SlideShare a Scribd company logo
Data Visualization in Python
Marc Garcia - @datapythonista
Data Visualisation Summit - London, 2017
1 / 34
Data Visualization in Python - @datapythonista
About me
http://datapythonista.github.io
2 / 34
Data Visualization in Python - @datapythonista
Python for data science
3 / 34
Data Visualization in Python - @datapythonista
Python for data science
Why Python?
Python is the favorite of many:
Fast to write: Batteries included
Easy to read: Readability is KEY
Excellent community: Conferences, local groups, stackoverflow...
Ubiquitous: Present in all major platforms
Easy to integrate: Implements main protocols and formats
Easy to extend: C extensions for low-level operations
4 / 34
Data Visualization in Python - @datapythonista
Python for data science
Python performance
Is Python fast for data science?
Short answer: No
Long answer: Yes
numpy
Cython
C extensions
Numba
etc.
5 / 34
Data Visualization in Python - @datapythonista
Python for data science
Python is great for data science
A whole ecosystem exists:
numpy
scipy
pandas
statsmodels
scikit-learn
etc.
6 / 34
Data Visualization in Python - @datapythonista
Python for data science
Python environment
One ring to rule them all:
7 / 34
Data Visualization in Python - @datapythonista
Python for data science
Python platform
Jupyter notebook
8 / 34
Data Visualization in Python - @datapythonista
Python for data science
Python for visualization
Main libraries:
Matplotlib
Seaborn
Bokeh
HoloViews
Datashader
Domain-specific
Folium: maps
yt: volumetric data
9 / 34
Data Visualization in Python - @datapythonista
Visualization tools
10 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Matplotlib
First Python visualization tool
Still a de-facto standard
Replicates Matlab API
Supports many backends
11 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Matplotlib
import numpy
from matplotlib import pyplot
x = numpy.linspace(0., 100., 1001)
y = x + numpy.random.randn(1001) * 5
pyplot.plot(x, y)
pyplot.xlabel(’time (seconds)’)
pyplot.ylabel(’some noisy signal’)
pyplot.title(’A simple plot in matplotlib’)
12 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Matplotlib
13 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Matplotlib
import numpy
from matplotlib import pyplot
x = numpy.linspace(0., 100., 1001)
y1 = x + numpy.random.randn(1001) * 3
y2 = 45 + x * .4 + numpy.random.randn(1001) * 7
pyplot.plot(x, y1, label=’Our previous signal’)
pyplot.plot(x, y2, color=’orange’, label=’A new signal’)
pyplot.xlabel(’time (seconds)’)
pyplot.ylabel(’some noisy signal’)
pyplot.title(’A simple plot in matplotlib’)
pyplot.legend()
14 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Matplotlib
15 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Seaborn
Matplotlib wrapper
Built-in themes
Higher level plots:
Heatmap
Violin plot
Pair plot
16 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Seaborn
from matplotlib import pyplot
import seaborn
flights_flat = seaborn.load_dataset(’flights’)
flights = flights_flat.pivot(’month’, ’year’, ’passengers’)
seaborn.heatmap(flights, annot=True, fmt=’d’)
pyplot.title(’Number of flight passengers (thousands)’)
17 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Seaborn
18 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Bokeh
Client-server architecture: JavaScript front-end
Interactive
Drawing shapes to generate plots
19 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Bokeh
Demo
20 / 34
Data Visualization in Python - @datapythonista
Visualization tools
HoloViews
Bokeh wrapper
Higher level plots
Mainly for Bokeh, but other backends supported
21 / 34
Data Visualization in Python - @datapythonista
Visualization tools
HoloViews
import numpy as np
import holoviews as hv
from bokeh.sampledata.us_counties import data as counties
from bokeh.sampledata.unemployment import data as unemployment
hv.extension(’bokeh’)
counties = {code: county for code, county in counties.items() if county[’state’] == ’tx’}
county_xs = [county[’lons’] for county in counties.values()]
county_ys = [county[’lats’] for county in counties.values()]
county_names = [county[’name’] for county in counties.values()]
county_rates = [unemployment[county_id] for county_id in counties]
county_polys = {name: hv.Polygons((xs, ys), level=rate, vdims=[’Unemployment’])
for name, xs, ys, rate in zip(county_names, county_xs, county_ys,
county_rates)}
choropleth = hv.NdOverlay(county_polys, kdims=[’County’])
plot_opts = dict(logz=True, tools=[’hover’], xaxis=None, yaxis=None,
show_grid=False, show_frame=False, width=500, height=500)
style = dict(line_color=’white’)
choropleth({’Polygons’: {’style’: style, ’plot’: plot_opts}})
22 / 34
Data Visualization in Python - @datapythonista
Visualization tools
HoloViews
23 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Datashader
Bokeh wrapper
Built for big data
Advanced subsampling and binning techniques
24 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Datashader
25 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Folium
Visualization of maps
Compatible with Google maps and Open street maps
Visualization of markers, paths and polygons
26 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Folium
import folium
m = folium.Map(location=[45.372, -121.6972],
zoom_start=12,
tiles=’Stamen Terrain’)
folium.Marker(location=[45.3288, -121.6625],
popup=’Mt. Hood Meadows’,
icon=folium.Icon(icon=’cloud’)).add_to(m)
folium.Marker(location=[45.3311, -121.7113],
popup=’Timberline Lodge’,
icon=folium.Icon(color=’green’)).add_to(m)
folium.Marker(location=[45.3300, -121.6823],
popup=’Some Other Location’,
icon=folium.Icon(color=’red’, icon=’info-sign’)).add_to(m)
m
27 / 34
Data Visualization in Python - @datapythonista
Visualization tools
Folium
28 / 34
Data Visualization in Python - @datapythonista
Visualization tools
yt
Visualization of volumetric data
Compatible with many formats
Projects multidimensional data to a 2-D plane
29 / 34
Data Visualization in Python - @datapythonista
Visualization tools
yt
import yt
ds = yt.load(’MOOSE_sample_data/out.e-s010’)
sc = yt.create_scene(ds)
ms = sc.get_source()
ms.cmap = ’Eos A’
cam = sc.camera
cam.focus = ds.arr([0.0, 0.0, 0.0], ’code_length’)
cam_pos = ds.arr([-3.0, 3.0, -3.0], ’code_length’)
north_vector = ds.arr([0.0, -1.0, -1.0], ’dimensionless’)
cam.set_position(cam_pos, north_vector)
cam.resolution = (800, 800)
sc.save()
30 / 34
Data Visualization in Python - @datapythonista
Visualization tools
yt
31 / 34
Data Visualization in Python - @datapythonista
Conclusions
32 / 34
Data Visualization in Python - @datapythonista
Conclusions
Conclusions
Python is great as a programming language
And is great for data science
Plenty of options for visualization:
Standard plots
Ad-hoc plots
Interactive
3D plots
Maps
Big data
Specialized
33 / 34
Data Visualization in Python - @datapythonista
Conclusions
Questions?
@datapythonista
34 / 34
Data Visualization in Python - @datapythonista

More Related Content

What's hot (20)

PPTX
Python Seaborn Data Visualization
Sourabh Sahu
 
PPTX
Introduction to matplotlib
Piyush rai
 
PDF
Data Analysis and Visualization using Python
Chariza Pladin
 
PPTX
Data Science With Python | Python For Data Science | Python Data Science Cour...
Simplilearn
 
ODP
Data Analysis in Python
Richard Herrell
 
PPTX
Python Scipy Numpy
Girish Khanzode
 
DOCX
Big data lecture notes
Mohit Saini
 
PPTX
Introduction to pandas
Piyush rai
 
PDF
Python Matplotlib Tutorial | Matplotlib Tutorial | Python Tutorial | Python T...
Edureka!
 
ODP
Python Modules
Nitin Reddy Katkam
 
PPT
Data preprocessing
ankur bhalla
 
PPTX
Python
Aashish Jain
 
PPTX
MatplotLib.pptx
Paras Intotech
 
PDF
Introduction to NumPy
Huy Nguyen
 
PPTX
Exploratory data analysis with Python
Davis David
 
PDF
pandas - Python Data Analysis
Andrew Henshaw
 
PPTX
What Is Data Science? | Introduction to Data Science | Data Science For Begin...
Simplilearn
 
PDF
Dimensionality Reduction
mrizwan969
 
PPTX
Lecture #01
Konpal Darakshan
 
PDF
Data Visualization(s) Using Python
Aniket Maithani
 
Python Seaborn Data Visualization
Sourabh Sahu
 
Introduction to matplotlib
Piyush rai
 
Data Analysis and Visualization using Python
Chariza Pladin
 
Data Science With Python | Python For Data Science | Python Data Science Cour...
Simplilearn
 
Data Analysis in Python
Richard Herrell
 
Python Scipy Numpy
Girish Khanzode
 
Big data lecture notes
Mohit Saini
 
Introduction to pandas
Piyush rai
 
Python Matplotlib Tutorial | Matplotlib Tutorial | Python Tutorial | Python T...
Edureka!
 
Python Modules
Nitin Reddy Katkam
 
Data preprocessing
ankur bhalla
 
Python
Aashish Jain
 
MatplotLib.pptx
Paras Intotech
 
Introduction to NumPy
Huy Nguyen
 
Exploratory data analysis with Python
Davis David
 
pandas - Python Data Analysis
Andrew Henshaw
 
What Is Data Science? | Introduction to Data Science | Data Science For Begin...
Simplilearn
 
Dimensionality Reduction
mrizwan969
 
Lecture #01
Konpal Darakshan
 
Data Visualization(s) Using Python
Aniket Maithani
 

Similar to Data visualization in Python (20)

PDF
datavisualizationinpythonv2-171103225436.pdf
smartashammari
 
PDF
DAVLectuer3 Exploratory data analysis .pdf
ZaheerAbbas82578
 
PPTX
Exploring-Data-Visualization-in-Python.pptx
Ram Kumar
 
PPTX
Data-Visualization-with-Python-2 PPT.pptx
ChiragNahata2
 
PDF
DAVLectuer3 Exploratory data analysis .pdf
ZaheerAbbas82578
 
PPTX
Data Visualization in Python of b.tech student.pptx
TelanganaPakkaFolk
 
PPTX
Python for Data Science
Panimalar Engineering College
 
PDF
Python Visualisation for Data Science
Amit Kapoor
 
PPTX
DATA ANALYSIS AND VISUALISATION using python 2
ChiragNahata2
 
PDF
Data visualization
Moushmi Dasgupta
 
PPTX
Python_for_Data_Visualization.pptx python for BE &Mtech
PoojaPatil286778
 
PDF
PyLadies Seattle - Lessons in Interactive Visualizations
Amanda Casari
 
DOCX
Start Data Analysis Right_ Python Libraries You Need to Know.docx
jollyangelika020
 
PPTX
UNIT-5-II IT-DATA VISUALIZATION TECHNIQUES
hemalathab24
 
PPTX
CH 4_TYBSC(CS)_Data Science_Visualisation
sangeeta borde
 
PDF
Exploratory Data Analysis in Spark
datamantra
 
PDF
Unlocking Insights Data Analysis Visualization
HelenOkereke
 
PPTX
Radhika (30323U09065).pptx data science with python
ksaravanakumar450
 
PPTX
data analytics and visualization CO4_18_Data Types for Plotting.pptx
JAVVAJI VENKATA RAO
 
PPTX
VANITHA S.docx.pptxdata science with python
ksaravanakumar450
 
datavisualizationinpythonv2-171103225436.pdf
smartashammari
 
DAVLectuer3 Exploratory data analysis .pdf
ZaheerAbbas82578
 
Exploring-Data-Visualization-in-Python.pptx
Ram Kumar
 
Data-Visualization-with-Python-2 PPT.pptx
ChiragNahata2
 
DAVLectuer3 Exploratory data analysis .pdf
ZaheerAbbas82578
 
Data Visualization in Python of b.tech student.pptx
TelanganaPakkaFolk
 
Python for Data Science
Panimalar Engineering College
 
Python Visualisation for Data Science
Amit Kapoor
 
DATA ANALYSIS AND VISUALISATION using python 2
ChiragNahata2
 
Data visualization
Moushmi Dasgupta
 
Python_for_Data_Visualization.pptx python for BE &Mtech
PoojaPatil286778
 
PyLadies Seattle - Lessons in Interactive Visualizations
Amanda Casari
 
Start Data Analysis Right_ Python Libraries You Need to Know.docx
jollyangelika020
 
UNIT-5-II IT-DATA VISUALIZATION TECHNIQUES
hemalathab24
 
CH 4_TYBSC(CS)_Data Science_Visualisation
sangeeta borde
 
Exploratory Data Analysis in Spark
datamantra
 
Unlocking Insights Data Analysis Visualization
HelenOkereke
 
Radhika (30323U09065).pptx data science with python
ksaravanakumar450
 
data analytics and visualization CO4_18_Data Types for Plotting.pptx
JAVVAJI VENKATA RAO
 
VANITHA S.docx.pptxdata science with python
ksaravanakumar450
 
Ad

More from Marc Garcia (6)

PDF
Replicating the human brain: Deep learning in action
Marc Garcia
 
PDF
Machine Learning for Digital Advertising
Marc Garcia
 
PDF
Machine learning for digital advertising
Marc Garcia
 
PDF
Understanding random forests
Marc Garcia
 
PDF
CART: Not only Classification and Regression Trees
Marc Garcia
 
PDF
High Performance Python - Marc Garcia
Marc Garcia
 
Replicating the human brain: Deep learning in action
Marc Garcia
 
Machine Learning for Digital Advertising
Marc Garcia
 
Machine learning for digital advertising
Marc Garcia
 
Understanding random forests
Marc Garcia
 
CART: Not only Classification and Regression Trees
Marc Garcia
 
High Performance Python - Marc Garcia
Marc Garcia
 
Ad

Recently uploaded (20)

PDF
Salesforce CRM Services.VALiNTRY360
VALiNTRY360
 
PPT
MergeSortfbsjbjsfk sdfik k
RafishaikIT02044
 
PDF
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pdf
Varsha Nayak
 
PPTX
Platform for Enterprise Solution - Java EE5
abhishekoza1981
 
PPTX
Java Native Memory Leaks: The Hidden Villain Behind JVM Performance Issues
Tier1 app
 
PPTX
An Introduction to ZAP by Checkmarx - Official Version
Simon Bennetts
 
PDF
Powering GIS with FME and VertiGIS - Peak of Data & AI 2025
Safe Software
 
PPTX
A Complete Guide to Salesforce SMS Integrations Build Scalable Messaging With...
360 SMS APP
 
PDF
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
PDF
Understanding the Need for Systemic Change in Open Source Through Intersectio...
Imma Valls Bernaus
 
PPTX
MailsDaddy Outlook OST to PST converter.pptx
abhishekdutt366
 
PPTX
Equipment Management Software BIS Safety UK.pptx
BIS Safety Software
 
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked} 2025
hashhshs786
 
PPTX
Tally software_Introduction_Presentation
AditiBansal54083
 
PDF
HiHelloHR – Simplify HR Operations for Modern Workplaces
HiHelloHR
 
PDF
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
PDF
MiniTool Partition Wizard 12.8 Crack License Key LATEST
hashhshs786
 
PPTX
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
PPTX
Revolutionizing Code Modernization with AI
KrzysztofKkol1
 
PDF
GetOnCRM Speeds Up Agentforce 3 Deployment for Enterprise AI Wins.pdf
GetOnCRM Solutions
 
Salesforce CRM Services.VALiNTRY360
VALiNTRY360
 
MergeSortfbsjbjsfk sdfik k
RafishaikIT02044
 
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pdf
Varsha Nayak
 
Platform for Enterprise Solution - Java EE5
abhishekoza1981
 
Java Native Memory Leaks: The Hidden Villain Behind JVM Performance Issues
Tier1 app
 
An Introduction to ZAP by Checkmarx - Official Version
Simon Bennetts
 
Powering GIS with FME and VertiGIS - Peak of Data & AI 2025
Safe Software
 
A Complete Guide to Salesforce SMS Integrations Build Scalable Messaging With...
360 SMS APP
 
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
Understanding the Need for Systemic Change in Open Source Through Intersectio...
Imma Valls Bernaus
 
MailsDaddy Outlook OST to PST converter.pptx
abhishekdutt366
 
Equipment Management Software BIS Safety UK.pptx
BIS Safety Software
 
Capcut Pro Crack For PC Latest Version {Fully Unlocked} 2025
hashhshs786
 
Tally software_Introduction_Presentation
AditiBansal54083
 
HiHelloHR – Simplify HR Operations for Modern Workplaces
HiHelloHR
 
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
MiniTool Partition Wizard 12.8 Crack License Key LATEST
hashhshs786
 
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
Revolutionizing Code Modernization with AI
KrzysztofKkol1
 
GetOnCRM Speeds Up Agentforce 3 Deployment for Enterprise AI Wins.pdf
GetOnCRM Solutions
 

Data visualization in Python

  • 1. Data Visualization in Python Marc Garcia - @datapythonista Data Visualisation Summit - London, 2017 1 / 34 Data Visualization in Python - @datapythonista
  • 3. Python for data science 3 / 34 Data Visualization in Python - @datapythonista
  • 4. Python for data science Why Python? Python is the favorite of many: Fast to write: Batteries included Easy to read: Readability is KEY Excellent community: Conferences, local groups, stackoverflow... Ubiquitous: Present in all major platforms Easy to integrate: Implements main protocols and formats Easy to extend: C extensions for low-level operations 4 / 34 Data Visualization in Python - @datapythonista
  • 5. Python for data science Python performance Is Python fast for data science? Short answer: No Long answer: Yes numpy Cython C extensions Numba etc. 5 / 34 Data Visualization in Python - @datapythonista
  • 6. Python for data science Python is great for data science A whole ecosystem exists: numpy scipy pandas statsmodels scikit-learn etc. 6 / 34 Data Visualization in Python - @datapythonista
  • 7. Python for data science Python environment One ring to rule them all: 7 / 34 Data Visualization in Python - @datapythonista
  • 8. Python for data science Python platform Jupyter notebook 8 / 34 Data Visualization in Python - @datapythonista
  • 9. Python for data science Python for visualization Main libraries: Matplotlib Seaborn Bokeh HoloViews Datashader Domain-specific Folium: maps yt: volumetric data 9 / 34 Data Visualization in Python - @datapythonista
  • 10. Visualization tools 10 / 34 Data Visualization in Python - @datapythonista
  • 11. Visualization tools Matplotlib First Python visualization tool Still a de-facto standard Replicates Matlab API Supports many backends 11 / 34 Data Visualization in Python - @datapythonista
  • 12. Visualization tools Matplotlib import numpy from matplotlib import pyplot x = numpy.linspace(0., 100., 1001) y = x + numpy.random.randn(1001) * 5 pyplot.plot(x, y) pyplot.xlabel(’time (seconds)’) pyplot.ylabel(’some noisy signal’) pyplot.title(’A simple plot in matplotlib’) 12 / 34 Data Visualization in Python - @datapythonista
  • 13. Visualization tools Matplotlib 13 / 34 Data Visualization in Python - @datapythonista
  • 14. Visualization tools Matplotlib import numpy from matplotlib import pyplot x = numpy.linspace(0., 100., 1001) y1 = x + numpy.random.randn(1001) * 3 y2 = 45 + x * .4 + numpy.random.randn(1001) * 7 pyplot.plot(x, y1, label=’Our previous signal’) pyplot.plot(x, y2, color=’orange’, label=’A new signal’) pyplot.xlabel(’time (seconds)’) pyplot.ylabel(’some noisy signal’) pyplot.title(’A simple plot in matplotlib’) pyplot.legend() 14 / 34 Data Visualization in Python - @datapythonista
  • 15. Visualization tools Matplotlib 15 / 34 Data Visualization in Python - @datapythonista
  • 16. Visualization tools Seaborn Matplotlib wrapper Built-in themes Higher level plots: Heatmap Violin plot Pair plot 16 / 34 Data Visualization in Python - @datapythonista
  • 17. Visualization tools Seaborn from matplotlib import pyplot import seaborn flights_flat = seaborn.load_dataset(’flights’) flights = flights_flat.pivot(’month’, ’year’, ’passengers’) seaborn.heatmap(flights, annot=True, fmt=’d’) pyplot.title(’Number of flight passengers (thousands)’) 17 / 34 Data Visualization in Python - @datapythonista
  • 18. Visualization tools Seaborn 18 / 34 Data Visualization in Python - @datapythonista
  • 19. Visualization tools Bokeh Client-server architecture: JavaScript front-end Interactive Drawing shapes to generate plots 19 / 34 Data Visualization in Python - @datapythonista
  • 20. Visualization tools Bokeh Demo 20 / 34 Data Visualization in Python - @datapythonista
  • 21. Visualization tools HoloViews Bokeh wrapper Higher level plots Mainly for Bokeh, but other backends supported 21 / 34 Data Visualization in Python - @datapythonista
  • 22. Visualization tools HoloViews import numpy as np import holoviews as hv from bokeh.sampledata.us_counties import data as counties from bokeh.sampledata.unemployment import data as unemployment hv.extension(’bokeh’) counties = {code: county for code, county in counties.items() if county[’state’] == ’tx’} county_xs = [county[’lons’] for county in counties.values()] county_ys = [county[’lats’] for county in counties.values()] county_names = [county[’name’] for county in counties.values()] county_rates = [unemployment[county_id] for county_id in counties] county_polys = {name: hv.Polygons((xs, ys), level=rate, vdims=[’Unemployment’]) for name, xs, ys, rate in zip(county_names, county_xs, county_ys, county_rates)} choropleth = hv.NdOverlay(county_polys, kdims=[’County’]) plot_opts = dict(logz=True, tools=[’hover’], xaxis=None, yaxis=None, show_grid=False, show_frame=False, width=500, height=500) style = dict(line_color=’white’) choropleth({’Polygons’: {’style’: style, ’plot’: plot_opts}}) 22 / 34 Data Visualization in Python - @datapythonista
  • 23. Visualization tools HoloViews 23 / 34 Data Visualization in Python - @datapythonista
  • 24. Visualization tools Datashader Bokeh wrapper Built for big data Advanced subsampling and binning techniques 24 / 34 Data Visualization in Python - @datapythonista
  • 25. Visualization tools Datashader 25 / 34 Data Visualization in Python - @datapythonista
  • 26. Visualization tools Folium Visualization of maps Compatible with Google maps and Open street maps Visualization of markers, paths and polygons 26 / 34 Data Visualization in Python - @datapythonista
  • 27. Visualization tools Folium import folium m = folium.Map(location=[45.372, -121.6972], zoom_start=12, tiles=’Stamen Terrain’) folium.Marker(location=[45.3288, -121.6625], popup=’Mt. Hood Meadows’, icon=folium.Icon(icon=’cloud’)).add_to(m) folium.Marker(location=[45.3311, -121.7113], popup=’Timberline Lodge’, icon=folium.Icon(color=’green’)).add_to(m) folium.Marker(location=[45.3300, -121.6823], popup=’Some Other Location’, icon=folium.Icon(color=’red’, icon=’info-sign’)).add_to(m) m 27 / 34 Data Visualization in Python - @datapythonista
  • 28. Visualization tools Folium 28 / 34 Data Visualization in Python - @datapythonista
  • 29. Visualization tools yt Visualization of volumetric data Compatible with many formats Projects multidimensional data to a 2-D plane 29 / 34 Data Visualization in Python - @datapythonista
  • 30. Visualization tools yt import yt ds = yt.load(’MOOSE_sample_data/out.e-s010’) sc = yt.create_scene(ds) ms = sc.get_source() ms.cmap = ’Eos A’ cam = sc.camera cam.focus = ds.arr([0.0, 0.0, 0.0], ’code_length’) cam_pos = ds.arr([-3.0, 3.0, -3.0], ’code_length’) north_vector = ds.arr([0.0, -1.0, -1.0], ’dimensionless’) cam.set_position(cam_pos, north_vector) cam.resolution = (800, 800) sc.save() 30 / 34 Data Visualization in Python - @datapythonista
  • 31. Visualization tools yt 31 / 34 Data Visualization in Python - @datapythonista
  • 32. Conclusions 32 / 34 Data Visualization in Python - @datapythonista
  • 33. Conclusions Conclusions Python is great as a programming language And is great for data science Plenty of options for visualization: Standard plots Ad-hoc plots Interactive 3D plots Maps Big data Specialized 33 / 34 Data Visualization in Python - @datapythonista
  • 34. Conclusions Questions? @datapythonista 34 / 34 Data Visualization in Python - @datapythonista