques 15
16
Visually Evaluating Correlation
Scatter plots
showing the
similarity from
–1 to 1.
17
Correlation (viewed as linear relationship)
 Correlation measures the linear relationship
between objects
 To compute correlation, we standardize data
objects, A and B, and then take their dot
product
)
(
/
))
(
(
' A
std
A
mean
a
a k
k 

)
(
/
))
(
(
' B
std
B
mean
b
b k
k 

'
'
)
,
( B
A
B
A
n
correlatio 

18
Covariance (Numeric Data)
 Covariance is similar to correlation
where n is the number of tuples, and are the respective mean or
expected values of A and B, σA and σB are the respective standard
deviation of A and B.
 Positive covariance: If CovA,B > 0, then A and B both tend to be larger than
their expected values.
 Negative covariance: If CovA,B < 0 then if A is larger than its expected value,
B is likely to be smaller than its expected value.

Independence: CovA,B = 0 but the converse is not true:

Some pairs of random variables may have a covariance of 0 but are not
independent. Only under some additional assumptions (e.g., the data follow
multivariate normal distributions) does a covariance of 0 imply independence
A B
Correlation coefficient:
Co-Variance: An Example
 It can be simplified in computation as
 Suppose two stocks A and B have the following values in one week:
(2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
 Question: If the stocks are affected by the same industry trends,
will their prices rise or fall together?
 E(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4
 E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6
 Cov(A,B) = (2×5+3×8+5×10+4×11+6×14)/5 4 × 9.6 = 4
−
 Thus, A and B rise together since Cov(A, B) > 0.
20
20
Chapter 3: Data Preprocessing
 Data Preprocessing: An Overview
 Data Quality
 Major Tasks in Data Preprocessing
 Data Cleaning
 Data Integration
 Data Reduction
 Data Transformation and Data Discretization
 Summary
21
Data Reduction Strategies
 Data reduction: Obtain a reduced representation of the data set
that is much smaller in volume but yet produces the same (or
almost the same) analytical results
 Why data reduction? — A database/data warehouse may store
terabytes of data. Complex data analysis may take a very long time
to run on the complete data set.
 Data reduction strategies
 Dimensionality reduction, e.g., remove unimportant attributes

Principal Components Analysis (PCA)

Feature subset selection, feature creation
 Numerosity reduction (some simply call it: Data Reduction)

Regression and Log-Linear Models

Histograms, clustering, sampling

Data cube aggregation
 Data compression
22
Data Reduction 1: Dimensionality Reduction
 Curse of dimensionality
 When dimensionality increases, data becomes increasingly sparse
 Density and distance between points, which is critical to clustering,
outlier analysis, becomes less meaningful
 The possible combinations of subspaces will grow exponentially
 Dimensionality reduction
 Avoid the curse of dimensionality
 Help eliminate irrelevant features and reduce noise
 Reduce time and space required in data mining
 Allow easier visualization
 Dimensionality reduction techniques
 Principal Component Analysis (Feature extraction)
 Supervised and nonlinear techniques (e.g., feature selection)
23
x2
x1
e
Principal Component Analysis (PCA)
 Find a projection that captures the largest amount of variation in data
 The original data are projected onto a much smaller space, resulting in
dimensionality reduction. We find the eigenvectors of the covariance
matrix, and these eigenvectors define the new space
Benefits:
1.Faster execution of Algo
2.Easier visualization
24
 Given N data vectors from n-dimensions, find k ≤ n orthogonal
vectors (principal components) that can be best used to represent data

Normalize input data: Each attribute falls within the same range

Compute k orthonormal (unit) vectors, i.e., principal components

Each input data (vector) is a linear combination of the k principal
component vectors
 The principal components are sorted in order of decreasing
“significance” or strength

Since the components are sorted, the size of the data can be
reduced by eliminating the weak components, i.e., those with low
variance (i.e., using the strongest principal components, it is
possible to reconstruct a good approximation of the original data)
 Works for numeric data only
Principal Component Analysis (Steps)
25
Attribute Subset Selection
 Another way to reduce dimensionality of data
 Redundant attributes
 Duplicate much or all of the information contained
in one or more other attributes
 E.g., purchase price of a product and the amount of
sales tax paid
 Irrelevant attributes
 Contain no information that is useful for the data
mining task at hand
 E.g., students' ID is often irrelevant to the task of
predicting students' GPA
26
Heuristic Search in Attribute Selection
 There are 2d
possible attribute combinations of d attributes
 Typical heuristic attribute selection methods:
 Best single attribute under the attribute independence
assumption: choose by significance tests
 Best step-wise feature selection:

The best single-attribute is picked first

Then next best attribute condition to the first, ...
 Step-wise attribute elimination:

Repeatedly eliminate the worst attribute
 Best combined attribute selection and elimination
 Optimal branch and bound:

Use attribute elimination and backtracking
27
Attribute Creation (Feature Generation)
 Create new attributes (features) that can capture the
important information in a data set more effectively than
the original ones
 Three general methodologies
 Attribute extraction

Domain-specific

Mapping data to new space (see: data reduction)

E.g., Fourier transformation, wavelet transformation,
manifold approaches (not covered)

Attribute construction

Combining features (see: discriminative frequent
patterns in Chapter 7)

Data discretization
28
Data Reduction 2: Numerosity Reduction
 Reduce data volume by choosing alternative, smaller
forms of data representation
 Parametric methods (e.g., regression)
 Assume the data fits some model, estimate model
parameters, store only the parameters, and
discard the data (except possible outliers)
 Ex.: Log-linear models—obtain value at a point in
m-D space as the product on appropriate marginal
subspaces
 Non-parametric methods
 Do not assume models
 Major families: histograms, clustering, sampling, …
29
Parametric Data Reduction: Regression
and Log-Linear Models
 Linear regression
 Data modeled to fit a straight line
 Often uses the least-square method to fit the line
 Multiple regression
 Allows a response variable Y to be modeled as a
linear function of multidimensional feature vector
 Log-linear model
 Approximates discrete multidimensional
probability distributions
30
Regression Analysis
 Regression analysis: A collective name for
techniques for the modeling and analysis
of numerical data consisting of values of
a dependent variable (also called
response variable or measurement) and of
one or more independent variables (aka.
explanatory variables or predictors)
 The parameters are estimated so as to
give a "best fit" of the data
 Most commonly the best fit is evaluated
by using the least squares method, but
other criteria have also been used
 Used for prediction
(including forecasting of
time-series data),
inference, hypothesis
testing, and modeling of
causal relationships
y
x
y = x + 1
X1
Y1
Y1’
31
 Linear regression: Y = w X + b

Two regression coefficients, w and b, specify the line and are to be
estimated by using the data at hand
 Using the least squares criterion to the known values of Y1, Y2, …, X1,
X2, ….
 Multiple regression: Y = b0 + b1 X1 + b2 X2

Many nonlinear functions can be transformed into the above
 Log-linear models:

Approximate discrete multidimensional probability distributions
 Estimate the probability of each point (tuple) in a multi-dimensional
space for a set of discretized attributes, based on a smaller subset
of dimensional combinations

Useful for dimensionality reduction and data smoothing
Regress Analysis and Log-Linear Models
32
Histogram Analysis
 Divide data into buckets and
store average (sum) for each
bucket
 Partitioning rules:
 Equal-width: equal bucket
range
 Equal-frequency (or
equal-depth)
0
5
10
15
20
25
30
35
40
1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
0
0
0
0
5
0
0
0
0
6
0
0
0
0
7
0
0
0
0
8
0
0
0
0
9
0
0
0
0
1
0
0
0
0
0
33
Clustering
 Partition data set into clusters based on similarity,
and store cluster representation (e.g., centroid and
diameter) only
 Can be very effective if data is clustered but not if
data is “smeared”
 Can have hierarchical clustering and be stored in
multi-dimensional index tree structures
 There are many choices of clustering definitions and
clustering algorithms
 Cluster analysis will be studied in depth in Chapter 10
34
Sampling
 Sampling: obtaining a small sample s to represent the
whole data set N
 Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data
 Key principle: Choose a representative subset of the data

Simple random sampling may have very poor
performance in the presence of skew

Develop adaptive sampling methods, e.g., stratified
sampling:
 Note: Sampling may not reduce database I/Os (page at a
time)
35
Types of Sampling
 Simple random sampling
 There is an equal probability of selecting any
particular item
 Sampling without replacement
 Once an object is selected, it is removed from the
population
 Sampling with replacement
 A selected object is not removed from the population
 Stratified sampling:
 Partition the data set, and draw samples from each
partition (proportionally, i.e., approximately the
same percentage of the data)
 Used in conjunction with skewed data
36
Sampling: With or without Replacement
SRSWOR
(simple random
sample without
replacement)
SRSWR
Raw Data
37
Sampling: Cluster or Stratified Sampling
Raw Data Cluster/Stratified Sample
38
Data Cube Aggregation
 The lowest level of a data cube (base cuboid)

The aggregated data for an individual entity of interest

E.g., a customer in a phone calling data warehouse
 Multiple levels of aggregation in data cubes

Further reduce the size of data to deal with
 Reference appropriate levels

Use the smallest representation which is enough to
solve the task
 Queries regarding aggregated information should be
answered using data cube, when possible
39
Data Reduction 3: Data Compression
 String compression
 There are extensive theories and well-tuned algorithms
 Typically lossless, but only limited manipulation is
possible without expansion
 Audio/video compression
 Typically lossy compression, with progressive refinement
 Sometimes small fragments of signal can be
reconstructed without reconstructing the whole
 Time sequence is not audio
 Typically short and vary slowly with time
 Dimensionality and numerosity reduction may also be
considered as forms of data compression
40
Data Compression
Original Data Compressed
Data
lossless
Original Data
Approximated
lossy
41
Chapter 3: Data Preprocessing
 Data Preprocessing: An Overview
 Data Quality
 Major Tasks in Data Preprocessing
 Data Cleaning
 Data Integration
 Data Reduction
 Data Transformation and Data Discretization
 Summary
42
Data Transformation
 A function that maps the entire set of values of a given attribute to a
new set of replacement values s.t. each old value can be identified
with one of the new values
 Methods
 Smoothing: Remove noise from data
 Attribute/feature construction

New attributes constructed from the given ones
 Aggregation: Summarization, data cube construction

Normalization: Scaled to fall within a smaller, specified range

min-max normalization

z-score normalization

normalization by decimal scaling
 Discretization: Concept hierarchy climbing
43
Normalization
 Min-max normalization: to [new_minA, new_maxA]
 Ex. Let income range $12,000 to $98,000 normalized to [0.0,
1.0]. Then $73,000 is mapped to
 Z-score normalization (μ: mean, σ: standard deviation):
 Ex. Let μ = 54,000, σ = 16,000. Then
 Normalization by decimal scaling
716
.
0
0
)
0
0
.
1
(
000
,
12
000
,
98
000
,
12
600
,
73





A
A
A
A
A
A
min
new
min
new
max
new
min
max
min
v
v _
)
_
_
(
' 




A
A
v
v




'
j
v
v
10
' Where j is the smallest integer such that Max(|ν’|) < 1
225
.
1
000
,
16
000
,
54
600
,
73


44
Discretization
 Three types of attributes
 Nominal—values from an unordered set, e.g., color, profession
 Ordinal—values from an ordered set, e.g., military or academic
rank
 Numeric—real numbers, e.g., integer or real numbers
 Discretization: Divide the range of a continuous attribute into
intervals

Interval labels can then be used to replace actual data values
 Reduce data size by discretization
 Supervised vs. unsupervised
 Split (top-down) vs. merge (bottom-up)
 Discretization can be performed recursively on an attribute
 Prepare for further analysis, e.g., classification
45
Data Discretization Methods
 Typical methods: All the methods can be applied recursively
 Binning

Top-down split, unsupervised
 Histogram analysis

Top-down split, unsupervised

Clustering analysis (unsupervised, top-down split or
bottom-up merge)
 Decision-tree analysis (supervised, top-down split)

Correlation (e.g., 2
) analysis (unsupervised, bottom-up
merge)
46
Simple Discretization: Binning
 Equal-width (distance) partitioning
 Divides the range into N intervals of equal size: uniform grid
 if A and B are the lowest and highest values of the attribute, the
width of intervals will be: W = (B –A)/N.
 The most straightforward, but outliers may dominate presentation

Skewed data is not handled well
 Equal-depth (frequency) partitioning
 Divides the range into N intervals, each containing approximately
same number of samples
 Good data scaling

Managing categorical attributes can be tricky
47
Binning Methods for Data Smoothing
 Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28,
29, 34
* Partition into equal-frequency (equi-depth) bins:
- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34
* Smoothing by bin means:
- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29
* Smoothing by bin boundaries:
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34
48
Discretization Without Using Class Labels
(Binning vs. Clustering)
Data Equal interval width
(binning)
Equal frequency (binning) K-means clustering leads to better
results
49
Discretization by Classification &
Correlation Analysis
 Classification (e.g., decision tree analysis)
 Supervised: Given class labels, e.g., cancerous vs. benign
 Using entropy to determine split point (discretization point)

Top-down, recursive split
 Details to be covered in Chapter 7
 Correlation analysis (e.g., Chi-merge: χ2
-based discretization)
 Supervised: use class information

Bottom-up merge: find the best neighboring intervals (those having
similar distributions of classes, i.e., low χ2
values) to merge
 Merge performed recursively, until a predefined stopping condition
50
Concept Hierarchy Generation
 Concept hierarchy organizes concepts (i.e., attribute values)
hierarchically and is usually associated with each dimension in a
data warehouse
 Concept hierarchies facilitate drilling and rolling in data
warehouses to view data in multiple granularity
 Concept hierarchy formation: Recursively reduce the data by
collecting and replacing low level concepts (such as numeric values
for age) by higher level concepts (such as youth, adult, or senior)
 Concept hierarchies can be explicitly specified by domain experts
and/or data warehouse designers
 Concept hierarchy can be automatically formed for both numeric
and nominal data. For numeric data, use discretization methods
shown.
51
Concept Hierarchy Generation
for Nominal Data
 Specification of a partial/total ordering of attributes
explicitly at the schema level by users or experts
 street < city < state < country
 Specification of a hierarchy for a set of values by
explicit data grouping
 {Urbana, Champaign, Chicago} < Illinois
 Specification of only a partial set of attributes
 E.g., only street < city, not others
 Automatic generation of hierarchies (or attribute
levels) by the analysis of the number of distinct values
 E.g., for a set of attributes: {street, city, state, country}
52
Automatic Concept Hierarchy Generation
 Some hierarchies can be automatically generated based on
the analysis of the number of distinct values per attribute in
the data set
 The attribute with the most distinct values is placed at
the lowest level of the hierarchy
 Exceptions, e.g., weekday, month, quarter, year
country
province_or_ state
city
street
15 distinct values
365 distinct values
3567 distinct values
674,339 distinct values
53
Chapter 3: Data Preprocessing
 Data Preprocessing: An Overview
 Data Quality
 Major Tasks in Data Preprocessing
 Data Cleaning
 Data Integration
 Data Reduction
 Data Transformation and Data Discretization
 Summary
54
Summary
 Data quality: accuracy, completeness, consistency, timeliness,
believability, interpretability
 Data cleaning: e.g. missing/noisy values, outliers
 Data integration from multiple sources:
 Entity identification problem

Remove redundancies
 Detect inconsistencies
 Data reduction
 Dimensionality reduction

Numerosity reduction

Data compression
 Data transformation and data discretization

Normalization
 Concept hierarchy generation
55
References
 D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of
ACM, 42:73-78, 1999
 A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. IEEE Spectrum, Oct 1996
 T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
 J. Devore and R. Peck. Statistics: The Exploration and Analysis of Data. Duxbury Press, 1997.
 H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning:
Language, model, and algorithms. VLDB'01
 M. Hua and J. Pei. Cleaning disguised missing data: A heuristic approach. KDD'07
 H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical
Committee on Data Engineering, 20(4), Dec. 1997
 H. Liu and H. Motoda (eds.). Feature Extraction, Construction, and Selection: A Data Mining
Perspective. Kluwer Academic, 1998
 J. E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann, 2003
 D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
 V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and
Transformation, VLDB’2001
 T. Redman. Data Quality: The Field Guide. Digital Press (Elsevier), 2001
 R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.
Knowledge and Data Engineering, 7:623-640, 1995
56
Correlation Analysis (Nominal Data)
 Χ2
(chi-square) test
 The larger the Χ2
value, the more likely the variables
are related
 The cells that contribute the most to the Χ2
value are
those whose actual count is very different from the
expected count
 Correlation does not imply causality
 # of hospitals and # of car-theft in a city are correlated
 Both are causally linked to the third variable: population



Expected
Expected
Observed 2
2 )
(

57
Chi-Square Calculation: An Example
 Χ2
(chi-square) calculation (numbers in parenthesis are
expected counts calculated based on the data
distribution in the two categories)
 It shows that like_science_fiction and play_chess are
correlated in the group
93
.
507
840
)
840
1000
(
360
)
360
200
(
210
)
210
50
(
90
)
90
250
( 2
2
2
2
2










Play
chess
Not play chess Sum (row)
Like science fiction 250(90) 200(360) 450
Not like science
fiction
50(210) 1000(840) 1050
Sum(col.) 300 1200 1500
58
Mapping Data to a New Space
Two Sine Waves Two Sine Waves + Noise Frequency
 Fourier transform
 Wavelet transform
59
What Is Wavelet Transform?
 Decomposes a signal into
different frequency subbands
 Applicable to n-dimensional
signals
 Data are transformed to
preserve relative distance
between objects at different
levels of resolution
 Allow natural clusters to
become more distinguishable
 Used for image compression
60
Wavelet Transformation
 Discrete wavelet transform (DWT) for linear signal
processing, multi-resolution analysis
 Compressed approximation: store only a small fraction of
the strongest of the wavelet coefficients
 Similar to discrete Fourier transform (DFT), but better
lossy compression, localized in space
 Method:

Length, L, must be an integer power of 2 (padding with 0’s, when
necessary)

Each transform has 2 functions: smoothing, difference

Applies to pairs of data, resulting in two set of data of length L/2

Applies two functions recursively, until reaches the desired length
Haar2 Daubechie4
61
Wavelet Decomposition
 Wavelets: A math tool for space-efficient hierarchical
decomposition of functions
 S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S^ = [23
/4,
-11
/4, 1
/2, 0, 0, -1, -1, 0]
 Compression: many small detail coefficients can be
replaced by 0’s, and only the significant coefficients
are retained
62
Haar Wavelet Coefficients
Coefficient
“Supports”
2 2 0 2 3 5 4 4
-1.25
2.75
0.5 0
0 -1 0
-1
+
-
+
+
+ + +
+
+
- -
- - - -
+
-
+
+
-
+
-
+
-+
-
-
+
+
-
-1
-1
0.5
0
2.75
-1.25
0
0
Original frequency distribution
Hierarchical
decomposition
structure (a.k.a.
“error tree”)
63
Why Wavelet Transform?
 Use hat-shape filters
 Emphasize region where points cluster
 Suppress weaker information in their boundaries
 Effective removal of outliers
 Insensitive to noise, insensitive to input order
 Multi-resolution
 Detect arbitrary shaped clusters at different scales
 Efficient
 Complexity O(N)
 Only applicable to low dimensional data

More Related Content

Similar to data Preprocessing different techniques summarized (20)

PPTX
03Preprocessing_plp.pptx
ProfPPavanKumar
 
PPT
Preprocessing concepts and techniques.ppt
Lucy Kiruri
 
PPT
Data Preprocessing and Visualizsdjvnovrnververdfvdfation
wokati2689
 
PPT
03Predddddddddddddddddddddddprocessling.ppt
a99150433
 
PPT
data mining preprocessing notes and pptt
SanaMateen7
 
PPT
Preprocessing.ppt
NBACriteria2SICET
 
PPT
03Preprocessing.ppt
AnkitaAnki16
 
PPT
03Preprocessing for student computer sciecne.ppt
MuhammadHanifSyabani
 
PPT
03Preprocesmlmlmljhjninibvbnjhyuftrdtyfyujsing.ppt
JITENDER773791
 
PPT
Data Preprocessing
VijayasankariS
 
PPT
Unit 3-2.ppt
Ankit506645
 
PDF
03Preprocessing01.pdf
Alireza418370
 
PPT
preproccessing level 3 for students.ppt
AhmedAlrashdy
 
PPT
Preprocess
sharmilajohn
 
PPT
Datapreprocess
sharmila parveen
 
PPT
Data Mining: Concepts and Techniques (3rd ed.) - Chapter 3 preprocessing
Salah Amean
 
PPT
Data preprocessing in precision agriculture
mogana98
 
PPT
Data preprocessing
kayathri02
 
PPT
Data Preprocessing in research methodology
ssuserd329601
 
PPT
Preprocessing steps in Data mining steps
RupaRaj6
 
03Preprocessing_plp.pptx
ProfPPavanKumar
 
Preprocessing concepts and techniques.ppt
Lucy Kiruri
 
Data Preprocessing and Visualizsdjvnovrnververdfvdfation
wokati2689
 
03Predddddddddddddddddddddddprocessling.ppt
a99150433
 
data mining preprocessing notes and pptt
SanaMateen7
 
Preprocessing.ppt
NBACriteria2SICET
 
03Preprocessing.ppt
AnkitaAnki16
 
03Preprocessing for student computer sciecne.ppt
MuhammadHanifSyabani
 
03Preprocesmlmlmljhjninibvbnjhyuftrdtyfyujsing.ppt
JITENDER773791
 
Data Preprocessing
VijayasankariS
 
Unit 3-2.ppt
Ankit506645
 
03Preprocessing01.pdf
Alireza418370
 
preproccessing level 3 for students.ppt
AhmedAlrashdy
 
Preprocess
sharmilajohn
 
Datapreprocess
sharmila parveen
 
Data Mining: Concepts and Techniques (3rd ed.) - Chapter 3 preprocessing
Salah Amean
 
Data preprocessing in precision agriculture
mogana98
 
Data preprocessing
kayathri02
 
Data Preprocessing in research methodology
ssuserd329601
 
Preprocessing steps in Data mining steps
RupaRaj6
 

More from shalinipriya1692 (10)

PPT
Wk11-linkedlist.ppt linked list complete iit
shalinipriya1692
 
PPTX
lecture-12evaluationmeasures-ml-221219130248-3522ee79.pptx eval
shalinipriya1692
 
PPT
ML-NaiveBayes-NeuralNets-Clustering.ppt-
shalinipriya1692
 
PPT
dbms-data prep-data science.ppt dbms--11.pptx database management systems
shalinipriya1692
 
PDF
Decision-Tree-.pdf techniques and many more
shalinipriya1692
 
PPT
Cluster validity 1.ppt on cluster validity
shalinipriya1692
 
PDF
evaluationmeasures-ml.pdf evaluation measures
shalinipriya1692
 
PPT
summarized best pre-processing techniques
shalinipriya1692
 
PPTX
ppt on disaster management and decision tree
shalinipriya1692
 
PPTX
ppt on natural disasters and random forest
shalinipriya1692
 
Wk11-linkedlist.ppt linked list complete iit
shalinipriya1692
 
lecture-12evaluationmeasures-ml-221219130248-3522ee79.pptx eval
shalinipriya1692
 
ML-NaiveBayes-NeuralNets-Clustering.ppt-
shalinipriya1692
 
dbms-data prep-data science.ppt dbms--11.pptx database management systems
shalinipriya1692
 
Decision-Tree-.pdf techniques and many more
shalinipriya1692
 
Cluster validity 1.ppt on cluster validity
shalinipriya1692
 
evaluationmeasures-ml.pdf evaluation measures
shalinipriya1692
 
summarized best pre-processing techniques
shalinipriya1692
 
ppt on disaster management and decision tree
shalinipriya1692
 
ppt on natural disasters and random forest
shalinipriya1692
 
Ad

Recently uploaded (20)

PPTX
GenAI-Introduction-to-Copilot-for-Bing-March-2025-FOR-HUB.pptx
cleydsonborges1
 
PPTX
AI Project Cycle and Ethical Frameworks.pptx
RiddhimaVarshney1
 
PDF
MusicVideoProjectRubric Animation production music video.pdf
ALBERTIANCASUGA
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PPT
Lecture 2-1.ppt at a higher learning institution such as the university of Za...
rachealhantukumane52
 
PPTX
apidays Munich 2025 - Building Telco-Aware Apps with Open Gateway APIs, Subhr...
apidays
 
PPTX
Climate Action.pptx action plan for climate
justfortalabat
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PPTX
Human-Action-Recognition-Understanding-Behavior.pptx
nreddyjanga
 
PPTX
Resmed Rady Landis May 4th - analytics.pptx
Adrian Limanto
 
PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PPTX
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
PDF
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
PPTX
Usage of Power BI for Pharmaceutical Data analysis.pptx
Anisha Herala
 
PDF
WEF_Future_of_Global_Fintech_Second_Edition_2025.pdf
AproximacionAlFuturo
 
DOCX
AI/ML Applications in Financial domain projects
Rituparna De
 
PDF
How to Avoid 7 Costly Mainframe Migration Mistakes
JP Infra Pvt Ltd
 
PPT
01 presentation finyyyal معهد معايره.ppt
eltohamym057
 
PPTX
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
GenAI-Introduction-to-Copilot-for-Bing-March-2025-FOR-HUB.pptx
cleydsonborges1
 
AI Project Cycle and Ethical Frameworks.pptx
RiddhimaVarshney1
 
MusicVideoProjectRubric Animation production music video.pdf
ALBERTIANCASUGA
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
Lecture 2-1.ppt at a higher learning institution such as the university of Za...
rachealhantukumane52
 
apidays Munich 2025 - Building Telco-Aware Apps with Open Gateway APIs, Subhr...
apidays
 
Climate Action.pptx action plan for climate
justfortalabat
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
Human-Action-Recognition-Understanding-Behavior.pptx
nreddyjanga
 
Resmed Rady Landis May 4th - analytics.pptx
Adrian Limanto
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
Building Production-Ready AI Agents with LangGraph.pdf
Tamanna
 
Usage of Power BI for Pharmaceutical Data analysis.pptx
Anisha Herala
 
WEF_Future_of_Global_Fintech_Second_Edition_2025.pdf
AproximacionAlFuturo
 
AI/ML Applications in Financial domain projects
Rituparna De
 
How to Avoid 7 Costly Mainframe Migration Mistakes
JP Infra Pvt Ltd
 
01 presentation finyyyal معهد معايره.ppt
eltohamym057
 
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
Ad

data Preprocessing different techniques summarized

  • 1. 1 1 Chapter 3: Data Preprocessing  Data Preprocessing: An Overview  Data Quality  Major Tasks in Data Preprocessing  Data Cleaning  Data Integration  Data Reduction  Data Transformation and Data Discretization  Summary
  • 2. 2 Data Quality: Why Preprocess the Data?  Measures for data quality: A multidimensional view  Accuracy: correct or wrong, accurate or not  Completeness: not recorded, unavailable, …  Consistency: some modified but some not, dangling, …  Timeliness: timely update?  Believability: how trustable the data are correct?  Interpretability: how easily the data can be understood?
  • 3. 3 Major Tasks in Data Preprocessing  Data cleaning  Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies  Data integration  Integration of multiple databases, data cubes, or files  Data reduction  Dimensionality reduction  Numerosity reduction  Data compression  Data transformation and data discretization  Normalization  Concept hierarchy generation
  • 4. 4 4 Chapter 3: Data Preprocessing  Data Preprocessing: An Overview  Data Quality  Major Tasks in Data Preprocessing  Data Cleaning  Data Integration  Data Reduction  Data Transformation and Data Discretization  Summary
  • 5. 5 Data Cleaning  Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error  incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data  e.g., Occupation=“ ” (missing data)  noisy: containing noise, errors, or outliers  e.g., Salary=“−10” (an error)  inconsistent: containing discrepancies in codes or names, e.g.,  Age=“42”, Birthday=“03/07/2010”  Was rating “1, 2, 3”, now rating “A, B, C”  discrepancy between duplicate records  Intentional (e.g., disguised missing data)  Jan. 1 as everyone’s birthday?
  • 6. 6 Incomplete (Missing) Data  Data is not always available  E.g., many tuples have no recorded value for several attributes, such as customer income in sales data  Missing data may be due to  equipment malfunction  inconsistent with other recorded data and thus deleted  data not entered due to misunderstanding  certain data may not be considered important at the time of entry  not register history or changes of the data  Missing data may need to be inferred
  • 7. 7 How to Handle Missing Data?  Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably  Fill in the missing value manually: tedious + infeasible?  Fill in it automatically with  a global constant : e.g., “unknown”, a new class?!  the attribute mean  the attribute mean for all samples belonging to the same class: smarter  the most probable value: inference-based such as Bayesian formula or decision tree
  • 8. 8 Noisy Data  Noise: random error or variance in a measured variable  Incorrect attribute values may be due to  faulty data collection instruments  data entry problems  data transmission problems  technology limitation  inconsistency in naming convention  Other data problems which require data cleaning  duplicate records  incomplete data  inconsistent data
  • 9. 9 How to Handle Noisy Data?  Binning  first sort data and partition into (equal-frequency) bins  then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.  Regression  smooth by fitting the data into regression functions  Clustering  detect and remove outliers  Combined computer and human inspection  detect suspicious values and check by human (e.g., deal with possible outliers)
  • 10. 10 Data Cleaning as a Process  Data discrepancy detection  Use metadata (e.g., domain, range, dependency, distribution)  Check field overloading  Check uniqueness rule, consecutive rule and null rule  Use commercial tools  Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections  Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)  Data migration and integration  Data migration tools: allow transformations to be specified  ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface  Integration of the two processes  Iterative and interactive (e.g., Potter’s Wheels)
  • 11. 11 11 Chapter 3: Data Preprocessing  Data Preprocessing: An Overview  Data Quality  Major Tasks in Data Preprocessing  Data Cleaning  Data Integration  Data Reduction  Data Transformation and Data Discretization  Summary
  • 12. 12 12 Data Integration  Data integration:  Combines data from multiple sources into a coherent store  Schema integration: e.g., A.cust-id  B.cust-#  Integrate metadata from different sources  Entity identification problem:  Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton  Detecting and resolving data value conflicts  For the same real world entity, attribute values from different sources are different  Possible reasons: different representations, different scales, e.g., metric vs. British units
  • 13. 13 13 Handling Redundancy in Data Integration  Redundant data occur often when integration of multiple databases  Object identification: The same attribute or object may have different names in different databases  Derivable data: One attribute may be a “derived” attribute in another table, e.g., annual revenue  Redundant attributes may be able to be detected by correlation analysis and covariance analysis  Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality
  • 14. 14 Correlation Analysis (Numeric Data)  Correlation coefficient (also called Pearson’s product moment coefficient) where n is the number of tuples, and are the respective means of A and B, σA and σB are the respective standard deviation of A and B, and Σ(aibi) is the sum of the AB cross-product.  If rA,B > 0, A and B are positively correlated (A’s values increase as B’s).  rA,B = 0: independent; rAB < 0: negatively correlated B A n i i i B A n i i i B A n B A n b a n B b A a r     ) 1 ( ) ( ) 1 ( ) )( ( 1 1 ,            A B
  • 15. 04/01/25 Data Mining: Concepts and Techniques 15
  • 16. 16 Visually Evaluating Correlation Scatter plots showing the similarity from –1 to 1.
  • 17. 17 Correlation (viewed as linear relationship)  Correlation measures the linear relationship between objects  To compute correlation, we standardize data objects, A and B, and then take their dot product ) ( / )) ( ( ' A std A mean a a k k   ) ( / )) ( ( ' B std B mean b b k k   ' ' ) , ( B A B A n correlatio  
  • 18. 18 Covariance (Numeric Data)  Covariance is similar to correlation where n is the number of tuples, and are the respective mean or expected values of A and B, σA and σB are the respective standard deviation of A and B.  Positive covariance: If CovA,B > 0, then A and B both tend to be larger than their expected values.  Negative covariance: If CovA,B < 0 then if A is larger than its expected value, B is likely to be smaller than its expected value.  Independence: CovA,B = 0 but the converse is not true:  Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence A B Correlation coefficient:
  • 19. Co-Variance: An Example  It can be simplified in computation as  Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).  Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?  E(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4  E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6  Cov(A,B) = (2×5+3×8+5×10+4×11+6×14)/5 4 × 9.6 = 4 −  Thus, A and B rise together since Cov(A, B) > 0.
  • 20. 20 20 Chapter 3: Data Preprocessing  Data Preprocessing: An Overview  Data Quality  Major Tasks in Data Preprocessing  Data Cleaning  Data Integration  Data Reduction  Data Transformation and Data Discretization  Summary
  • 21. 21 Data Reduction Strategies  Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results  Why data reduction? — A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.  Data reduction strategies  Dimensionality reduction, e.g., remove unimportant attributes  Principal Components Analysis (PCA)  Feature subset selection, feature creation  Numerosity reduction (some simply call it: Data Reduction)  Regression and Log-Linear Models  Histograms, clustering, sampling  Data cube aggregation  Data compression
  • 22. 22 Data Reduction 1: Dimensionality Reduction  Curse of dimensionality  When dimensionality increases, data becomes increasingly sparse  Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful  The possible combinations of subspaces will grow exponentially  Dimensionality reduction  Avoid the curse of dimensionality  Help eliminate irrelevant features and reduce noise  Reduce time and space required in data mining  Allow easier visualization  Dimensionality reduction techniques  Principal Component Analysis (Feature extraction)  Supervised and nonlinear techniques (e.g., feature selection)
  • 23. 23 x2 x1 e Principal Component Analysis (PCA)  Find a projection that captures the largest amount of variation in data  The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space Benefits: 1.Faster execution of Algo 2.Easier visualization
  • 24. 24  Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors (principal components) that can be best used to represent data  Normalize input data: Each attribute falls within the same range  Compute k orthonormal (unit) vectors, i.e., principal components  Each input data (vector) is a linear combination of the k principal component vectors  The principal components are sorted in order of decreasing “significance” or strength  Since the components are sorted, the size of the data can be reduced by eliminating the weak components, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)  Works for numeric data only Principal Component Analysis (Steps)
  • 25. 25 Attribute Subset Selection  Another way to reduce dimensionality of data  Redundant attributes  Duplicate much or all of the information contained in one or more other attributes  E.g., purchase price of a product and the amount of sales tax paid  Irrelevant attributes  Contain no information that is useful for the data mining task at hand  E.g., students' ID is often irrelevant to the task of predicting students' GPA
  • 26. 26 Heuristic Search in Attribute Selection  There are 2d possible attribute combinations of d attributes  Typical heuristic attribute selection methods:  Best single attribute under the attribute independence assumption: choose by significance tests  Best step-wise feature selection:  The best single-attribute is picked first  Then next best attribute condition to the first, ...  Step-wise attribute elimination:  Repeatedly eliminate the worst attribute  Best combined attribute selection and elimination  Optimal branch and bound:  Use attribute elimination and backtracking
  • 27. 27 Attribute Creation (Feature Generation)  Create new attributes (features) that can capture the important information in a data set more effectively than the original ones  Three general methodologies  Attribute extraction  Domain-specific  Mapping data to new space (see: data reduction)  E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)  Attribute construction  Combining features (see: discriminative frequent patterns in Chapter 7)  Data discretization
  • 28. 28 Data Reduction 2: Numerosity Reduction  Reduce data volume by choosing alternative, smaller forms of data representation  Parametric methods (e.g., regression)  Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)  Ex.: Log-linear models—obtain value at a point in m-D space as the product on appropriate marginal subspaces  Non-parametric methods  Do not assume models  Major families: histograms, clustering, sampling, …
  • 29. 29 Parametric Data Reduction: Regression and Log-Linear Models  Linear regression  Data modeled to fit a straight line  Often uses the least-square method to fit the line  Multiple regression  Allows a response variable Y to be modeled as a linear function of multidimensional feature vector  Log-linear model  Approximates discrete multidimensional probability distributions
  • 30. 30 Regression Analysis  Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (aka. explanatory variables or predictors)  The parameters are estimated so as to give a "best fit" of the data  Most commonly the best fit is evaluated by using the least squares method, but other criteria have also been used  Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships y x y = x + 1 X1 Y1 Y1’
  • 31. 31  Linear regression: Y = w X + b  Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand  Using the least squares criterion to the known values of Y1, Y2, …, X1, X2, ….  Multiple regression: Y = b0 + b1 X1 + b2 X2  Many nonlinear functions can be transformed into the above  Log-linear models:  Approximate discrete multidimensional probability distributions  Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations  Useful for dimensionality reduction and data smoothing Regress Analysis and Log-Linear Models
  • 32. 32 Histogram Analysis  Divide data into buckets and store average (sum) for each bucket  Partitioning rules:  Equal-width: equal bucket range  Equal-frequency (or equal-depth) 0 5 10 15 20 25 30 35 40 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0
  • 33. 33 Clustering  Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only  Can be very effective if data is clustered but not if data is “smeared”  Can have hierarchical clustering and be stored in multi-dimensional index tree structures  There are many choices of clustering definitions and clustering algorithms  Cluster analysis will be studied in depth in Chapter 10
  • 34. 34 Sampling  Sampling: obtaining a small sample s to represent the whole data set N  Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data  Key principle: Choose a representative subset of the data  Simple random sampling may have very poor performance in the presence of skew  Develop adaptive sampling methods, e.g., stratified sampling:  Note: Sampling may not reduce database I/Os (page at a time)
  • 35. 35 Types of Sampling  Simple random sampling  There is an equal probability of selecting any particular item  Sampling without replacement  Once an object is selected, it is removed from the population  Sampling with replacement  A selected object is not removed from the population  Stratified sampling:  Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)  Used in conjunction with skewed data
  • 36. 36 Sampling: With or without Replacement SRSWOR (simple random sample without replacement) SRSWR Raw Data
  • 37. 37 Sampling: Cluster or Stratified Sampling Raw Data Cluster/Stratified Sample
  • 38. 38 Data Cube Aggregation  The lowest level of a data cube (base cuboid)  The aggregated data for an individual entity of interest  E.g., a customer in a phone calling data warehouse  Multiple levels of aggregation in data cubes  Further reduce the size of data to deal with  Reference appropriate levels  Use the smallest representation which is enough to solve the task  Queries regarding aggregated information should be answered using data cube, when possible
  • 39. 39 Data Reduction 3: Data Compression  String compression  There are extensive theories and well-tuned algorithms  Typically lossless, but only limited manipulation is possible without expansion  Audio/video compression  Typically lossy compression, with progressive refinement  Sometimes small fragments of signal can be reconstructed without reconstructing the whole  Time sequence is not audio  Typically short and vary slowly with time  Dimensionality and numerosity reduction may also be considered as forms of data compression
  • 40. 40 Data Compression Original Data Compressed Data lossless Original Data Approximated lossy
  • 41. 41 Chapter 3: Data Preprocessing  Data Preprocessing: An Overview  Data Quality  Major Tasks in Data Preprocessing  Data Cleaning  Data Integration  Data Reduction  Data Transformation and Data Discretization  Summary
  • 42. 42 Data Transformation  A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values  Methods  Smoothing: Remove noise from data  Attribute/feature construction  New attributes constructed from the given ones  Aggregation: Summarization, data cube construction  Normalization: Scaled to fall within a smaller, specified range  min-max normalization  z-score normalization  normalization by decimal scaling  Discretization: Concept hierarchy climbing
  • 43. 43 Normalization  Min-max normalization: to [new_minA, new_maxA]  Ex. Let income range $12,000 to $98,000 normalized to [0.0, 1.0]. Then $73,000 is mapped to  Z-score normalization (μ: mean, σ: standard deviation):  Ex. Let μ = 54,000, σ = 16,000. Then  Normalization by decimal scaling 716 . 0 0 ) 0 0 . 1 ( 000 , 12 000 , 98 000 , 12 600 , 73      A A A A A A min new min new max new min max min v v _ ) _ _ ( '      A A v v     ' j v v 10 ' Where j is the smallest integer such that Max(|ν’|) < 1 225 . 1 000 , 16 000 , 54 600 , 73  
  • 44. 44 Discretization  Three types of attributes  Nominal—values from an unordered set, e.g., color, profession  Ordinal—values from an ordered set, e.g., military or academic rank  Numeric—real numbers, e.g., integer or real numbers  Discretization: Divide the range of a continuous attribute into intervals  Interval labels can then be used to replace actual data values  Reduce data size by discretization  Supervised vs. unsupervised  Split (top-down) vs. merge (bottom-up)  Discretization can be performed recursively on an attribute  Prepare for further analysis, e.g., classification
  • 45. 45 Data Discretization Methods  Typical methods: All the methods can be applied recursively  Binning  Top-down split, unsupervised  Histogram analysis  Top-down split, unsupervised  Clustering analysis (unsupervised, top-down split or bottom-up merge)  Decision-tree analysis (supervised, top-down split)  Correlation (e.g., 2 ) analysis (unsupervised, bottom-up merge)
  • 46. 46 Simple Discretization: Binning  Equal-width (distance) partitioning  Divides the range into N intervals of equal size: uniform grid  if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B –A)/N.  The most straightforward, but outliers may dominate presentation  Skewed data is not handled well  Equal-depth (frequency) partitioning  Divides the range into N intervals, each containing approximately same number of samples  Good data scaling  Managing categorical attributes can be tricky
  • 47. 47 Binning Methods for Data Smoothing  Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 * Partition into equal-frequency (equi-depth) bins: - Bin 1: 4, 8, 9, 15 - Bin 2: 21, 21, 24, 25 - Bin 3: 26, 28, 29, 34 * Smoothing by bin means: - Bin 1: 9, 9, 9, 9 - Bin 2: 23, 23, 23, 23 - Bin 3: 29, 29, 29, 29 * Smoothing by bin boundaries: - Bin 1: 4, 4, 4, 15 - Bin 2: 21, 21, 25, 25 - Bin 3: 26, 26, 26, 34
  • 48. 48 Discretization Without Using Class Labels (Binning vs. Clustering) Data Equal interval width (binning) Equal frequency (binning) K-means clustering leads to better results
  • 49. 49 Discretization by Classification & Correlation Analysis  Classification (e.g., decision tree analysis)  Supervised: Given class labels, e.g., cancerous vs. benign  Using entropy to determine split point (discretization point)  Top-down, recursive split  Details to be covered in Chapter 7  Correlation analysis (e.g., Chi-merge: χ2 -based discretization)  Supervised: use class information  Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ2 values) to merge  Merge performed recursively, until a predefined stopping condition
  • 50. 50 Concept Hierarchy Generation  Concept hierarchy organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse  Concept hierarchies facilitate drilling and rolling in data warehouses to view data in multiple granularity  Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for age) by higher level concepts (such as youth, adult, or senior)  Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers  Concept hierarchy can be automatically formed for both numeric and nominal data. For numeric data, use discretization methods shown.
  • 51. 51 Concept Hierarchy Generation for Nominal Data  Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts  street < city < state < country  Specification of a hierarchy for a set of values by explicit data grouping  {Urbana, Champaign, Chicago} < Illinois  Specification of only a partial set of attributes  E.g., only street < city, not others  Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values  E.g., for a set of attributes: {street, city, state, country}
  • 52. 52 Automatic Concept Hierarchy Generation  Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set  The attribute with the most distinct values is placed at the lowest level of the hierarchy  Exceptions, e.g., weekday, month, quarter, year country province_or_ state city street 15 distinct values 365 distinct values 3567 distinct values 674,339 distinct values
  • 53. 53 Chapter 3: Data Preprocessing  Data Preprocessing: An Overview  Data Quality  Major Tasks in Data Preprocessing  Data Cleaning  Data Integration  Data Reduction  Data Transformation and Data Discretization  Summary
  • 54. 54 Summary  Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability  Data cleaning: e.g. missing/noisy values, outliers  Data integration from multiple sources:  Entity identification problem  Remove redundancies  Detect inconsistencies  Data reduction  Dimensionality reduction  Numerosity reduction  Data compression  Data transformation and data discretization  Normalization  Concept hierarchy generation
  • 55. 55 References  D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999  A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. IEEE Spectrum, Oct 1996  T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003  J. Devore and R. Peck. Statistics: The Exploration and Analysis of Data. Duxbury Press, 1997.  H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning: Language, model, and algorithms. VLDB'01  M. Hua and J. Pei. Cleaning disguised missing data: A heuristic approach. KDD'07  H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997  H. Liu and H. Motoda (eds.). Feature Extraction, Construction, and Selection: A Data Mining Perspective. Kluwer Academic, 1998  J. E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann, 2003  D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999  V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB’2001  T. Redman. Data Quality: The Field Guide. Digital Press (Elsevier), 2001  R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995
  • 56. 56 Correlation Analysis (Nominal Data)  Χ2 (chi-square) test  The larger the Χ2 value, the more likely the variables are related  The cells that contribute the most to the Χ2 value are those whose actual count is very different from the expected count  Correlation does not imply causality  # of hospitals and # of car-theft in a city are correlated  Both are causally linked to the third variable: population    Expected Expected Observed 2 2 ) ( 
  • 57. 57 Chi-Square Calculation: An Example  Χ2 (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)  It shows that like_science_fiction and play_chess are correlated in the group 93 . 507 840 ) 840 1000 ( 360 ) 360 200 ( 210 ) 210 50 ( 90 ) 90 250 ( 2 2 2 2 2           Play chess Not play chess Sum (row) Like science fiction 250(90) 200(360) 450 Not like science fiction 50(210) 1000(840) 1050 Sum(col.) 300 1200 1500
  • 58. 58 Mapping Data to a New Space Two Sine Waves Two Sine Waves + Noise Frequency  Fourier transform  Wavelet transform
  • 59. 59 What Is Wavelet Transform?  Decomposes a signal into different frequency subbands  Applicable to n-dimensional signals  Data are transformed to preserve relative distance between objects at different levels of resolution  Allow natural clusters to become more distinguishable  Used for image compression
  • 60. 60 Wavelet Transformation  Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis  Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients  Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space  Method:  Length, L, must be an integer power of 2 (padding with 0’s, when necessary)  Each transform has 2 functions: smoothing, difference  Applies to pairs of data, resulting in two set of data of length L/2  Applies two functions recursively, until reaches the desired length Haar2 Daubechie4
  • 61. 61 Wavelet Decomposition  Wavelets: A math tool for space-efficient hierarchical decomposition of functions  S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S^ = [23 /4, -11 /4, 1 /2, 0, 0, -1, -1, 0]  Compression: many small detail coefficients can be replaced by 0’s, and only the significant coefficients are retained
  • 62. 62 Haar Wavelet Coefficients Coefficient “Supports” 2 2 0 2 3 5 4 4 -1.25 2.75 0.5 0 0 -1 0 -1 + - + + + + + + + - - - - - - + - + + - + - + -+ - - + + - -1 -1 0.5 0 2.75 -1.25 0 0 Original frequency distribution Hierarchical decomposition structure (a.k.a. “error tree”)
  • 63. 63 Why Wavelet Transform?  Use hat-shape filters  Emphasize region where points cluster  Suppress weaker information in their boundaries  Effective removal of outliers  Insensitive to noise, insensitive to input order  Multi-resolution  Detect arbitrary shaped clusters at different scales  Efficient  Complexity O(N)  Only applicable to low dimensional data