SlideShare a Scribd company logo
Assembly Language for x86 Processors
Assembly Language for x86 Processors
7th Edition
7th Edition
Chapter 4: Data Transfers,
Addressing, and Arithmetic
(c) Pearson Education, 2015. All rights reserved. You may modify and copy this slide show for your personal use, or
for use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.
Kip Irvine
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 2
Chapter Overview
Chapter Overview
• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 3
Data Transfer Instructions
Data Transfer Instructions
• Operand Types
• Instruction Operand Notation
• Direct Memory Operands
• MOV Instruction
• Zero & Sign Extension
• XCHG Instruction
• Direct-Offset Instructions
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 4
Operand Types
Operand Types
• Immediate – a constant integer (8, 16, or 32 bits)
• value is encoded within the instruction
• Register – the name of a register
• register name is converted to a number and encoded
within the instruction
• Memory – reference to a location in memory
• memory address is encoded within the instruction, or a
register holds the address of a memory location
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 5
Instruction Operand Notation
Instruction Operand Notation
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 6
Direct Memory Operands
Direct Memory Operands
• A direct memory operand is a named reference to
storage in memory
• The named reference (label) is automatically
dereferenced by the assembler
.data
var1 BYTE 10h
.code
mov al,var1 ; AL = 10h
mov al,[var1] ; AL = 10h
alternate format
=> A0 00010400
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 7
MOV Instruction
MOV Instruction
.data
count BYTE 100
wVal WORD 2
.code
mov bl,count
mov ax,wVal
mov count,al
mov al,wVal ; error
mov ax,count ; error
mov eax,count ; error
• Move from source to destination. Syntax:
MOV destination,source
• No more than one memory operand permitted
• CS, EIP, and IP cannot be the destination
• No immediate to segment moves
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 8
Your turn . . .
Your turn . . .
.data
bVal BYTE 100
bVal2 BYTE ?
wVal WORD 2
dVal DWORD 5
.code
mov ds,45
mov esi,wVal
mov eip,dVal
mov 25,bVal
mov bVal2,bVal
Explain why each of the following MOV statements are invalid:
Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 9
Zero Extension
Zero Extension
When you copy a smaller value into a larger destination, the
MOVZX instruction fills (extends) the upper half of the destination
with zeros.
.data
val BYTE 10001111b
.code
movzx ax, val
• The destination must be a register.
• The source cannot be immediate.
Can’t use this, why?
movzx ax, 10001111b
Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 10
Sign Extension
Sign Extension
The MOVSX instruction fills the upper half of the destination
with a copy of the source operand's sign bit.
mov bl,10001111b
movsx ax, bl
• The destination must be a register.
• The source cannot be immediate.
Can’t use this, why?
movsx ax, 10001111b
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 11
XCHG Instruction
XCHG Instruction
.data
var1 WORD 1000h
var2 WORD 2000h
.code
xchg ax,bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg var1,bx ; exchange mem, reg
xchg eax,ebx ; exchange 32-bit regs
xchg var1,var2 ; error: two memory operands
XCHG exchanges the values of two operands. At least one
operand must be a register. No immediate operands are
permitted.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 12
Direct-Offset Operands
Direct-Offset Operands
.data
arrayB BYTE 10h,20h,30h,40h
.code
mov al,arrayB+1 ; AL = 20h
mov al,[arrayB+1] ; alternative notation
A constant offset is added to a data label to produce an
effective address (EA). The address is dereferenced to get the
value inside its memory location.
Q: Why doesn't arrayB+1 produce 11h?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 13
Direct-Offset Operands
Direct-Offset Operands (cont)
(cont)
.data
arrayW WORD 1000h,2000h,3000h
arrayD DWORD 1,2,3,4
.code
mov ax,[arrayW+2] ; AX = 2000h
mov ax,[arrayW+4] ; AX = 3000h
mov eax,[arrayD+4] ; EAX = 00000002h
A constant offset is added to a data label to produce an
effective address (EA). The address is dereferenced to get the
value inside its memory location.
; Will the following statements assemble?
mov ax,[arrayW-2] ; ??
mov eax,[arrayD+16] ; ??
What will happen when they run?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 14
Evaluate this . . .
Evaluate this . . .
• We want to write a program that adds the following three bytes:
.data
myBytes BYTE 80h,66h,0A5h
• What is your evaluation of the following code?
mov al,myBytes
add al,[myBytes+1]
add al,[myBytes+2]
• What is your evaluation of the following code?
mov ax,myBytes
add ax,[myBytes+1]
add ax,[myBytes+2]
• Any other possibilities?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 15
Evaluate this . . .
Evaluate this . . . (cont)
(cont)
.data
myBytes BYTE 80h,66h,0A5h
• How about the following code. Is anything missing?
movzx ax,myBytes
mov bl,[myBytes+1]
add ax,bx
mov bl,[myBytes+2]
add ax,bx ; AX = sum
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 16
What's Next
What's Next
• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 17
Addition and Subtraction
Addition and Subtraction
• INC and DEC Instructions
• ADD and SUB Instructions
• NEG Instruction
• Implementing Arithmetic Expressions
• Flags Affected by Arithmetic
• Zero
• Sign
• Carry
• Overflow
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 18
INC and DEC Instructions
INC and DEC Instructions
• Add 1, subtract 1 from destination operand
• operand may be register or memory
• INC destination
• Logic: destination  destination + 1
• DEC destination
• Logic: destination  destination – 1
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 19
INC and DEC Examples
INC and DEC Examples
.data
myWord WORD 1000h
myDword DWORD 10000000h
.code
inc myWord ; 1001h
dec myWord ; 1000h
inc myDword ; 10000001h
mov ax,00FFh
inc ax ; AX = 0100h
mov ax,00FFh
inc al ; AX = 0000h
What are CF and ZF?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 20
Your turn...
Your turn...
Show the value of the destination operand after each of the following
instructions executes:
.data
myByte BYTE 0FFh, 0
.code
mov al,myByte ;al=0FFh
mov ah,[myByte+1] ;ah=0
dec ah ;ah=0ffh
inc al ;al=00h
dec ax ;ax=0ff00
-1=FEFF
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 21
ADD and SUB Instructions
ADD and SUB Instructions
• ADD destination, source
• Logic: destination  destination + source
• SUB destination, source
• Logic: destination  destination – source
• Same operand rules as for the MOV
instruction
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 22
ADD and SUB Examples
ADD and SUB Examples
.data
var1 DWORD 10000h
var2 DWORD 20000h
.code ; ---EAX---
mov eax,var1 ; 00010000h
add eax,var2 ; 00030000h
add eax,0FFFFh ; 0003FFFFh
add eax,1 ; 00040000h
sub eax,1 ; 0004FFFFh
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 23
NEG (negate) Instruction
NEG (negate) Instruction
.data
valB BYTE -1
valW WORD +32767
.code
mov al,valB ; AL = -1
neg al ; AL = +1
neg valW ; valW = -32767
Reverses the sign of an operand. Operand can be a register or
memory operand. (Like converting to its Two’s Complement)
Suppose AX contains –32,768 and we apply NEG to it. Will
the result be valid?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 24
NEG Instruction and the Flags
NEG Instruction and the Flags
.data
valB BYTE 1,0
valC SBYTE -128
.code
neg valB ; CF = 1, OF = 0
neg [valB + 1] ; CF = ?, OF = 0
neg valC ; CF = 1, OF = 1
The processor implements NEG using the following internal
operation:
SUB 0,operand
Any nonzero operand causes the Carry flag to be set.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 25
Implementing Arithmetic Expressions
Implementing Arithmetic Expressions
Rval DWORD ?
Xval DWORD 26
Yval DWORD 30
Zval DWORD 40
.code
mov eax,Xval
neg eax ; EAX = -26
mov ebx,Yval
sub ebx,Zval ; EBX = -10
add eax,ebx
mov Rval,eax ; -36
HLL compilers translate mathematical expressions into
assembly language. You can do it also. For example:
Rval = -Xval + (Yval – Zval)
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 26
Your turn...
Your turn...
mov ebx,Yval
neg ebx
add ebx,Zval
mov eax,Xval
sub eax,ebx
mov Rval,eax
Translate the following expression into assembly language.
Do not permit Xval, Yval, or Zval to be modified:
Rval = Xval - (-Yval + Zval)
Assume that all values are signed doublewords.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 27
Flags Affected by Arithmetic
Flags Affected by Arithmetic
• The ALU has a number of status flags that reflect the
outcome of arithmetic (and bitwise) operations
• based on the contents of the destination operand
• Essential flags:
• Zero flag – set when destination equals zero
• Sign flag – set when destination is negative
• Carry flag – set when unsigned value is out of range
• Overflow flag – set when signed value is out of range
• The MOV instruction never affects the flags.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 28
Zero Flag (ZF)
Zero Flag (ZF)
mov cx,1
sub cx,1 ; CX = 0, ZF = 1
mov ax,0FFFFh
inc ax ; AX = 0, ZF = 1
inc ax ; AX = 1, ZF = 0
The Zero flag is set when the result of an operation produces
zero in the destination operand.
Remember...
• A flag is set when it equals 1.
• A flag is clear when it equals 0.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 29
Sign Flag (SF)
Sign Flag (SF)
mov cx,0
sub cx,1 ; CX = -1, SF = 1
add cx,2 ; CX = 1, SF = 0
The Sign flag is set when the destination operand is negative.
The flag is clear when the destination is positive.
The sign flag is a copy of the destination's highest bit:
mov al,0
sub al,1 ; AL = 11111111b, SF = 1
add al,2 ; AL = 00000001b, SF = 0
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 30
Signed and Unsigned Integers
Signed and Unsigned Integers
A Hardware Viewpoint
A Hardware Viewpoint
• All CPU instructions operate exactly the same on
signed and unsigned integers
• The CPU cannot distinguish between signed and
unsigned integers
• YOU, the programmer, are solely responsible for
using the correct data type with each instruction
Added Slide. Gerald Cahill, Antelope Valley College
Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 31
Overflow and Carry Flags
Overflow and Carry Flags
A Hardware Viewpoint
A Hardware Viewpoint
• How the ADD instruction affects OF and CF:
• CF = (carry out of the MSB)
• OF = (carry out of the MSB) XOR (carry into the MSB)
• How the SUB instruction affects OF and CF:
• CF = INVERT (carry out of the MSB)
• negate the source and add it to the destination
• OF = (carry out of the MSB) XOR (carry into the MSB)
MSB = Most Significant Bit (high-order bit)
XOR = eXclusive-OR operation
NEG = Negate (same as SUB 0,operand )
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 32
Carry Flag (CF)
Carry Flag (CF)
The Carry flag is set when the result of an operation generates an
unsigned value that is out of range (too big or too small for the
destination operand).
mov al,0FFh
add al,1 ; CF = 1, AL = 00
; Try to go below zero:
mov al,0
sub al,1 ; CF = 1, AL = FF
How about this, Why?
mov al,2
sub al,1 ; CF = ?, AL = ?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 33
Your turn . . .
Your turn . . .
mov ax,00FFh
add ax,1 ;
sub ax,1 ;
add al,1 ;
mov bh,6Ch
add bh,95h ;
mov al,2
sub al,3 ;
For each of the following marked entries, show the values of
the destination operand and the Sign, Zero, and Carry flags:
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 34
Overflow Flag (OF)
Overflow Flag (OF)
The Overflow flag is set when the signed result of an operation is
invalid or out of range.
; Example 1
mov al,+127
add al,1 ; OF = 1, AL = ??
; Example 2
mov al,7Fh ; OF = 1, AL = 80h
add al,1
The two examples are identical at the binary level because 7Fh
equals +127. To determine the value of the destination operand,
it is often easier to calculate in hexadecimal.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 35
A Rule of Thumb
A Rule of Thumb
• When adding two integers, remember that the
Overflow flag is only set when . . .
• Two positive operands are added and their sum is
negative
• Two negative operands are added and their sum is
positive
What will be the values of the Overflow flag?
mov al,80h
add al,92h ; OF =
mov al,-2
add al,+127 ; OF =
1
0
Q: How about CF? Notice: -2 is 1111 1110
(254)
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 36
Your turn . . .
Your turn . . .
mov al,-128
neg al ;
mov ax,8000h
add ax,2 ;
mov ax,0
sub ax,2 ;
mov al,-5
sub al,+125 ;
What will be the values of the given flags after each operation?
Added by Zuoliu Ding 5/e, 2007. 37
Your turn . . .
Your turn . . .
Is there any difference between these?
; 1111 1011
; 0111 1101
; al =7E, OF =1, CF =0
; 1111 1011
; 1000 0011
; bl =7E, OF =1, CF =1
mov al, -5
sub al, 125
mov bl, -5
add bl, -125
How ADD consider 1111 1011 and 1000 0011?
For unsigned,
-5 is 251
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 38
What's Next
What's Next
• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 39
Data-Related Operators and Directives
Data-Related Operators and Directives
• OFFSET Operator
• PTR Operator
• TYPE Operator
• LENGTHOF Operator
• SIZEOF Operator
• LABEL Directive
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 40
OFFSET Operator
OFFSET Operator
• OFFSET returns the distance in bytes, of a label from the
beginning of its enclosing segment
• Protected mode: 32 bits
• Real mode: 16 bits
The Protected-mode programs we write use only a single
segment (flat memory model).
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 41
OFFSET Examples
OFFSET Examples
.data
bVal BYTE ?
wVal WORD ?
dVal DWORD ?
dVal2 DWORD ?
.code
mov esi,OFFSET bVal ; ESI = 00404000
mov esi,OFFSET wVal ; ESI = 00404001
mov esi,OFFSET dVal ; ESI = 00404003
mov esi,OFFSET dVal2 ; ESI = 00404007
Let's assume that the data segment begins at 00404000h:
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 42
Relating to C/C++
Relating to C/C++
// C++ version:
char array[1000];
char * p = array;
The value returned by OFFSET is a pointer. Compare the
following code written for both C++ and assembly language:
; Assembly language:
.data
array BYTE 1000 DUP(?)
.code
mov esi,OFFSET array
Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 43
ALIGN Directive
ALIGN Directive
.data
bVal BYTE 10h ; 0000 0000
ALIGN 2
wVal WORD 20h ; 0000 0002
bVal2 BYTE 30h ; 0000 0004
ALIGN 4
dVal DWORD 50h ; 0000 0008
bVal3 BYTE 60h ; 0000 000C
ALIGN 4
dVal2 DWORD 70h ; 0000 0010
• Aligns a variable on a byte, word, dword, or paragraph
boundary
• Padding to 1, ,2, 4, or 16 bytes in data segments
Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 44
PTR Operator
PTR Operator
Overrides the default type of a label (variable). Provides the
flexibility to access part of a variable.
Little endian order is used when storing data in memory
12344321h (memory 21 43 34 12)
.data
myDouble DWORD 12345678h
.code
; mov ax,myDouble ; error – why?
mov ax,WORD PTR myDouble ; loads 5678h
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 45
Little Endian Order
Little Endian Order
• Little endian order refers to the way Intel stores
integers in memory.
• Multi-byte integers are stored in reverse order, with
the least significant byte stored at the lowest address
• For example, the doubleword 12345678h would be
stored as:
When integers are loaded from
memory into registers, the bytes are
automatically re-reversed into their
correct positions.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 46
PTR Operator Examples
PTR Operator Examples
.data
myDouble DWORD 12345678h
mov al,BYTE PTR myDouble ; AL = 78h
mov al,BYTE PTR [myDouble+1] ; AL = 56h
mov al,BYTE PTR [myDouble+2] ; AL = 34h
mov ax,WORD PTR myDouble ; AX = 5678h
mov ax,WORD PTR [myDouble+2] ; AX = 1234h
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 47
PTR Operator
PTR Operator (cont)
(cont)
.data
myBytes BYTE 12h,34h,56h,78h
.code
mov ax,WORD PTR [myBytes] ; AX = 3412h
mov ax,WORD PTR [myBytes+2] ; AX = 7856h
mov eax,DWORD PTR myBytes ; EAX = 78563412h
PTR can also be used to combine elements of a smaller data
type and move them into a larger operand. The CPU will
automatically reverse the bytes.
Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 48
Your turn . . .
Your turn . . .
.data
varB BYTE 65h,31h,02h,05h
varW WORD 6543h,1202h
varD DWORD 12345678h
.code
mov ax,WORD PTR [varB+2] ;
mov bl,BYTE PTR varD ;
mov bl,BYTE PTR [varW+2] ;
mov ax,WORD PTR [varD+2] ;
mov eax,DWORD PTR varW ;
Write down the value of each destination operand:
mov ax, word ptr varD+1 ;
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 49
TYPE Operator
TYPE Operator
The TYPE operator returns the size, in bytes, of a single
element of a data declaration.
.data
var1 BYTE ?
var2 WORD ?
var3 DWORD ?
var4 QWORD ?
.code
mov eax,TYPE var1 ; 1
mov eax,TYPE var2 ; 2
mov eax,TYPE var3 ; 4
mov eax,TYPE var4 ; 8
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 50
LENGTHOF Operator
LENGTHOF Operator
.data LENGTHOF
byte1 BYTE 10,20,30 ; 3
array1 WORD 30 DUP(?),0,0 ; 32
array2 WORD 5 DUP(3 DUP(?)) ; 15
array3 DWORD 1,2,3,4 ; 4
digitStr BYTE "12345678",0 ; 9
.code
mov ecx,LENGTHOF array1 ; 32
The LENGTHOF operator counts the number of
elements in a single data declaration.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 51
SIZEOF Operator
SIZEOF Operator
.data SIZEOF
byte1 BYTE 10,20,30 ; 3
array1 WORD 30 DUP(?),0,0 ; 64
array2 WORD 5 DUP(3 DUP(?)) ; 30
array3 DWORD 1,2,3,4 ; 16
digitStr BYTE "12345678",0 ; 9
.code
mov ecx,SIZEOF array1 ; 64
The SIZEOF operator returns a value that is equivalent to
multiplying LENGTHOF by TYPE.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 52
Spanning Multiple Lines
Spanning Multiple Lines (1 of 2)
(1 of 2)
.data
array WORD 10,20,
30,40,
50,60
.code
mov eax,LENGTHOF array ; 6
mov ebx,SIZEOF array ; 12
A data declaration spans multiple lines if each line (except the
last) ends with a comma. The LENGTHOF and SIZEOF
operators include all lines belonging to the declaration:
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 53
Spanning Multiple Lines
Spanning Multiple Lines (2 of 2)
(2 of 2)
.data
array WORD 10,20
WORD 30,40
WORD 50,60
.code
mov eax,LENGTHOF array ; 2
mov ebx,SIZEOF array ; 4
In the following example, array identifies only the first WORD
declaration. Compare the values returned by LENGTHOF
and SIZEOF here to those in the previous slide:
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 54
LABEL Directive
LABEL Directive
• Assigns an alternate label name and type to an
existing storage location
• LABEL does not allocate any storage of its own
• Removes the need for the PTR operator
.data
dwList LABEL DWORD
wordList LABEL WORD
intList BYTE 00h,10h,00h,20h
.code
mov eax,dwList ; 20001000h
mov cx,wordList ; 1000h
mov dl,intList ; 00h
Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 55
Your turn . . .
Your turn . . .
.data
v16 label word
v32 DWORD 12345678h
.code
mov ax, v16 ;
mov dx, v16 +2 ;
.data
val label dword
v1 WORD 5678h
v2 WORD 1234h
.code
mov eax, val ;
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 56
What's Next
What's Next
• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 57
Indirect Addressing
Indirect Addressing
• Indirect Operands
• Array Sum Example
• Indexed Operands
• Pointers
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 58
Indirect Operands
Indirect Operands (1 of 2)
(1 of 2)
.data
val1 BYTE 10h,20h,30h
.code
mov esi,OFFSET val1
mov al,[esi] ; dereference ESI (AL = 10h)
inc esi
mov al,[esi] ; AL = 20h
inc esi
mov al,[esi] ; AL = 30h
An indirect operand holds the address of a variable, usually an
array or string. It can be dereferenced (just like a pointer).
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 59
Indirect Operands
Indirect Operands (2 of 2)
(2 of 2)
.data
myCount WORD 0
.code
mov esi,OFFSET myCount
inc [esi] ; error: ambiguous
inc WORD PTR [esi] ; ok
Use PTR to clarify the size attribute of a memory operand.
Should PTR be used here?
add [esi],20
yes, because [esi] could
point to a byte, word, or
doubleword
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 60
Array Sum Example
Array Sum Example
.data
arrayW WORD 1000h,2000h,3000h
.code
mov esi,OFFSET arrayW
mov ax,[esi]
add esi,2 ; or: add esi,TYPE arrayW
add ax,[esi]
add esi,2
add ax,[esi] ; AX = sum of the array
Indirect operands are ideal for traversing an array. Note that the
register in brackets must be incremented by a value that
matches the array type.
ToDo: Modify this example for an array of doublewords.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 61
Indexed Operands
Indexed Operands
.data
arrayW WORD 1000h,2000h,3000h
.code
mov esi,0
mov ax,[arrayW + esi] ; AX = 1000h
mov ax,arrayW[esi] ; alternate format
add esi,2
add ax,[arrayW + esi]
etc.
An indexed operand adds a constant to a register to generate
an effective address. There are two notational forms:
[label + reg] label[reg]
ToDo: Modify this example for an array of doublewords.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 62
Pointers
Pointers
.data
arrayW WORD 1000h,2000h,3000h
ptrW DWORD arrayW
.code
mov esi,ptrW
mov ax,[esi] ; AX = 1000h
You can declare a pointer variable that contains the offset of
another variable.
Alternate format:
ptrW DWORD OFFSET arrayW
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 63
What's Next
What's Next
• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 64
JMP and LOOP Instructions
JMP and LOOP Instructions
• JMP Instruction
• LOOP Instruction
• LOOP Example
• Summing an Integer Array
• Copying a String
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 65
JMP Instruction
JMP Instruction
top:
.
.
jmp top
• JMP is an unconditional jump to a label that is usually within
the same procedure.
• Syntax: JMP target
• Logic: EIP  target
• Example:
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 66
LOOP Instruction
LOOP Instruction
• The LOOP instruction creates a counting loop
• Syntax: LOOP target
• Logic:
• ECX  ECX – 1
• if ECX != 0, jump to target
• Implementation:
• The assembler calculates the distance, in bytes, between
the offset of the following instruction and the offset of the
target label. It is called the relative offset.
• The relative offset is added to EIP.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 67
Your turn . . .
Your turn . . .
What will be the final value of AX?
mov ax,6
mov ecx,4
L1:
inc ax
loop L1
How many times will the loop
execute?
mov ecx,0
X2:
inc ax
loop X2
10
4,294,967,296
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 68
Nested Loop
Nested Loop
If you need to code a loop within a loop, you must save the
outer loop counter's ECX value. In the following example, the
outer loop executes 100 times, and the inner loop 20 times.
.data
count DWORD ?
.code
mov ecx,100 ; set outer loop count
L1:
mov count,ecx ; save outer loop count
mov ecx,20 ; set inner loop count
L2: .
.
loop L2 ; repeat the inner loop
mov ecx,count ; restore outer loop count
loop L1 ; repeat the outer loop
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 69
Summing an Integer Array
Summing an Integer Array
.data
intarray WORD 100h,200h,300h,400h
.code
mov edi,OFFSET intarray ; address of intarray
mov ecx,LENGTHOF intarray ; loop counter
mov ax,0 ; zero the accumulator
L1:
add ax,[edi] ; add an integer
add edi,TYPE intarray ; point to next integer
loop L1 ; repeat until ECX = 0
The following code calculates the sum of an array of 16-bit
integers.
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 70
Your turn . . .
Your turn . . .
What changes would you make to the
program on the previous slide if you were
summing a doubleword array?
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 71
Copying a String
Copying a String
.data
source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)
.code
mov esi,0 ; index register
mov ecx,SIZEOF source ; loop counter
L1:
mov al,source[esi] ; get char from source
mov target[esi],al ; store it in the target
inc esi ; move to next character
loop L1 ; repeat for entire string
good use of
SIZEOF
The following code copies a string from source to target:
Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 72
Your turn . . .
Your turn . . .
Rewrite the program shown in the
previous slide, using indirect addressing
rather than indexed addressing.

More Related Content

PPTX
[ASM]Lab4
Nora Youssef
 
PDF
Alp 05
Murali Krishna
 
PDF
Alp 05
gswapnil86
 
PPT
chap3lec5.pptgfhgfhghghgfhgfhgfhfghgfhfg
YumnaShahzaad
 
PPTX
Assembly language.pptx
ShaistaRiaz4
 
PPTX
Coal (1)
talhashahid40
 
PPT
Types of instructions
ihsanjamil
 
PDF
Alp 05
Jaimon Jacob
 
[ASM]Lab4
Nora Youssef
 
Alp 05
gswapnil86
 
chap3lec5.pptgfhgfhghghgfhgfhgfhfghgfhfg
YumnaShahzaad
 
Assembly language.pptx
ShaistaRiaz4
 
Coal (1)
talhashahid40
 
Types of instructions
ihsanjamil
 
Alp 05
Jaimon Jacob
 

Similar to data transfers, addressing and arithmetic (20)

PDF
Intrl 8086 instruction set
edwardkiwalabye1
 
PPT
chap7.pptasalslASKLa;ssASASSSasASssASaSa
YumnaShahzaad
 
PPTX
Mastering Assembly Language: Programming with 8086
sravanithonta79
 
PDF
Intel8086_Flags_Addr_Modes_sample_pgms.pdf
Anonymous611358
 
PPT
Unit 2 8086 Instruction set.ppt notes good
SahilSingh866567
 
PPT
Al2ed chapter4
Abdullelah Al-Fahad
 
PDF
05operand
shiva7008
 
PPTX
17
dano2osu
 
PDF
Assembly_80x86- Assembly languages programming and 80x861.pdf
ahmedmohammed246810a
 
PPT
Wk1to4
raymondmy08
 
PPT
Chapter 3 Assembly Language Fundamentals 6th edition.ppt
indusautomatin20
 
PPT
Chapter 3 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING
Frankie Jones
 
PPTX
Instruction sets of 8086
Mahalakshmiv11
 
PPTX
instructionsetsofjdtufgmictfgfjh8086.pptx
zarinajinna7432
 
PPT
leclast.pptDDSADASDSDSADSADSADSADSDASADSDD
YumnaShahzaad
 
PPTX
6 assembly language computer organization
wewiv47743
 
PDF
8086 instructions
Ravi Anand
 
PPT
Instruction set of 8086
Tirumalesh Nizampatnam
 
PPTX
Introduction to Assembly Language & various basic things
ishitasabrincse
 
PDF
Instructionsetof8086 180224060745(3)
AmitPaliwal20
 
Intrl 8086 instruction set
edwardkiwalabye1
 
chap7.pptasalslASKLa;ssASASSSasASssASaSa
YumnaShahzaad
 
Mastering Assembly Language: Programming with 8086
sravanithonta79
 
Intel8086_Flags_Addr_Modes_sample_pgms.pdf
Anonymous611358
 
Unit 2 8086 Instruction set.ppt notes good
SahilSingh866567
 
Al2ed chapter4
Abdullelah Al-Fahad
 
05operand
shiva7008
 
Assembly_80x86- Assembly languages programming and 80x861.pdf
ahmedmohammed246810a
 
Wk1to4
raymondmy08
 
Chapter 3 Assembly Language Fundamentals 6th edition.ppt
indusautomatin20
 
Chapter 3 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING
Frankie Jones
 
Instruction sets of 8086
Mahalakshmiv11
 
instructionsetsofjdtufgmictfgfjh8086.pptx
zarinajinna7432
 
leclast.pptDDSADASDSDSADSADSADSADSDASADSDD
YumnaShahzaad
 
6 assembly language computer organization
wewiv47743
 
8086 instructions
Ravi Anand
 
Instruction set of 8086
Tirumalesh Nizampatnam
 
Introduction to Assembly Language & various basic things
ishitasabrincse
 
Instructionsetof8086 180224060745(3)
AmitPaliwal20
 
Ad

More from YumnaShahzaad (16)

PPT
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
YumnaShahzaad
 
PPT
311introductiontomachinelearningweeqwq.ppt
YumnaShahzaad
 
PPT
Networking Devices15.PPTSADSADSADSADSADSAD
YumnaShahzaad
 
PPT
ch01.pptssadsaadsadsadsadsadsadsasadsads
YumnaShahzaad
 
PPT
CH02.PPTdfsffdsffsdffsdfdfsdfsddsfsdfdsffdsf
YumnaShahzaad
 
PPT
CCNA1_Ch08.pptxffdsfdfdsfdsfdsfdsfsdfdsfsdfsdf
YumnaShahzaad
 
PPT
lecpp.pptSADADASDADSDASDSAADASDASDDDSADSDSA
YumnaShahzaad
 
PPT
class3(105119).pptsdffsfdsfdffsffsfssdsds
YumnaShahzaad
 
PPT
chapt_08.pptdsfdfdfdsffsdffsdfsdfsdfsdfsdfsdfsdf
YumnaShahzaad
 
PPT
dss lec1.pptLECTURE 1 DOWNLOADable yougurt
YumnaShahzaad
 
PPT
Turbanchap02discription material require.ppt
YumnaShahzaad
 
PPTX
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
YumnaShahzaad
 
PPT
chap3intro.ppt(assembly language fundamentals)
YumnaShahzaad
 
PPT
Lecture4.ppt
YumnaShahzaad
 
PPT
osi.ppt
YumnaShahzaad
 
PPT
03_Karnaugh_Maps.ppt
YumnaShahzaad
 
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
YumnaShahzaad
 
311introductiontomachinelearningweeqwq.ppt
YumnaShahzaad
 
Networking Devices15.PPTSADSADSADSADSADSAD
YumnaShahzaad
 
ch01.pptssadsaadsadsadsadsadsadsasadsads
YumnaShahzaad
 
CH02.PPTdfsffdsffsdffsdfdfsdfsddsfsdfdsffdsf
YumnaShahzaad
 
CCNA1_Ch08.pptxffdsfdfdsfdsfdsfdsfsdfdsfsdfsdf
YumnaShahzaad
 
lecpp.pptSADADASDADSDASDSAADASDASDDDSADSDSA
YumnaShahzaad
 
class3(105119).pptsdffsfdsfdffsffsfssdsds
YumnaShahzaad
 
chapt_08.pptdsfdfdfdsffsdffsdfsdfsdfsdfsdfsdfsdf
YumnaShahzaad
 
dss lec1.pptLECTURE 1 DOWNLOADable yougurt
YumnaShahzaad
 
Turbanchap02discription material require.ppt
YumnaShahzaad
 
chap5.pptxasasasasadfdfdfdfdfddffdfdfdfdd
YumnaShahzaad
 
chap3intro.ppt(assembly language fundamentals)
YumnaShahzaad
 
Lecture4.ppt
YumnaShahzaad
 
osi.ppt
YumnaShahzaad
 
03_Karnaugh_Maps.ppt
YumnaShahzaad
 
Ad

Recently uploaded (20)

PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPTX
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
PDF
LEAP-1B presedntation xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
hatem173148
 
PPTX
Victory Precisions_Supplier Profile.pptx
victoryprecisions199
 
PPT
Ppt for engineering students application on field effect
lakshmi.ec
 
PPTX
Color Model in Textile ( RGB, CMYK).pptx
auladhossain191
 
PPTX
AgentX UiPath Community Webinar series - Delhi
RohitRadhakrishnan8
 
PDF
Top 10 read articles In Managing Information Technology.pdf
IJMIT JOURNAL
 
PDF
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPT
SCOPE_~1- technology of green house and poyhouse
bala464780
 
PPTX
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
PDF
Cryptography and Information :Security Fundamentals
Dr. Madhuri Jawale
 
PDF
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
PDF
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
PDF
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
PDF
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
 
PDF
top-5-use-cases-for-splunk-security-analytics.pdf
yaghutialireza
 
DOCX
SAR - EEEfdfdsdasdsdasdasdasdasdasdasdasda.docx
Kanimozhi676285
 
PDF
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
22PCOAM21 Session 1 Data Management.pptx
Guru Nanak Technical Institutions
 
LEAP-1B presedntation xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
hatem173148
 
Victory Precisions_Supplier Profile.pptx
victoryprecisions199
 
Ppt for engineering students application on field effect
lakshmi.ec
 
Color Model in Textile ( RGB, CMYK).pptx
auladhossain191
 
AgentX UiPath Community Webinar series - Delhi
RohitRadhakrishnan8
 
Top 10 read articles In Managing Information Technology.pdf
IJMIT JOURNAL
 
Chad Ayach - A Versatile Aerospace Professional
Chad Ayach
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
SCOPE_~1- technology of green house and poyhouse
bala464780
 
IoT_Smart_Agriculture_Presentations.pptx
poojakumari696707
 
Cryptography and Information :Security Fundamentals
Dr. Madhuri Jawale
 
EVS+PRESENTATIONS EVS+PRESENTATIONS like
saiyedaqib429
 
settlement FOR FOUNDATION ENGINEERS.pdf
Endalkazene
 
Advanced LangChain & RAG: Building a Financial AI Assistant with Real-Time Data
Soufiane Sejjari
 
Packaging Tips for Stainless Steel Tubes and Pipes
heavymetalsandtubes
 
top-5-use-cases-for-splunk-security-analytics.pdf
yaghutialireza
 
SAR - EEEfdfdsdasdsdasdasdasdasdasdasdasda.docx
Kanimozhi676285
 
Introduction to Ship Engine Room Systems.pdf
Mahmoud Moghtaderi
 

data transfers, addressing and arithmetic

  • 1. Assembly Language for x86 Processors Assembly Language for x86 Processors 7th Edition 7th Edition Chapter 4: Data Transfers, Addressing, and Arithmetic (c) Pearson Education, 2015. All rights reserved. You may modify and copy this slide show for your personal use, or for use in the classroom, as long as this copyright statement, the author's name, and the title are not changed. Kip Irvine
  • 2. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 2 Chapter Overview Chapter Overview • Data Transfer Instructions • Addition and Subtraction • Data-Related Operators and Directives • Indirect Addressing • JMP and LOOP Instructions • 64-Bit Programming
  • 3. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 3 Data Transfer Instructions Data Transfer Instructions • Operand Types • Instruction Operand Notation • Direct Memory Operands • MOV Instruction • Zero & Sign Extension • XCHG Instruction • Direct-Offset Instructions
  • 4. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 4 Operand Types Operand Types • Immediate – a constant integer (8, 16, or 32 bits) • value is encoded within the instruction • Register – the name of a register • register name is converted to a number and encoded within the instruction • Memory – reference to a location in memory • memory address is encoded within the instruction, or a register holds the address of a memory location
  • 5. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 5 Instruction Operand Notation Instruction Operand Notation
  • 6. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 6 Direct Memory Operands Direct Memory Operands • A direct memory operand is a named reference to storage in memory • The named reference (label) is automatically dereferenced by the assembler .data var1 BYTE 10h .code mov al,var1 ; AL = 10h mov al,[var1] ; AL = 10h alternate format => A0 00010400
  • 7. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 7 MOV Instruction MOV Instruction .data count BYTE 100 wVal WORD 2 .code mov bl,count mov ax,wVal mov count,al mov al,wVal ; error mov ax,count ; error mov eax,count ; error • Move from source to destination. Syntax: MOV destination,source • No more than one memory operand permitted • CS, EIP, and IP cannot be the destination • No immediate to segment moves
  • 8. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 8 Your turn . . . Your turn . . . .data bVal BYTE 100 bVal2 BYTE ? wVal WORD 2 dVal DWORD 5 .code mov ds,45 mov esi,wVal mov eip,dVal mov 25,bVal mov bVal2,bVal Explain why each of the following MOV statements are invalid:
  • 9. Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 9 Zero Extension Zero Extension When you copy a smaller value into a larger destination, the MOVZX instruction fills (extends) the upper half of the destination with zeros. .data val BYTE 10001111b .code movzx ax, val • The destination must be a register. • The source cannot be immediate. Can’t use this, why? movzx ax, 10001111b
  • 10. Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 10 Sign Extension Sign Extension The MOVSX instruction fills the upper half of the destination with a copy of the source operand's sign bit. mov bl,10001111b movsx ax, bl • The destination must be a register. • The source cannot be immediate. Can’t use this, why? movsx ax, 10001111b
  • 11. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 11 XCHG Instruction XCHG Instruction .data var1 WORD 1000h var2 WORD 2000h .code xchg ax,bx ; exchange 16-bit regs xchg ah,al ; exchange 8-bit regs xchg var1,bx ; exchange mem, reg xchg eax,ebx ; exchange 32-bit regs xchg var1,var2 ; error: two memory operands XCHG exchanges the values of two operands. At least one operand must be a register. No immediate operands are permitted.
  • 12. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 12 Direct-Offset Operands Direct-Offset Operands .data arrayB BYTE 10h,20h,30h,40h .code mov al,arrayB+1 ; AL = 20h mov al,[arrayB+1] ; alternative notation A constant offset is added to a data label to produce an effective address (EA). The address is dereferenced to get the value inside its memory location. Q: Why doesn't arrayB+1 produce 11h?
  • 13. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 13 Direct-Offset Operands Direct-Offset Operands (cont) (cont) .data arrayW WORD 1000h,2000h,3000h arrayD DWORD 1,2,3,4 .code mov ax,[arrayW+2] ; AX = 2000h mov ax,[arrayW+4] ; AX = 3000h mov eax,[arrayD+4] ; EAX = 00000002h A constant offset is added to a data label to produce an effective address (EA). The address is dereferenced to get the value inside its memory location. ; Will the following statements assemble? mov ax,[arrayW-2] ; ?? mov eax,[arrayD+16] ; ?? What will happen when they run?
  • 14. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 14 Evaluate this . . . Evaluate this . . . • We want to write a program that adds the following three bytes: .data myBytes BYTE 80h,66h,0A5h • What is your evaluation of the following code? mov al,myBytes add al,[myBytes+1] add al,[myBytes+2] • What is your evaluation of the following code? mov ax,myBytes add ax,[myBytes+1] add ax,[myBytes+2] • Any other possibilities?
  • 15. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 15 Evaluate this . . . Evaluate this . . . (cont) (cont) .data myBytes BYTE 80h,66h,0A5h • How about the following code. Is anything missing? movzx ax,myBytes mov bl,[myBytes+1] add ax,bx mov bl,[myBytes+2] add ax,bx ; AX = sum
  • 16. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 16 What's Next What's Next • Data Transfer Instructions • Addition and Subtraction • Data-Related Operators and Directives • Indirect Addressing • JMP and LOOP Instructions • 64-Bit Programming
  • 17. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 17 Addition and Subtraction Addition and Subtraction • INC and DEC Instructions • ADD and SUB Instructions • NEG Instruction • Implementing Arithmetic Expressions • Flags Affected by Arithmetic • Zero • Sign • Carry • Overflow
  • 18. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 18 INC and DEC Instructions INC and DEC Instructions • Add 1, subtract 1 from destination operand • operand may be register or memory • INC destination • Logic: destination  destination + 1 • DEC destination • Logic: destination  destination – 1
  • 19. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 19 INC and DEC Examples INC and DEC Examples .data myWord WORD 1000h myDword DWORD 10000000h .code inc myWord ; 1001h dec myWord ; 1000h inc myDword ; 10000001h mov ax,00FFh inc ax ; AX = 0100h mov ax,00FFh inc al ; AX = 0000h What are CF and ZF?
  • 20. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 20 Your turn... Your turn... Show the value of the destination operand after each of the following instructions executes: .data myByte BYTE 0FFh, 0 .code mov al,myByte ;al=0FFh mov ah,[myByte+1] ;ah=0 dec ah ;ah=0ffh inc al ;al=00h dec ax ;ax=0ff00 -1=FEFF
  • 21. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 21 ADD and SUB Instructions ADD and SUB Instructions • ADD destination, source • Logic: destination  destination + source • SUB destination, source • Logic: destination  destination – source • Same operand rules as for the MOV instruction
  • 22. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 22 ADD and SUB Examples ADD and SUB Examples .data var1 DWORD 10000h var2 DWORD 20000h .code ; ---EAX--- mov eax,var1 ; 00010000h add eax,var2 ; 00030000h add eax,0FFFFh ; 0003FFFFh add eax,1 ; 00040000h sub eax,1 ; 0004FFFFh
  • 23. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 23 NEG (negate) Instruction NEG (negate) Instruction .data valB BYTE -1 valW WORD +32767 .code mov al,valB ; AL = -1 neg al ; AL = +1 neg valW ; valW = -32767 Reverses the sign of an operand. Operand can be a register or memory operand. (Like converting to its Two’s Complement) Suppose AX contains –32,768 and we apply NEG to it. Will the result be valid?
  • 24. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 24 NEG Instruction and the Flags NEG Instruction and the Flags .data valB BYTE 1,0 valC SBYTE -128 .code neg valB ; CF = 1, OF = 0 neg [valB + 1] ; CF = ?, OF = 0 neg valC ; CF = 1, OF = 1 The processor implements NEG using the following internal operation: SUB 0,operand Any nonzero operand causes the Carry flag to be set.
  • 25. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 25 Implementing Arithmetic Expressions Implementing Arithmetic Expressions Rval DWORD ? Xval DWORD 26 Yval DWORD 30 Zval DWORD 40 .code mov eax,Xval neg eax ; EAX = -26 mov ebx,Yval sub ebx,Zval ; EBX = -10 add eax,ebx mov Rval,eax ; -36 HLL compilers translate mathematical expressions into assembly language. You can do it also. For example: Rval = -Xval + (Yval – Zval)
  • 26. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 26 Your turn... Your turn... mov ebx,Yval neg ebx add ebx,Zval mov eax,Xval sub eax,ebx mov Rval,eax Translate the following expression into assembly language. Do not permit Xval, Yval, or Zval to be modified: Rval = Xval - (-Yval + Zval) Assume that all values are signed doublewords.
  • 27. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 27 Flags Affected by Arithmetic Flags Affected by Arithmetic • The ALU has a number of status flags that reflect the outcome of arithmetic (and bitwise) operations • based on the contents of the destination operand • Essential flags: • Zero flag – set when destination equals zero • Sign flag – set when destination is negative • Carry flag – set when unsigned value is out of range • Overflow flag – set when signed value is out of range • The MOV instruction never affects the flags.
  • 28. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 28 Zero Flag (ZF) Zero Flag (ZF) mov cx,1 sub cx,1 ; CX = 0, ZF = 1 mov ax,0FFFFh inc ax ; AX = 0, ZF = 1 inc ax ; AX = 1, ZF = 0 The Zero flag is set when the result of an operation produces zero in the destination operand. Remember... • A flag is set when it equals 1. • A flag is clear when it equals 0.
  • 29. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 29 Sign Flag (SF) Sign Flag (SF) mov cx,0 sub cx,1 ; CX = -1, SF = 1 add cx,2 ; CX = 1, SF = 0 The Sign flag is set when the destination operand is negative. The flag is clear when the destination is positive. The sign flag is a copy of the destination's highest bit: mov al,0 sub al,1 ; AL = 11111111b, SF = 1 add al,2 ; AL = 00000001b, SF = 0
  • 30. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 30 Signed and Unsigned Integers Signed and Unsigned Integers A Hardware Viewpoint A Hardware Viewpoint • All CPU instructions operate exactly the same on signed and unsigned integers • The CPU cannot distinguish between signed and unsigned integers • YOU, the programmer, are solely responsible for using the correct data type with each instruction Added Slide. Gerald Cahill, Antelope Valley College
  • 31. Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 31 Overflow and Carry Flags Overflow and Carry Flags A Hardware Viewpoint A Hardware Viewpoint • How the ADD instruction affects OF and CF: • CF = (carry out of the MSB) • OF = (carry out of the MSB) XOR (carry into the MSB) • How the SUB instruction affects OF and CF: • CF = INVERT (carry out of the MSB) • negate the source and add it to the destination • OF = (carry out of the MSB) XOR (carry into the MSB) MSB = Most Significant Bit (high-order bit) XOR = eXclusive-OR operation NEG = Negate (same as SUB 0,operand )
  • 32. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 32 Carry Flag (CF) Carry Flag (CF) The Carry flag is set when the result of an operation generates an unsigned value that is out of range (too big or too small for the destination operand). mov al,0FFh add al,1 ; CF = 1, AL = 00 ; Try to go below zero: mov al,0 sub al,1 ; CF = 1, AL = FF How about this, Why? mov al,2 sub al,1 ; CF = ?, AL = ?
  • 33. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 33 Your turn . . . Your turn . . . mov ax,00FFh add ax,1 ; sub ax,1 ; add al,1 ; mov bh,6Ch add bh,95h ; mov al,2 sub al,3 ; For each of the following marked entries, show the values of the destination operand and the Sign, Zero, and Carry flags:
  • 34. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 34 Overflow Flag (OF) Overflow Flag (OF) The Overflow flag is set when the signed result of an operation is invalid or out of range. ; Example 1 mov al,+127 add al,1 ; OF = 1, AL = ?? ; Example 2 mov al,7Fh ; OF = 1, AL = 80h add al,1 The two examples are identical at the binary level because 7Fh equals +127. To determine the value of the destination operand, it is often easier to calculate in hexadecimal.
  • 35. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 35 A Rule of Thumb A Rule of Thumb • When adding two integers, remember that the Overflow flag is only set when . . . • Two positive operands are added and their sum is negative • Two negative operands are added and their sum is positive What will be the values of the Overflow flag? mov al,80h add al,92h ; OF = mov al,-2 add al,+127 ; OF = 1 0 Q: How about CF? Notice: -2 is 1111 1110 (254)
  • 36. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 36 Your turn . . . Your turn . . . mov al,-128 neg al ; mov ax,8000h add ax,2 ; mov ax,0 sub ax,2 ; mov al,-5 sub al,+125 ; What will be the values of the given flags after each operation?
  • 37. Added by Zuoliu Ding 5/e, 2007. 37 Your turn . . . Your turn . . . Is there any difference between these? ; 1111 1011 ; 0111 1101 ; al =7E, OF =1, CF =0 ; 1111 1011 ; 1000 0011 ; bl =7E, OF =1, CF =1 mov al, -5 sub al, 125 mov bl, -5 add bl, -125 How ADD consider 1111 1011 and 1000 0011? For unsigned, -5 is 251
  • 38. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 38 What's Next What's Next • Data Transfer Instructions • Addition and Subtraction • Data-Related Operators and Directives • Indirect Addressing • JMP and LOOP Instructions • 64-Bit Programming
  • 39. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 39 Data-Related Operators and Directives Data-Related Operators and Directives • OFFSET Operator • PTR Operator • TYPE Operator • LENGTHOF Operator • SIZEOF Operator • LABEL Directive
  • 40. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 40 OFFSET Operator OFFSET Operator • OFFSET returns the distance in bytes, of a label from the beginning of its enclosing segment • Protected mode: 32 bits • Real mode: 16 bits The Protected-mode programs we write use only a single segment (flat memory model).
  • 41. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 41 OFFSET Examples OFFSET Examples .data bVal BYTE ? wVal WORD ? dVal DWORD ? dVal2 DWORD ? .code mov esi,OFFSET bVal ; ESI = 00404000 mov esi,OFFSET wVal ; ESI = 00404001 mov esi,OFFSET dVal ; ESI = 00404003 mov esi,OFFSET dVal2 ; ESI = 00404007 Let's assume that the data segment begins at 00404000h:
  • 42. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 42 Relating to C/C++ Relating to C/C++ // C++ version: char array[1000]; char * p = array; The value returned by OFFSET is a pointer. Compare the following code written for both C++ and assembly language: ; Assembly language: .data array BYTE 1000 DUP(?) .code mov esi,OFFSET array
  • 43. Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 43 ALIGN Directive ALIGN Directive .data bVal BYTE 10h ; 0000 0000 ALIGN 2 wVal WORD 20h ; 0000 0002 bVal2 BYTE 30h ; 0000 0004 ALIGN 4 dVal DWORD 50h ; 0000 0008 bVal3 BYTE 60h ; 0000 000C ALIGN 4 dVal2 DWORD 70h ; 0000 0010 • Aligns a variable on a byte, word, dword, or paragraph boundary • Padding to 1, ,2, 4, or 16 bytes in data segments
  • 44. Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 44 PTR Operator PTR Operator Overrides the default type of a label (variable). Provides the flexibility to access part of a variable. Little endian order is used when storing data in memory 12344321h (memory 21 43 34 12) .data myDouble DWORD 12345678h .code ; mov ax,myDouble ; error – why? mov ax,WORD PTR myDouble ; loads 5678h
  • 45. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 45 Little Endian Order Little Endian Order • Little endian order refers to the way Intel stores integers in memory. • Multi-byte integers are stored in reverse order, with the least significant byte stored at the lowest address • For example, the doubleword 12345678h would be stored as: When integers are loaded from memory into registers, the bytes are automatically re-reversed into their correct positions.
  • 46. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 46 PTR Operator Examples PTR Operator Examples .data myDouble DWORD 12345678h mov al,BYTE PTR myDouble ; AL = 78h mov al,BYTE PTR [myDouble+1] ; AL = 56h mov al,BYTE PTR [myDouble+2] ; AL = 34h mov ax,WORD PTR myDouble ; AX = 5678h mov ax,WORD PTR [myDouble+2] ; AX = 1234h
  • 47. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 47 PTR Operator PTR Operator (cont) (cont) .data myBytes BYTE 12h,34h,56h,78h .code mov ax,WORD PTR [myBytes] ; AX = 3412h mov ax,WORD PTR [myBytes+2] ; AX = 7856h mov eax,DWORD PTR myBytes ; EAX = 78563412h PTR can also be used to combine elements of a smaller data type and move them into a larger operand. The CPU will automatically reverse the bytes.
  • 48. Irvine, Kip R. Assembly Language for x86 Processors 6/e, 2010. 48 Your turn . . . Your turn . . . .data varB BYTE 65h,31h,02h,05h varW WORD 6543h,1202h varD DWORD 12345678h .code mov ax,WORD PTR [varB+2] ; mov bl,BYTE PTR varD ; mov bl,BYTE PTR [varW+2] ; mov ax,WORD PTR [varD+2] ; mov eax,DWORD PTR varW ; Write down the value of each destination operand: mov ax, word ptr varD+1 ;
  • 49. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 49 TYPE Operator TYPE Operator The TYPE operator returns the size, in bytes, of a single element of a data declaration. .data var1 BYTE ? var2 WORD ? var3 DWORD ? var4 QWORD ? .code mov eax,TYPE var1 ; 1 mov eax,TYPE var2 ; 2 mov eax,TYPE var3 ; 4 mov eax,TYPE var4 ; 8
  • 50. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 50 LENGTHOF Operator LENGTHOF Operator .data LENGTHOF byte1 BYTE 10,20,30 ; 3 array1 WORD 30 DUP(?),0,0 ; 32 array2 WORD 5 DUP(3 DUP(?)) ; 15 array3 DWORD 1,2,3,4 ; 4 digitStr BYTE "12345678",0 ; 9 .code mov ecx,LENGTHOF array1 ; 32 The LENGTHOF operator counts the number of elements in a single data declaration.
  • 51. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 51 SIZEOF Operator SIZEOF Operator .data SIZEOF byte1 BYTE 10,20,30 ; 3 array1 WORD 30 DUP(?),0,0 ; 64 array2 WORD 5 DUP(3 DUP(?)) ; 30 array3 DWORD 1,2,3,4 ; 16 digitStr BYTE "12345678",0 ; 9 .code mov ecx,SIZEOF array1 ; 64 The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE.
  • 52. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 52 Spanning Multiple Lines Spanning Multiple Lines (1 of 2) (1 of 2) .data array WORD 10,20, 30,40, 50,60 .code mov eax,LENGTHOF array ; 6 mov ebx,SIZEOF array ; 12 A data declaration spans multiple lines if each line (except the last) ends with a comma. The LENGTHOF and SIZEOF operators include all lines belonging to the declaration:
  • 53. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 53 Spanning Multiple Lines Spanning Multiple Lines (2 of 2) (2 of 2) .data array WORD 10,20 WORD 30,40 WORD 50,60 .code mov eax,LENGTHOF array ; 2 mov ebx,SIZEOF array ; 4 In the following example, array identifies only the first WORD declaration. Compare the values returned by LENGTHOF and SIZEOF here to those in the previous slide:
  • 54. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 54 LABEL Directive LABEL Directive • Assigns an alternate label name and type to an existing storage location • LABEL does not allocate any storage of its own • Removes the need for the PTR operator .data dwList LABEL DWORD wordList LABEL WORD intList BYTE 00h,10h,00h,20h .code mov eax,dwList ; 20001000h mov cx,wordList ; 1000h mov dl,intList ; 00h
  • 55. Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 55 Your turn . . . Your turn . . . .data v16 label word v32 DWORD 12345678h .code mov ax, v16 ; mov dx, v16 +2 ; .data val label dword v1 WORD 5678h v2 WORD 1234h .code mov eax, val ;
  • 56. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 56 What's Next What's Next • Data Transfer Instructions • Addition and Subtraction • Data-Related Operators and Directives • Indirect Addressing • JMP and LOOP Instructions • 64-Bit Programming
  • 57. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 57 Indirect Addressing Indirect Addressing • Indirect Operands • Array Sum Example • Indexed Operands • Pointers
  • 58. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 58 Indirect Operands Indirect Operands (1 of 2) (1 of 2) .data val1 BYTE 10h,20h,30h .code mov esi,OFFSET val1 mov al,[esi] ; dereference ESI (AL = 10h) inc esi mov al,[esi] ; AL = 20h inc esi mov al,[esi] ; AL = 30h An indirect operand holds the address of a variable, usually an array or string. It can be dereferenced (just like a pointer).
  • 59. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 59 Indirect Operands Indirect Operands (2 of 2) (2 of 2) .data myCount WORD 0 .code mov esi,OFFSET myCount inc [esi] ; error: ambiguous inc WORD PTR [esi] ; ok Use PTR to clarify the size attribute of a memory operand. Should PTR be used here? add [esi],20 yes, because [esi] could point to a byte, word, or doubleword
  • 60. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 60 Array Sum Example Array Sum Example .data arrayW WORD 1000h,2000h,3000h .code mov esi,OFFSET arrayW mov ax,[esi] add esi,2 ; or: add esi,TYPE arrayW add ax,[esi] add esi,2 add ax,[esi] ; AX = sum of the array Indirect operands are ideal for traversing an array. Note that the register in brackets must be incremented by a value that matches the array type. ToDo: Modify this example for an array of doublewords.
  • 61. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 61 Indexed Operands Indexed Operands .data arrayW WORD 1000h,2000h,3000h .code mov esi,0 mov ax,[arrayW + esi] ; AX = 1000h mov ax,arrayW[esi] ; alternate format add esi,2 add ax,[arrayW + esi] etc. An indexed operand adds a constant to a register to generate an effective address. There are two notational forms: [label + reg] label[reg] ToDo: Modify this example for an array of doublewords.
  • 62. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 62 Pointers Pointers .data arrayW WORD 1000h,2000h,3000h ptrW DWORD arrayW .code mov esi,ptrW mov ax,[esi] ; AX = 1000h You can declare a pointer variable that contains the offset of another variable. Alternate format: ptrW DWORD OFFSET arrayW
  • 63. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 63 What's Next What's Next • Data Transfer Instructions • Addition and Subtraction • Data-Related Operators and Directives • Indirect Addressing • JMP and LOOP Instructions • 64-Bit Programming
  • 64. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 64 JMP and LOOP Instructions JMP and LOOP Instructions • JMP Instruction • LOOP Instruction • LOOP Example • Summing an Integer Array • Copying a String
  • 65. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 65 JMP Instruction JMP Instruction top: . . jmp top • JMP is an unconditional jump to a label that is usually within the same procedure. • Syntax: JMP target • Logic: EIP  target • Example:
  • 66. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 66 LOOP Instruction LOOP Instruction • The LOOP instruction creates a counting loop • Syntax: LOOP target • Logic: • ECX  ECX – 1 • if ECX != 0, jump to target • Implementation: • The assembler calculates the distance, in bytes, between the offset of the following instruction and the offset of the target label. It is called the relative offset. • The relative offset is added to EIP.
  • 67. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 67 Your turn . . . Your turn . . . What will be the final value of AX? mov ax,6 mov ecx,4 L1: inc ax loop L1 How many times will the loop execute? mov ecx,0 X2: inc ax loop X2 10 4,294,967,296
  • 68. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 68 Nested Loop Nested Loop If you need to code a loop within a loop, you must save the outer loop counter's ECX value. In the following example, the outer loop executes 100 times, and the inner loop 20 times. .data count DWORD ? .code mov ecx,100 ; set outer loop count L1: mov count,ecx ; save outer loop count mov ecx,20 ; set inner loop count L2: . . loop L2 ; repeat the inner loop mov ecx,count ; restore outer loop count loop L1 ; repeat the outer loop
  • 69. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 69 Summing an Integer Array Summing an Integer Array .data intarray WORD 100h,200h,300h,400h .code mov edi,OFFSET intarray ; address of intarray mov ecx,LENGTHOF intarray ; loop counter mov ax,0 ; zero the accumulator L1: add ax,[edi] ; add an integer add edi,TYPE intarray ; point to next integer loop L1 ; repeat until ECX = 0 The following code calculates the sum of an array of 16-bit integers.
  • 70. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 70 Your turn . . . Your turn . . . What changes would you make to the program on the previous slide if you were summing a doubleword array?
  • 71. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 71 Copying a String Copying a String .data source BYTE "This is the source string",0 target BYTE SIZEOF source DUP(0) .code mov esi,0 ; index register mov ecx,SIZEOF source ; loop counter L1: mov al,source[esi] ; get char from source mov target[esi],al ; store it in the target inc esi ; move to next character loop L1 ; repeat for entire string good use of SIZEOF The following code copies a string from source to target:
  • 72. Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2015. 72 Your turn . . . Your turn . . . Rewrite the program shown in the previous slide, using indirect addressing rather than indexed addressing.

Editor's Notes

  • #13: mov eax,arrayD-2(IL) mov ax,arrayD-2;ax=3000h
  • #19: inc al;CF=0,ZF=1 add al,1; CF=1,ZF=1 100000000
  • #20: al=0FFh ah=0 ah=0-1=-1=11111111=0FFh;CF=0 al=11111111 +1 100000000 al=00h;CF=0 ax=0FF00h -1 ax=FEFFh
  • #22: 40000 -1 3DEFFh
  • #23: -32768->+32767 +32768