DatavaultHennie de Nooijer
Dan LinstedtData modelingAll data, all the timeMethod of designData Vault
AgendaPositionDefinitionArchitectureModelingMethodologyQuestions?38-12-2010
Informationprovisioning8-12-20104
Controllled informationprovisioningInformation provisioningDWH8-12-20105
Business IntelligenceData warehouseETLHardwareRDBMS8-12-20106
DefinitionThe Data Vault is a detail oriented, historical tracking and uniquely linked set of normalized tables that support one or more functional areas of business.7The Data Vault is a detail oriented, historical tracking and uniquely linked set of normalized tables that support one or more functional areas of business.8-12-2010
Detailoriented88-12-2010
Historical tracking98-12-2010
Uniquely linked set normalized tables108-12-2010
Functional areas of business118-12-2010
8-12-201012But there are more aspects…..
Auditable138-12-2010
Scalable148-12-2010
8-12-201015Adaptable
8-12-201016Active
8-12-201017Metadata
8-12-201018MDM aware
AgendaPositionDefinitionArchitectureModelingMethodologyQuestions?198-12-2010
Conventional architectureCurrent Business Demands/WishesIntegrationStoragePresentationDWHTRANSFORMSTAGEBusiness Information Model
Modern architectureIntegrationStoragePresentationStorageCurrent Business Demands/WishesSTAGEsourceDWHbusinessDWHTRANSFORMALL DATA, ALL THE TIMECurrent Business Information Model
Is geplaatst onder/betreftwerkdagBestellingopBusinessInformationModelOntvangt/Is geplaatst bijheeftomvangVerplicht tot/Is realisatie vanLeverancierBestaat uit/zit inLeveringsconditiesIs bereid te leveren/kan geleverd worden doorLeveringBestaat uit/komt voor inMateriaalsoortVoorziet in/wordt in voorzien doorwerkdagomvangKomt voor inmetMoet in voorzien worden voorWordt ontvangen door/ontvangtBestaat uitMateriaalbehoeftemagazijnBetreft de bereidhied tot het levereren aan een/kan conform worden geleverd aanMagazijn
Architecture (detail)238-12-2010Frond endPatientDatamartsPatientBusiness DatavaultPatientRaw Datavault 1Raw Datavault 2Raw Datavault nKNA1PatientCustomerReplicatielaagBron nBron 2Bron 1KNA1CustomerPatient
Architecture (Advanced)Enterprise Service Bus (Biztalk/Cloverleaf/SOA)248-12-2010Frond end toolsDatamartsDatavaultBron nBron 1Bron 2
BenefitsManage and enforce Compliance (SOX, HIPPA en BASEL II).Reduces Business cycle time.Enabling Master Data management.CMM Level 5 compliant.Repeatable, consistent and redundant.Trace all data back to source systems.Flexibility.Scalability.Consistent.Adaptable.Possible automatic generation of the DDL and ETL.Supports VLDBDesigned for EDW258-12-2010
AgendaPositionDefinitionArchitectureModelingMethodologyQuestions?268-12-2010PatientTreatSatelliteSatelliteTreatmentLinkSatelliteHubHubSatelliteSatelliteSatelliteSatellite
Hub278-12-2010HubRepresents the business key.A surrogate key as the primary key.Load date timestamp (when did it get there?)Record source (where did it come from?)Patient_IDPatient_KeyPatient_CodePatient_NamePatient_DescPatient_CategoryPatient_SubCategoryPatient_AddressPatient_GenderPatient_CodeLoad_DateRecord_SourceHub_PatientPatient
Satellite288-12-2010SatelliteDescriptive items of a hub or a linkA surrogate key as the primary key.Load date timestamp (when did it get there?)Record source (where did it come from?)Patient_KeyLoad_DatePatient_IDPatient_KeyLoad_DatePatient_KeyLoad_DatePatient_CodePatient_NamePatient_DescPatient_CategoryPatient_SubCategoryPatient_AddressPatient_GenderPatient_NamePatient_DescPatient_CategoryPatient_SubCategoryPatient_AddressPatient_GenderPatient_NamePatient_DescPatient_AddressPatient_GenderPatient_CategoryPatient_SubCategorySAT_PatientSAT_PatientCategorySAT_PatientPatient
LinkLinks two or more hubsOwn surogate key.Keys from the hubLoad date time stampRecord source298-12-2010LinkPatient_KeyTreat_KeyTreatment_KeyHub_PatientPatient_KeyTreat_KeyLoad_DateRecord_SourcePatient_CodeLoad_DateRecord_SourceTreat_CodeLoad_DateRecord_SourceHub_TreatLink_Treatment
Bron datamodel308-12-2010
Analyse datamodel318-12-2010
Datavault datamodel328-12-2010
8-12-201033DatavaultPoint in Time views (PIT).‘truth’ at a certain moment.Helper table?Bridge.Same as Point in Time but then a range.
Questions?348-12-2010

More Related Content

PDF
Lean Data Warehouse via Data Vault
PPTX
Original: Lean Data Model Storming for the Agile Enterprise
DOCX
Data Vault: Data Warehouse Design Goes Agile
PPTX
Data Vault Overview
PPTX
Agile Data Engineering - Intro to Data Vault Modeling (2016)
PPTX
Data Vault and DW2.0
PPTX
Operational Data Vault
PDF
Shorter time to insight more adaptable less costly bi with end to end modelst...
Lean Data Warehouse via Data Vault
Original: Lean Data Model Storming for the Agile Enterprise
Data Vault: Data Warehouse Design Goes Agile
Data Vault Overview
Agile Data Engineering - Intro to Data Vault Modeling (2016)
Data Vault and DW2.0
Operational Data Vault
Shorter time to insight more adaptable less costly bi with end to end modelst...

What's hot (20)

PDF
Agile BI via Data Vault and Modelstorming
PPTX
Agile Data Warehouse Modeling: Introduction to Data Vault Data Modeling
PDF
Data Warehouse Design and Best Practices
PDF
Data Vault Introduction
PPTX
IRM UK - 2009: DV Modeling And Methodology
PDF
Why Data Vault?
PPTX
Agile Data Mining with Data Vault 2.0 (english)
PDF
Data Warehouse Project Report
PPTX
Introduction To Data Vault - DAMA Oregon 2012
PDF
Rando Veizi: Data warehouse and Pentaho suite
PPT
Warehouse components
PPTX
Data warehouse design
PDF
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
PPT
Lecture 04 - Granularity in the Data Warehouse
PPTX
Data vault: What's Next
PDF
Gartner Cool Vendor Report 2014
PDF
Data Warehouse Interview Questions And Answers | Data Warehouse Tutorial | Ed...
PPTX
The Data Warehouse Lifecycle
PPTX
Data vault what's Next: Part 2
DOC
Dw hk-white paper
Agile BI via Data Vault and Modelstorming
Agile Data Warehouse Modeling: Introduction to Data Vault Data Modeling
Data Warehouse Design and Best Practices
Data Vault Introduction
IRM UK - 2009: DV Modeling And Methodology
Why Data Vault?
Agile Data Mining with Data Vault 2.0 (english)
Data Warehouse Project Report
Introduction To Data Vault - DAMA Oregon 2012
Rando Veizi: Data warehouse and Pentaho suite
Warehouse components
Data warehouse design
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Lecture 04 - Granularity in the Data Warehouse
Data vault: What's Next
Gartner Cool Vendor Report 2014
Data Warehouse Interview Questions And Answers | Data Warehouse Tutorial | Ed...
The Data Warehouse Lifecycle
Data vault what's Next: Part 2
Dw hk-white paper
Ad

Similar to Data vault (20)

PDF
(OTW13) Agile Data Warehousing: Introduction to Data Vault Modeling
PDF
Meetup 25/04/19: Big Data
PPTX
CWIN 17 / sessions data vault modeling - f2-f - nishat gupta
DOCX
Data Vault: What is it? Where does it fit? SQL Saturday #249
PDF
Is it sensible to use Data Vault at all? Conclusions from a project.
PDF
Data Vault 2.0 Demystified: East Coast Tour
PDF
Guru4Pro Data Vault Best Practices
 
PDF
SNS practice: Generating ETL
PDF
Introduction to Data Vault Modeling
PDF
Why Data Vault?
PPTX
Dv decision makers presentation 310518[1]
PDF
Tim scottkoenverheyenpresentation
PDF
Evaluation of Data Auditability, Traceability and Agility leveraging Data Vau...
PDF
Experiences from a Data Vault Pilot Exploiting the Internet of Things
PDF
Experiences from a Data Vault Pilot Exploiting the Internet of Things
PDF
Presentation by Erik van der Hoeven (Wisdom as a Service) at the Data Vault M...
PPTX
Visual Data Vault
PPT
5 Years of Progress in Active Data Warehousing
PDF
Roland bouman modern_data_warehouse_architectures_data_vault_and_anchor_model...
PDF
Real-life Customer Cases using Data Vault and Data Warehouse Automation
(OTW13) Agile Data Warehousing: Introduction to Data Vault Modeling
Meetup 25/04/19: Big Data
CWIN 17 / sessions data vault modeling - f2-f - nishat gupta
Data Vault: What is it? Where does it fit? SQL Saturday #249
Is it sensible to use Data Vault at all? Conclusions from a project.
Data Vault 2.0 Demystified: East Coast Tour
Guru4Pro Data Vault Best Practices
 
SNS practice: Generating ETL
Introduction to Data Vault Modeling
Why Data Vault?
Dv decision makers presentation 310518[1]
Tim scottkoenverheyenpresentation
Evaluation of Data Auditability, Traceability and Agility leveraging Data Vau...
Experiences from a Data Vault Pilot Exploiting the Internet of Things
Experiences from a Data Vault Pilot Exploiting the Internet of Things
Presentation by Erik van der Hoeven (Wisdom as a Service) at the Data Vault M...
Visual Data Vault
5 Years of Progress in Active Data Warehousing
Roland bouman modern_data_warehouse_architectures_data_vault_and_anchor_model...
Real-life Customer Cases using Data Vault and Data Warehouse Automation
Ad

Recently uploaded (20)

PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PDF
Dell Pro Micro: Speed customer interactions, patient processing, and learning...
PDF
Auditboard EB SOX Playbook 2023 edition.
PDF
4 layer Arch & Reference Arch of IoT.pdf
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PDF
CXOs-Are-you-still-doing-manual-DevOps-in-the-age-of-AI.pdf
PDF
giants, standing on the shoulders of - by Daniel Stenberg
PDF
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
PDF
Rapid Prototyping: A lecture on prototyping techniques for interface design
PPTX
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
PDF
Early detection and classification of bone marrow changes in lumbar vertebrae...
PPTX
Module 1 Introduction to Web Programming .pptx
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
5-Ways-AI-is-Revolutionizing-Telecom-Quality-Engineering.pdf
PDF
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
PDF
Statistics on Ai - sourced from AIPRM.pdf
PDF
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
PPTX
Internet of Everything -Basic concepts details
PDF
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
PDF
Flame analysis and combustion estimation using large language and vision assi...
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
Dell Pro Micro: Speed customer interactions, patient processing, and learning...
Auditboard EB SOX Playbook 2023 edition.
4 layer Arch & Reference Arch of IoT.pdf
sbt 2.0: go big (Scala Days 2025 edition)
CXOs-Are-you-still-doing-manual-DevOps-in-the-age-of-AI.pdf
giants, standing on the shoulders of - by Daniel Stenberg
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
Rapid Prototyping: A lecture on prototyping techniques for interface design
AI-driven Assurance Across Your End-to-end Network With ThousandEyes
Early detection and classification of bone marrow changes in lumbar vertebrae...
Module 1 Introduction to Web Programming .pptx
The influence of sentiment analysis in enhancing early warning system model f...
5-Ways-AI-is-Revolutionizing-Telecom-Quality-Engineering.pdf
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
Statistics on Ai - sourced from AIPRM.pdf
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
Internet of Everything -Basic concepts details
AI.gov: A Trojan Horse in the Age of Artificial Intelligence
Flame analysis and combustion estimation using large language and vision assi...

Data vault

Editor's Notes

  • #2: Kern punten :Data Vault schema vergelijkbaar met eenneuralenetwerk.Neuronen,dendriten en synapses.Worden gemaakt en vernietigdwanneerditnodig is (vawegerelaties die ontstaan of ernietmeerzijn)Neuronenzijn Hubs en Hub SatellietenLinks zijn de dendritesAndere links zijn de synapses (vectors in the opposite direction). Conclusie:
  • #3: Compliance AuditabilityFlexibilityTraceabilityDDL and ETL generated.
  • #4: Kern punten :Conclusie:
  • #7: DWH is gereedschapkistvoor BIFinancieeldirecteur is nietgeinteresseerd in ETL
  • #8: Kern punten :Spreek voor zich.Conclusie:
  • #9: Kern punten :Lowest granularity.Atomic level.No aggregation.Details omdat je business rules op nieuw kunnen genereren als de inzichten in een organisatie kan veranderen.Als we het niet doen en je laad data geaggregeerd dan mis detail informatie.Conclusie:
  • #10: Kern punten :LineageConclusie:
  • #11: Kern punten :Spreek voor zich.Conclusie:
  • #12: Kern punten :Spreek voor zich.Conclusie:
  • #14: Kern punten :Spreek voor zich.Conclusie:
  • #15: Kern punten :Alle data moet traceerbaar zijn.Conclusie:
  • #17: Near real time dataOperational datawarehouse
  • #20: Kern punten :Conclusie:
  • #21: Information model close to the business.When information model close to the source systems you need to modify or rewrite complete ETL, DDL, etc.
  • #24: Kern punten :Naamgeving business vault voor business herkenbaar.Vraaggestuurd. Alleenelementen die gebruiktwordenvolgens businessBusiness key integratie (unieke business keys) (overeenkomstige business keys).Geendirecterapporten op de Raw datavault en Business datavault.Conclusie:
  • #25: Kern punten :Conclusie:
  • #26: Kern punten :Conclusie:
  • #27: Kern punten :Elegante modelleer techniek met een minimum van een aantal componenten: Hub, Link en Satellite.Hub representing the primary key. The Link Entities provide transaction integration between the Hubs. The Satellite Entities provide the context of the Hub primary key. Conclusie:
  • #28: Kern punten :Spreek voor zich.Conclusie:
  • #29: Kern punten :Historisch perpectiefChanging over timeHieruit kunnen we allerlei dimensies opbouwen met TYPE 1, 2 of 3Mogelijk om Load date time stamp, load end date time stamp en record source toe te voegen.Voor elke rij in de hub een satellite record. Waarom? Vanwege inner joining.Conclusie:
  • #30: Kern punten :Een patient wordt op een bepaald moment behandeldAls er meer informatie bij een behandeling hoort dan moet er een extra satellite bij de link tabel worden opgenomen.Het is mogelijkomelke hub, satellite en satellites parallel telaten laden.Hoge mate van parallelismemogelijk.Conclusie:
  • #31: Kern punten :Spreek voor zich.Conclusie:
  • #32: Kern punten :Spreek voor zich.Conclusie:
  • #33: Kern punten :Spreek voor zich.Conclusie: