This document discusses the importance of data quality and data governance. It states that poor data quality can lead to wrong decisions, bad reputation, and wasted money. It then provides examples of different dimensions of data quality like accuracy, completeness, currency, and uniqueness. It also discusses methods and tools for ensuring data quality, such as validation, data merging, and minimizing human errors. Finally, it defines data governance as a set of policies and standards to maintain data quality and provides examples of data governance team missions and a sample data quality scorecard.