SlideShare a Scribd company logo
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк
https://drive.google.com/file/d/0BxKBnD5y2M8NREZod0tVdW5FLTQ/view
http://kaiminghe.com/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”.arXiv 2015
https://devblogs.nvidia.com/parallelforall/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/
•
•
•
•
•
•
graph = tf.Graph()
with graph.as_default():
x = tf.placeholder(tf.float32,name='input')
y = tf.placeholder(tf.float32,name='labels')
x_image = tf.reshape(x, [-1, 28, 28, 1])
...
with tf.variable_scope('conv1'):
W_conv1 = weight_variable(
[5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(
conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
with tf.variable_scope('conv2'):
...
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session(graph=graph) as sess:
from tf.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
writer = tf.summary.FileWriter(logdir, sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
_,train_accuracy = sess.run([train_step,accuracy],
feed_dict={x: batch[0], y: batch[1]})
if i % 100 == 0:
print("step %d, training accuracy %g" % (i, train_accuracy))
print("test accuracy %g" % sess.run(accuracy, feed_dict={x:
mnist.test.images, y: mnist.test.labels}))
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк
def conv_layer_resnet_im(inpt, filter_shape, stride,
phase,name=''):
filter_ = weight_variable(filter_shape,
name=name + '_weights')
normalized = batch_norm(inpt, phase,name=name)
activated = tf.nn.relu(normalized)
conv = tf.nn.conv2d(activated, filter=filter_,
strides=[1, stride, stride, 1], padding="SAME")
return conv
def residual_block_im(inpt, output_depth,phase,
name=''):
input_depth = inpt.get_shape().as_list()[3]
conv1 = conv_layer_resnet_im(inpt,
[3, 3,input_depth, output_depth],
1,phase, name=name+'_conv1')
conv2 = conv_layer_resnet_im(conv1,
[3, 3, output_depth, output_depth],
1,phase, name=name+'_conv2')
if input_depth != output_depth:
input_layer = tf.pad(inpt, [[0,0], [0,0],
[0,0], [0, output_depth - input_depth]])
else:
input_layer = inpt
return conv2 + input_layer
num_blocks = 4
num_filters = 128
for i in range(num_blocks):
with tf.variable_scope('conv%d_%d' %
(num_filters, i + 1)):
conv = residual_block_deep_im(layers[-1],
num_filters, phase)
layers.append(conv)
assert conv.get_shape().as_list()[1:] ==
[56, 56, num_filters]
...
•
•
•
self.data_examples =
tf.placeholder(dtype=tf.float32,
shape=[batch_size,img_size,img_size,3])
self.data_labels =
tf.placeholder(dtype=tf.float32,
shape=[batch_size, num_labels])
self.queue =
tf.RandomShuffleQueue(shapes=[[img_size,
img_size, 3],[num_labels,]],
dtypes=[tf.float32, tf.float32],
capacity=capacity, min_after_dequeue=0)
self.enqueue_op =
self.queue.enqueue_many([self.data_examples,
self.data_labels)
def put_inputs(self, sess):
for data_examples, data_labels
in self.iterator(...):
sess.run(self.enqueue_op,feed_dict={
self.data_examples:data_examples,
self.data_labels:data_labels})
def get_inputs(self):
return
self.queue.dequeue_many(self.batch_size)
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк
for i in xrange(num_GPU):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % ('GPU', i)) as name_scope:
train_images_batch, train_labels_batch =
train_runner.get_inputs()
tower_loss =
get_tower_loss(name_scope, train_images_batch,
train_labels_batch,phase_train)
tf.get_variable_scope().reuse_variables()
loss_list.append(tower_loss)
grads = optimizer.compute_gradients(tower_loss)
tower_grads.append(grads)
grads = average_gradients(tower_grads)
loss = tf.reduce_mean(loss_list)
with tf.variable_scope(tf.get_variable_scope(),
reuse=False):
train_op = optimizer.apply_gradients(grads,
global_step=global_step)
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк
jeans
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк

More Related Content

Similar to DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк (20)

PPTX
2014 - CVPR Tutorial on Deep Learning for Vision - Object Detection.pptx
himob78718
 
PDF
Easy path to machine learning
wesley chun
 
PPTX
Drawing in HTML5 Open House
Noam Kfir
 
PDF
MixTaiwan 20170222 清大電機 孫民 AI The Next Big Thing
Mix Taiwan
 
PDF
Mind the Gap: Realising the Value of Agility
Craig Smith
 
PDF
Apache Hadoop Ecosystem (based on an exemplary data-driven…
Adam Kawa
 
PDF
Advanced Web Graphics with Canvas
Jason Harwig
 
PDF
Ten Commandments Of A Software Engineer
Sebastian Marek
 
DOCX
Girish kumar
Girish Kumar
 
PDF
从YUI2到YUI3看前端的演变
Kejun Zhang
 
PDF
HTML5 after the hype - JFokus2015
Christian Heilmann
 
PDF
快快樂樂打造自動化開發環境
Chen Cheng-Wei
 
PPTX
Justin computer design cycle 8 c36
JustinTiu
 
PDF
認識用戶體驗設計的價值與招募要點 - Recruit UX Talents For Your Team
Ivan Wei
 
PPTX
Predicting & Influencing with Kanban Metrics
Steve Purkis
 
PPTX
Predicting & influencing with kanban metrics
Adam Scott
 
PDF
Interaction designer how to grow up
zhubin
 
PDF
Pioneer a Strategic Change in Content Organization with Plone
Clayton Parker
 
PPTX
Deep re-id: 关于行人重识别的深度学习方法
哲东 郑
 
PDF
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Universitat Politècnica de Catalunya
 
2014 - CVPR Tutorial on Deep Learning for Vision - Object Detection.pptx
himob78718
 
Easy path to machine learning
wesley chun
 
Drawing in HTML5 Open House
Noam Kfir
 
MixTaiwan 20170222 清大電機 孫民 AI The Next Big Thing
Mix Taiwan
 
Mind the Gap: Realising the Value of Agility
Craig Smith
 
Apache Hadoop Ecosystem (based on an exemplary data-driven…
Adam Kawa
 
Advanced Web Graphics with Canvas
Jason Harwig
 
Ten Commandments Of A Software Engineer
Sebastian Marek
 
Girish kumar
Girish Kumar
 
从YUI2到YUI3看前端的演变
Kejun Zhang
 
HTML5 after the hype - JFokus2015
Christian Heilmann
 
快快樂樂打造自動化開發環境
Chen Cheng-Wei
 
Justin computer design cycle 8 c36
JustinTiu
 
認識用戶體驗設計的價值與招募要點 - Recruit UX Talents For Your Team
Ivan Wei
 
Predicting & Influencing with Kanban Metrics
Steve Purkis
 
Predicting & influencing with kanban metrics
Adam Scott
 
Interaction designer how to grow up
zhubin
 
Pioneer a Strategic Change in Content Organization with Plone
Clayton Parker
 
Deep re-id: 关于行人重识别的深度学习方法
哲东 郑
 
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Universitat Politècnica de Catalunya
 

More from GeeksLab Odessa (20)

PDF
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Блиц-доклад_Турский Виктор
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Обзор методов детекции лиц на изображение
GeeksLab Odessa
 
PDF
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
PDF
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
PDF
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
PDF
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
GeeksLab Odessa
 
PDF
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
GeeksLab Odessa
 
PDF
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
GeeksLab Odessa
 
PDF
DataScience Lab 2017_Графические вероятностные модели для принятия решений в ...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
GeeksLab Odessa
 
PDF
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
GeeksLab Odessa
 
PDF
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
GeeksLab Odessa
 
PPTX
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
GeeksLab Odessa
 
PDF
JS Lab2017_Redux: время двигаться дальше?_Екатерина Лизогубова
GeeksLab Odessa
 
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
GeeksLab Odessa
 
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
GeeksLab Odessa
 
DataScience Lab 2017_Блиц-доклад_Турский Виктор
GeeksLab Odessa
 
DataScience Lab 2017_Обзор методов детекции лиц на изображение
GeeksLab Odessa
 
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
GeeksLab Odessa
 
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
DataScienceLab2017_Блиц-доклад
GeeksLab Odessa
 
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
GeeksLab Odessa
 
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
GeeksLab Odessa
 
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
GeeksLab Odessa
 
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
GeeksLab Odessa
 
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
GeeksLab Odessa
 
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
GeeksLab Odessa
 
DataScience Lab 2017_Графические вероятностные модели для принятия решений в ...
GeeksLab Odessa
 
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
GeeksLab Odessa
 
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
GeeksLab Odessa
 
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
GeeksLab Odessa
 
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
GeeksLab Odessa
 
JS Lab2017_Redux: время двигаться дальше?_Екатерина Лизогубова
GeeksLab Odessa
 
Ad

Recently uploaded (20)

PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PDF
introduction to computer hardware and sofeware
chauhanshraddha2007
 
PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PPTX
Simple and concise overview about Quantum computing..pptx
mughal641
 
PPTX
AI Code Generation Risks (Ramkumar Dilli, CIO, Myridius)
Priyanka Aash
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PPTX
AVL ( audio, visuals or led ), technology.
Rajeshwri Panchal
 
PDF
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
PDF
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
PDF
Build with AI and GDG Cloud Bydgoszcz- ADK .pdf
jaroslawgajewski1
 
PDF
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
PDF
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
PPTX
The Future of AI & Machine Learning.pptx
pritsen4700
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
PPTX
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PDF
TrustArc Webinar - Navigating Data Privacy in LATAM: Laws, Trends, and Compli...
TrustArc
 
The Future of Artificial Intelligence (AI)
Mukul
 
introduction to computer hardware and sofeware
chauhanshraddha2007
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
Simple and concise overview about Quantum computing..pptx
mughal641
 
AI Code Generation Risks (Ramkumar Dilli, CIO, Myridius)
Priyanka Aash
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
AVL ( audio, visuals or led ), technology.
Rajeshwri Panchal
 
Tea4chat - another LLM Project by Kerem Atam
a0m0rajab1
 
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
Build with AI and GDG Cloud Bydgoszcz- ADK .pdf
jaroslawgajewski1
 
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
The Future of AI & Machine Learning.pptx
pritsen4700
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
TrustArc Webinar - Navigating Data Privacy in LATAM: Laws, Trends, and Compli...
TrustArc
 
Ad

DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и TensorFlow_Ольга Романюк