SlideShare a Scribd company logo
MR. JOJO L.
CALAGUE
MATHEMATICS TEACHER
CONTINUITY OF A FUNCTION
c c
c c
Graph 1 Graph 2
Graph 3 Graph 4
CONTINUITY OF A FUNCTION
c
Graph 1
Graph 2
c
 The function is not defined at c
 The limit of f as x → 𝒄 exist
 Both the value of the function at
c and the limit as x → 𝒄 exist
but not equal
CONTINUITY OF A FUNCTION
c
c
Graph 3
Graph 4
 The limit of f as x approaches c
does not exist
CONTINUOUS
FUNCTION
 The value of the function is
defined, that is f(c)
 The limit of f exist, that is f(c)
 The value of f and limit of f are
equal
CONTINUITY AT A POINT
Definition
A function f is continuous at c if and only if
lim
𝑥→𝑐
𝑓 𝑥 = 𝑓(𝑐)
This implies that the three conditions must
be
satisfied:
(1) f(c) exist;
(2) lim
𝑥→𝑐
𝑓 𝑥 exist; an
d
(3) lim
𝑥→𝑐
𝑓 𝑥 = f(c)
CONTINUITY AT A POINT
Types of Discontinuity
Type 1 Removable Discontinuit
y
𝐼𝑓 𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 , 𝑏𝑢𝑡 𝑓𝑎𝑖𝑙𝑠 𝑡𝑜
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 1 𝑜𝑟 3 , 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟𝑒𝑚𝑜𝑣𝑎𝑏𝑙𝑒.
𝑇ℎ𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑐𝑐𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎
ℎ𝑜𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
CONTINUITY AT A POINT
Types of Discontinuity
Type 2 Jump or Essential Discontinui
ty
𝐼𝑓 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑐 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
2
𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑
𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙.
𝑇ℎ𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑐𝑐𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑔𝑟𝑎𝑝ℎ
𝑠𝑡𝑜𝑝𝑠 𝑎𝑡 𝑜𝑛𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑠𝑒𝑒𝑚𝑑 𝑡𝑜 𝑗𝑢𝑚𝑝 𝑎𝑡
𝑎𝑛
𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑖𝑛𝑡. 𝑇ℎ𝑒 𝑙𝑒𝑓𝑡 ℎ𝑎𝑛𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡
ℎ𝑎𝑛𝑑 𝑙𝑖𝑚𝑖𝑡𝑠 𝑒𝑥𝑖𝑠𝑡 𝑏𝑢𝑡 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙.
CONTINUITY AT A POINT
Types of Discontinuity
Type 3 Asymptotic or Infinite Discontinuity
𝐼𝑓 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑐 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
2
𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑎𝑛𝑑 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓
𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑖𝑚𝑖𝑡𝑠 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒.
EXAMPLE
PRACTICE YOUR SKILLS!
Given the graph of f(x),shown bel
ow, determine if f(x) is continu
ous at
(1) x = -2
(2) x = 0
(3) x = 3
EXAMPLE
PRACTICE YOUR SKILLS!
Given the graph of f(x),shown belo
w, determine if f(x) is continuous at
x = -2.
(1) f(-2) =2
(2) lim
𝑥→−2
𝑓 𝑥 does not exi
st
(3) lim
𝑥→−2
𝑓 𝑥 ≠ f(-2)
f(x) is not continuous at x =
-2
EXAMPLE
PRACTICE YOUR SKILLS!
Given the graph of f(x),shown belo
w, determine if f(x) is continuous at
x = 0.
(1) f(0) =1
(2) lim
𝑥→0
𝑓 𝑥 = 1, limit exis
t
(3) lim
𝑥→0
𝑓 𝑥 = f(0)
f(x) is continuous at x = 0
EXAMPLE
PRACTICE YOUR SKILLS!
Given the graph of f(x),shown belo
w, determine if f(x) is continuous at
x = 3.
(1) f(3) =-1
(2) lim
𝑥→3
𝑓 𝑥 does not ex
ist
(3) lim
𝑥→3
𝑓 𝑥 ≠ f(3)
f(x) is not continuous at x =
3
Determine whether or not the following ar
e
continuous functions.
a. f(x) =
𝒙𝟐 −𝒙 −𝟏𝟐
𝒙 −𝟒
at x = 4
b. 𝒇 𝒙 =
𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒
𝒙 − 𝟒 𝟐
+ 𝟑 𝒊𝒇 𝒙 ≥ 𝟒
at x = 1
c. 𝒇 𝒙 =
𝟏
𝒙
at x = 0
EXAMPLE
Solution
f(x) =
𝒙𝟐 −𝒙−𝟏𝟐
𝒙 −𝟒
x = 4
f(4) =
(𝟒)𝟐 −(𝟒)+𝟏𝟐
𝟒 −𝟒
f(4) = 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅
Condition 1
Solution
f(x) =
𝒙𝟐 −𝒙−𝟏𝟐
𝒙 −𝟒
x = 4
lim
𝑥→0
𝒙𝟐
−𝒙 − 𝟏𝟐
𝒙 − 𝟒
Condition 2 = lim
𝑥→0
𝒙 −𝟒 (𝒙+𝟑)
𝒙 −𝟒
= lim
𝑥→0
(𝒙 + 𝟑) = 7
Solution
f(x) =
𝒙𝟐 −𝒙−𝟏𝟐
𝒙 −𝟒
x = 4
Condition 3
lim
𝑥→4
𝑓 𝑥 ≠ f(4)
Solution
f(x) =
𝒙𝟐 −𝒙−𝟏𝟐
𝒙 −𝟒
x = 4
𝐼𝑓 𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 , 𝑏𝑢𝑡 𝑓𝑎𝑖𝑙𝑠 𝑡𝑜
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 1 𝑜𝑟 3 , 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟𝑒𝑚𝑜𝑣𝑎𝑏𝑙𝑒.
Solution
f(x) =
𝒙𝟐 −𝒙−𝟏𝟐
𝒙 −𝟒
x = 4
𝐻𝑒𝑛𝑐𝑒, 𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 4
Solution
𝒇 𝒙 =
𝟕, 𝒙 = 𝟒
𝒙𝟐 −𝒙−𝟏𝟐
𝒙 −𝟒
, 𝒙 ≠ 𝟒
𝑓 𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 4
Redefining the function to make it a
co𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Solution
𝒇 𝒙 =
𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒
𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒
x = 4
f(4) = 𝟒 − 𝟒 𝟐 + 𝟑
f(4) = 𝟑
Condition 1
Solution
lim
𝑥→4
𝒇(𝒙)
Condition 2
= 𝐷𝑁𝐸
𝒇 𝒙 =
𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒
𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒
x = 4
𝐼𝑓 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑐 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 𝑖𝑠
𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙.
lim
𝑥→4−
𝒇 𝒙 = 5 lim
𝑥→4+
𝒇 𝒙 = 3
Solution
Condition 3
𝒇 𝒙 =
𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒
𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒
x = 4
lim
𝑥→4
𝑓 𝑥 ≠ f(4)
𝐻𝑒𝑛𝑐𝑒, 𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 4
Solution
𝒇 𝒙 =
𝟏
𝒙
𝒙 = 𝟎
f(0) =
𝟏
𝒙
f(0) = 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅
Condition 1
Solution
𝒇 𝒙 =
𝟏
𝒙
𝒙 = 𝟎
Condition 2
lim
𝑥→0+
𝒇 𝒙 = +∞ lim
𝑥→0−
𝒇 𝒙 = −∞
Solution
𝒇 𝒙 =
𝟏
𝒙
𝒙 = 𝟎
𝐻𝑒𝑛𝑐𝑒, 𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 0 and f(x)
is said to have an infinite discontinuity at
x = 0.
Exercises
1. f(x) =
𝒙𝟐 −𝟗
𝒙 −𝟑
at x = 2
2. 𝒇 𝒙 =
−𝟐𝒙 + 𝟒, 𝒊𝒇 𝒙 ≥ 𝟑
𝒙 − 𝟏 𝒊𝒇 𝒙 < 𝟑
at x = 3
4. 𝒇 𝒙 =
𝒙𝟐−𝟏
𝒙 −𝟏
at x = 1
3. 𝒇 𝒙 =
𝟐𝒙 −𝟑
𝒙+ 𝟑
at x = -3
𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛
𝑛𝑢𝑚𝑏𝑒𝑟 𝑐.
CONTINUITY ON AN INTERVAL
Definition
A function f is continuous on an open interval
(a, b) if f is continuous at each number in the interv
al
A function f is continuous on a closed inte
rval
[a, b] if
(𝐛) lim
𝑥→𝑎+
𝑓 𝑥 = f(a) and lim
𝑥→𝑏−
𝑓 𝑥 = f(b)
(a) f is continuous on the open interval (a,
b)
Determine if the function is continuous on
the
indicated closed interval.
a. f(x) = 𝒙 𝒙 ; [𝟎, 𝟏]
b. 𝒇 𝒙 = 𝟗 − 𝒙𝟐 ; [-3, 3]
c. 𝒇 𝒙 =
𝟏
𝒙𝟐 −𝟏
; [0,1]
EXAMPLE
Solution: f(x) = 𝒙 𝒙 ; [𝟎, 𝟏]
a. f(a) = ?
f(x) = 𝒙 𝒙
f(0) = 𝟎 𝟎
f(0) = 𝟎
f(b) = ?
f(x) = 𝒙 𝒙
f(1) = 𝟏 𝟏
f(1) = 𝟏
b. lim
𝑥→0+
𝑓 𝑥 and lim
𝑥→1−
𝑓 𝑥
lim
𝑥→0+
𝒙 𝒙 = 𝟎 𝟎
lim
𝑥→0+
𝒙 𝒙 = 0
lim
𝑥→1−
𝒙 𝒙 = 𝟏 𝟏
lim
𝑥→1−
𝒙 𝒙 = 1
Solution: f(x) = 𝒙 𝒙 ; [𝟎, 𝟏]
f(0) = 𝟎 f(1) = 𝟏
lim
𝑥→0+
𝒙 𝒙 = 0 lim
𝑥→1−
𝒙 𝒙 = 1
lim
𝑥→𝑎+
𝑓 𝑥 = f(a) and lim
𝑥→𝑏−
𝑓 𝑥 = f(b)
lim
𝑥→0+
𝒙 𝒙 = f(0) lim
𝑥→1−
𝒙 𝒙 = f(1)
A function f(x) = 𝒙 𝒙 is continuous on a
closed interval [0, 1].
Solution: f(x) = 𝒙 𝒙 ; [𝟎, 𝟏]
lim
𝑥→0+
𝒙 𝒙 = f(0) lim
𝑥→1−
𝒙 𝒙 = f(1)
A function f(x) = 𝒙 𝒙 is continuous on a
closed interval [a, b].
Solution: f(x) = 𝟗 − 𝒙𝟐 ; [−𝟑, 𝟑]
a. f(-3) = ?
f(x) = 𝟗 − 𝒙𝟐
f(-3) = 𝟗 − (−𝟑)𝟐
f(-3) = 𝟗 − 𝟗
f(3) = ?
f(x) = 𝟗 − 𝒙𝟐
f(3) = 𝟗 − (𝟑)𝟐
f(3) = 𝟎
b. lim
𝑥→−3+
𝑓 𝑥 and lim
𝑥→3−
𝑓 𝑥
lim
𝑥→−3+
𝟗 − 𝒙𝟐 = 𝟗 − (−𝟑)𝟐 lim
𝑥→3−
𝟗 − 𝒙𝟐 =
f(-3) = 𝟎
f(3) = 𝟗 − 𝟗
𝟗 − (𝟑)𝟐
lim
𝑥→−3+
𝟗 − 𝒙𝟐 = 0 lim
𝑥→3−
𝟗 − 𝒙𝟐 = 0
Solution: f(x) = 𝟗 − 𝒙𝟐; [−𝟑, 𝟑]
f(-3) = 𝟎 f(3) = 𝟎
lim
𝑥→−3+
𝟗 − 𝒙𝟐 = 0 lim
𝑥→3−
𝟗 − 𝒙𝟐 =0
A function f(x) = 𝟗 − 𝒙𝟐 is continuous
on a closed interval [-3,3].
lim
𝑥→3−
𝟗 − 𝒙𝟐 =f(3)
lim
𝑥→−3+
𝟗 − 𝒙𝟐 = f(-3)
Solution: f(x) = 𝟗 − 𝒙𝟐; [−𝟑, 𝟑]
A function f(x) = 𝟗 − 𝒙𝟐 is continuous
on a closed interval [-3,3].
lim
𝑥→3−
𝟗 − 𝒙𝟐 = f(3)
lim
𝑥→−3+
𝟗 − 𝒙𝟐 = f(-3)
Solution: f(x) =
𝟏
𝒙𝟐−𝟏
; [𝟎, 𝟏]
a. f(0) = ?
f(x) =
𝟏
𝒙𝟐−𝟏
f(0) =
𝟏
(𝟎)𝟐−𝟏
f(0) =
𝟏
(𝟎)𝟐−𝟏
f(1) = ?
f(x) =
𝟏
𝒙𝟐−𝟏
f(1) =
𝟏
(𝟏)𝟐−𝟏
f(1) = undefined
f(0) = −𝟏
f(1) =
𝟏
𝟎
Since f(x) is not defined at x = -1 or 1; thu
s, it is
continuous on the open interval (0, 1).
Solution:
f(x) =
𝟏
𝒙𝟐−𝟏
; [𝟎, 𝟏]
= 𝐷𝑁𝐸
lim
𝑥→1−
𝟏
𝒙𝟐 − 𝟏
𝑇ℎ𝑢𝑠, f(x) =
𝟏
𝒙𝟐 − 𝟏
𝒊𝒔 𝒏𝒐𝒕 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒂𝒕 [𝟎, 𝟏]

More Related Content

PPTX
continuity Basic Calculus Grade 11 - Copy.pptx
MeryAnnMAlday
 
PDF
CONTINUITY.pdf
Marjorie Malveda
 
PDF
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdf
RajuSingh806014
 
PPTX
CONTINUITY.pptx
ANgelicaDol
 
PDF
limits and continuity
Elias Dinsa
 
PPT
Continuity.ppt
SupriyaGhosh43
 
PDF
Lesson 3: Continuity
Matthew Leingang
 
PDF
Lemh105
veerankinagesh
 
continuity Basic Calculus Grade 11 - Copy.pptx
MeryAnnMAlday
 
CONTINUITY.pdf
Marjorie Malveda
 
Continuity & Differentibilitytheory & solved & exercise. Module-4 pdf
RajuSingh806014
 
CONTINUITY.pptx
ANgelicaDol
 
limits and continuity
Elias Dinsa
 
Continuity.ppt
SupriyaGhosh43
 
Lesson 3: Continuity
Matthew Leingang
 

Similar to dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd (20)

PDF
Lesson05 Continuity Slides+Notes
Matthew Leingang
 
PDF
Lesson05 Continuity Slides+Notes
Matthew Leingang
 
PDF
Lesson 5: Continuity
Matthew Leingang
 
PDF
01 Limits, Continuity and Differentiability.pdf
polymaththesolver
 
PDF
3 handouts section2-5
International advisers
 
PPT
Limit and continuity
Digvijaysinh Gohil
 
PPTX
1.6 all notes
Lorie Blickhan
 
PPT
Lar calc10 ch01_sec4
Institute of Applied Technology
 
PPTX
topic continuity powerpoint presentation.pptx
IgopAuhsoj
 
PPT
Continuity and Discontinuity of Functions
Phil Saraspe
 
PPTX
Lecture co3 math21-1
Lawrence De Vera
 
PPT
Continuity ppt- masteral (functions and relations)
ErickConcepcion5
 
PPTX
Three conditions of Continuity on an interval.pptx
RiezelGutierrez
 
PPT
Continutiy of Functions.ppt
LadallaRajKumar
 
PDF
Lesson 5: Continuity
Matthew Leingang
 
PDF
CALCULUS 2 L2 Basic of limits and Continuity
LebyFastidio2
 
PPT
Stewart calc7e 01_08
Institute of Applied Technology
 
PPT
Continuity
Phil Saraspe
 
DOCX
Limits and continuity[1]
indu thakur
 
PDF
Applied Calculus: Continuity and Discontinuity of Function
baetulilm
 
Lesson05 Continuity Slides+Notes
Matthew Leingang
 
Lesson05 Continuity Slides+Notes
Matthew Leingang
 
Lesson 5: Continuity
Matthew Leingang
 
01 Limits, Continuity and Differentiability.pdf
polymaththesolver
 
3 handouts section2-5
International advisers
 
Limit and continuity
Digvijaysinh Gohil
 
1.6 all notes
Lorie Blickhan
 
Lar calc10 ch01_sec4
Institute of Applied Technology
 
topic continuity powerpoint presentation.pptx
IgopAuhsoj
 
Continuity and Discontinuity of Functions
Phil Saraspe
 
Lecture co3 math21-1
Lawrence De Vera
 
Continuity ppt- masteral (functions and relations)
ErickConcepcion5
 
Three conditions of Continuity on an interval.pptx
RiezelGutierrez
 
Continutiy of Functions.ppt
LadallaRajKumar
 
Lesson 5: Continuity
Matthew Leingang
 
CALCULUS 2 L2 Basic of limits and Continuity
LebyFastidio2
 
Stewart calc7e 01_08
Institute of Applied Technology
 
Continuity
Phil Saraspe
 
Limits and continuity[1]
indu thakur
 
Applied Calculus: Continuity and Discontinuity of Function
baetulilm
 
Ad

Recently uploaded (20)

PDF
Instant Access Hitachi 125US 135US Excavator Service Manual.pdf
Service Repair Manual
 
PDF
PC228USLC-3E0 Komatsu Hydraulic Excavator Parts Manual SN 40001-UP
Heavy Equipment Manual
 
PDF
Hitachi 130 EXCAVATOR Repair Manual Download
Service Repair Manual
 
PDF
Transform Your Lexus for the Trails with Expert Off-Road Customization Services
MW4 Outfitters
 
PDF
Reliable Solutions for Maserati Battery, Wiring, and Electronics Problems You...
Kruse Lucas Imports
 
PDF
Hitachi 120 EXCAVATOR Service Repair Manual.pdf
Service Repair Manual
 
PPTX
Detroit Business Travel Made Easy with Detroit DTW Cars
Detroit DTW Car
 
DOCX
Prelim exam in Elementary Stat. (1).docx
CharmicahOmayan3
 
PDF
MR285494 englis navi manual for mitsubishi pajero chariot spacewagon spacerun...
PedroPabloAlarconFig
 
PDF
Coco Robotics: From Dorm Rooms to Sidewalks
ricky228571
 
PDF
Hitachi 125US 135US EXCAVATOR Service Repair Manual.pdf
Service Repair Manual
 
PPTX
oA final ppt parmar vishal bca sem 1 .pptx
parmarvishal6790
 
PPTX
托莱多大学文凭办理|办理UT毕业证i20购买学位证书电子版
xxxihn4u
 
PDF
Evis Kola on How to Maximize Your Layover Turning Airport Time into Mini Adve...
Evis Kola
 
PDF
SK07J-2 Komatsu Skid Steer Loader Parts Manual SK07JF20001-Up
Heavy Equipment Manual
 
PPTX
Steps_Tutorial_1_Workforce Management.pptx
roshansharma586
 
PPTX
STRATEGIC HRM.pptxkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
khushigulati2325
 
PPT
Amine.pptupiogtoitgo9ptg9ptg89p8t9p9ptp98
tejaspagar394
 
PDF
deloitte-nl-integrated-annual-report-2018-2019.pdf
dsoham206
 
PDF
INGLES AERONAUTICO PARA TCP - VERSION LARGA PARA ESTUDIO (CENEAS).pdf
MariaDelValleUrisa
 
Instant Access Hitachi 125US 135US Excavator Service Manual.pdf
Service Repair Manual
 
PC228USLC-3E0 Komatsu Hydraulic Excavator Parts Manual SN 40001-UP
Heavy Equipment Manual
 
Hitachi 130 EXCAVATOR Repair Manual Download
Service Repair Manual
 
Transform Your Lexus for the Trails with Expert Off-Road Customization Services
MW4 Outfitters
 
Reliable Solutions for Maserati Battery, Wiring, and Electronics Problems You...
Kruse Lucas Imports
 
Hitachi 120 EXCAVATOR Service Repair Manual.pdf
Service Repair Manual
 
Detroit Business Travel Made Easy with Detroit DTW Cars
Detroit DTW Car
 
Prelim exam in Elementary Stat. (1).docx
CharmicahOmayan3
 
MR285494 englis navi manual for mitsubishi pajero chariot spacewagon spacerun...
PedroPabloAlarconFig
 
Coco Robotics: From Dorm Rooms to Sidewalks
ricky228571
 
Hitachi 125US 135US EXCAVATOR Service Repair Manual.pdf
Service Repair Manual
 
oA final ppt parmar vishal bca sem 1 .pptx
parmarvishal6790
 
托莱多大学文凭办理|办理UT毕业证i20购买学位证书电子版
xxxihn4u
 
Evis Kola on How to Maximize Your Layover Turning Airport Time into Mini Adve...
Evis Kola
 
SK07J-2 Komatsu Skid Steer Loader Parts Manual SK07JF20001-Up
Heavy Equipment Manual
 
Steps_Tutorial_1_Workforce Management.pptx
roshansharma586
 
STRATEGIC HRM.pptxkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
khushigulati2325
 
Amine.pptupiogtoitgo9ptg9ptg89p8t9p9ptp98
tejaspagar394
 
deloitte-nl-integrated-annual-report-2018-2019.pdf
dsoham206
 
INGLES AERONAUTICO PARA TCP - VERSION LARGA PARA ESTUDIO (CENEAS).pdf
MariaDelValleUrisa
 
Ad

dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd

  • 2. CONTINUITY OF A FUNCTION c c c c Graph 1 Graph 2 Graph 3 Graph 4
  • 3. CONTINUITY OF A FUNCTION c Graph 1 Graph 2 c  The function is not defined at c  The limit of f as x → 𝒄 exist  Both the value of the function at c and the limit as x → 𝒄 exist but not equal
  • 4. CONTINUITY OF A FUNCTION c c Graph 3 Graph 4  The limit of f as x approaches c does not exist CONTINUOUS FUNCTION  The value of the function is defined, that is f(c)  The limit of f exist, that is f(c)  The value of f and limit of f are equal
  • 5. CONTINUITY AT A POINT Definition A function f is continuous at c if and only if lim 𝑥→𝑐 𝑓 𝑥 = 𝑓(𝑐) This implies that the three conditions must be satisfied: (1) f(c) exist; (2) lim 𝑥→𝑐 𝑓 𝑥 exist; an d (3) lim 𝑥→𝑐 𝑓 𝑥 = f(c)
  • 6. CONTINUITY AT A POINT Types of Discontinuity Type 1 Removable Discontinuit y 𝐼𝑓 𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 , 𝑏𝑢𝑡 𝑓𝑎𝑖𝑙𝑠 𝑡𝑜 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 1 𝑜𝑟 3 , 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟𝑒𝑚𝑜𝑣𝑎𝑏𝑙𝑒. 𝑇ℎ𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑐𝑐𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 ℎ𝑜𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
  • 7. CONTINUITY AT A POINT Types of Discontinuity Type 2 Jump or Essential Discontinui ty 𝐼𝑓 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑐 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙. 𝑇ℎ𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑐𝑐𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑔𝑟𝑎𝑝ℎ 𝑠𝑡𝑜𝑝𝑠 𝑎𝑡 𝑜𝑛𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑠𝑒𝑒𝑚𝑑 𝑡𝑜 𝑗𝑢𝑚𝑝 𝑎𝑡 𝑎𝑛 𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑖𝑛𝑡. 𝑇ℎ𝑒 𝑙𝑒𝑓𝑡 ℎ𝑎𝑛𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 𝑙𝑖𝑚𝑖𝑡𝑠 𝑒𝑥𝑖𝑠𝑡 𝑏𝑢𝑡 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙.
  • 8. CONTINUITY AT A POINT Types of Discontinuity Type 3 Asymptotic or Infinite Discontinuity 𝐼𝑓 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑐 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑎𝑛𝑑 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑖𝑚𝑖𝑡𝑠 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒.
  • 9. EXAMPLE PRACTICE YOUR SKILLS! Given the graph of f(x),shown bel ow, determine if f(x) is continu ous at (1) x = -2 (2) x = 0 (3) x = 3
  • 10. EXAMPLE PRACTICE YOUR SKILLS! Given the graph of f(x),shown belo w, determine if f(x) is continuous at x = -2. (1) f(-2) =2 (2) lim 𝑥→−2 𝑓 𝑥 does not exi st (3) lim 𝑥→−2 𝑓 𝑥 ≠ f(-2) f(x) is not continuous at x = -2
  • 11. EXAMPLE PRACTICE YOUR SKILLS! Given the graph of f(x),shown belo w, determine if f(x) is continuous at x = 0. (1) f(0) =1 (2) lim 𝑥→0 𝑓 𝑥 = 1, limit exis t (3) lim 𝑥→0 𝑓 𝑥 = f(0) f(x) is continuous at x = 0
  • 12. EXAMPLE PRACTICE YOUR SKILLS! Given the graph of f(x),shown belo w, determine if f(x) is continuous at x = 3. (1) f(3) =-1 (2) lim 𝑥→3 𝑓 𝑥 does not ex ist (3) lim 𝑥→3 𝑓 𝑥 ≠ f(3) f(x) is not continuous at x = 3
  • 13. Determine whether or not the following ar e continuous functions. a. f(x) = 𝒙𝟐 −𝒙 −𝟏𝟐 𝒙 −𝟒 at x = 4 b. 𝒇 𝒙 = 𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒 𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒 at x = 1 c. 𝒇 𝒙 = 𝟏 𝒙 at x = 0 EXAMPLE
  • 14. Solution f(x) = 𝒙𝟐 −𝒙−𝟏𝟐 𝒙 −𝟒 x = 4 f(4) = (𝟒)𝟐 −(𝟒)+𝟏𝟐 𝟒 −𝟒 f(4) = 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 Condition 1
  • 15. Solution f(x) = 𝒙𝟐 −𝒙−𝟏𝟐 𝒙 −𝟒 x = 4 lim 𝑥→0 𝒙𝟐 −𝒙 − 𝟏𝟐 𝒙 − 𝟒 Condition 2 = lim 𝑥→0 𝒙 −𝟒 (𝒙+𝟑) 𝒙 −𝟒 = lim 𝑥→0 (𝒙 + 𝟑) = 7
  • 16. Solution f(x) = 𝒙𝟐 −𝒙−𝟏𝟐 𝒙 −𝟒 x = 4 Condition 3 lim 𝑥→4 𝑓 𝑥 ≠ f(4)
  • 17. Solution f(x) = 𝒙𝟐 −𝒙−𝟏𝟐 𝒙 −𝟒 x = 4 𝐼𝑓 𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 , 𝑏𝑢𝑡 𝑓𝑎𝑖𝑙𝑠 𝑡𝑜 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 1 𝑜𝑟 3 , 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟𝑒𝑚𝑜𝑣𝑎𝑏𝑙𝑒.
  • 18. Solution f(x) = 𝒙𝟐 −𝒙−𝟏𝟐 𝒙 −𝟒 x = 4 𝐻𝑒𝑛𝑐𝑒, 𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 4
  • 19. Solution 𝒇 𝒙 = 𝟕, 𝒙 = 𝟒 𝒙𝟐 −𝒙−𝟏𝟐 𝒙 −𝟒 , 𝒙 ≠ 𝟒 𝑓 𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 4 Redefining the function to make it a co𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
  • 20. Solution 𝒇 𝒙 = 𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒 𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒 x = 4 f(4) = 𝟒 − 𝟒 𝟐 + 𝟑 f(4) = 𝟑 Condition 1
  • 21. Solution lim 𝑥→4 𝒇(𝒙) Condition 2 = 𝐷𝑁𝐸 𝒇 𝒙 = 𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒 𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒 x = 4 𝐼𝑓 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑐 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙. lim 𝑥→4− 𝒇 𝒙 = 5 lim 𝑥→4+ 𝒇 𝒙 = 3
  • 22. Solution Condition 3 𝒇 𝒙 = 𝒙 + 𝟏, 𝒊𝒇 𝒙 < 𝟒 𝒙 − 𝟒 𝟐 + 𝟑 𝒊𝒇 𝒙 ≥ 𝟒 x = 4 lim 𝑥→4 𝑓 𝑥 ≠ f(4) 𝐻𝑒𝑛𝑐𝑒, 𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 4
  • 23. Solution 𝒇 𝒙 = 𝟏 𝒙 𝒙 = 𝟎 f(0) = 𝟏 𝒙 f(0) = 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 Condition 1
  • 24. Solution 𝒇 𝒙 = 𝟏 𝒙 𝒙 = 𝟎 Condition 2 lim 𝑥→0+ 𝒇 𝒙 = +∞ lim 𝑥→0− 𝒇 𝒙 = −∞
  • 25. Solution 𝒇 𝒙 = 𝟏 𝒙 𝒙 = 𝟎 𝐻𝑒𝑛𝑐𝑒, 𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑎𝑡 𝑥 = 0 and f(x) is said to have an infinite discontinuity at x = 0.
  • 26. Exercises 1. f(x) = 𝒙𝟐 −𝟗 𝒙 −𝟑 at x = 2 2. 𝒇 𝒙 = −𝟐𝒙 + 𝟒, 𝒊𝒇 𝒙 ≥ 𝟑 𝒙 − 𝟏 𝒊𝒇 𝒙 < 𝟑 at x = 3 4. 𝒇 𝒙 = 𝒙𝟐−𝟏 𝒙 −𝟏 at x = 1 3. 𝒇 𝒙 = 𝟐𝒙 −𝟑 𝒙+ 𝟑 at x = -3 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐.
  • 27. CONTINUITY ON AN INTERVAL Definition A function f is continuous on an open interval (a, b) if f is continuous at each number in the interv al A function f is continuous on a closed inte rval [a, b] if (𝐛) lim 𝑥→𝑎+ 𝑓 𝑥 = f(a) and lim 𝑥→𝑏− 𝑓 𝑥 = f(b) (a) f is continuous on the open interval (a, b)
  • 28. Determine if the function is continuous on the indicated closed interval. a. f(x) = 𝒙 𝒙 ; [𝟎, 𝟏] b. 𝒇 𝒙 = 𝟗 − 𝒙𝟐 ; [-3, 3] c. 𝒇 𝒙 = 𝟏 𝒙𝟐 −𝟏 ; [0,1] EXAMPLE
  • 29. Solution: f(x) = 𝒙 𝒙 ; [𝟎, 𝟏] a. f(a) = ? f(x) = 𝒙 𝒙 f(0) = 𝟎 𝟎 f(0) = 𝟎 f(b) = ? f(x) = 𝒙 𝒙 f(1) = 𝟏 𝟏 f(1) = 𝟏 b. lim 𝑥→0+ 𝑓 𝑥 and lim 𝑥→1− 𝑓 𝑥 lim 𝑥→0+ 𝒙 𝒙 = 𝟎 𝟎 lim 𝑥→0+ 𝒙 𝒙 = 0 lim 𝑥→1− 𝒙 𝒙 = 𝟏 𝟏 lim 𝑥→1− 𝒙 𝒙 = 1
  • 30. Solution: f(x) = 𝒙 𝒙 ; [𝟎, 𝟏] f(0) = 𝟎 f(1) = 𝟏 lim 𝑥→0+ 𝒙 𝒙 = 0 lim 𝑥→1− 𝒙 𝒙 = 1 lim 𝑥→𝑎+ 𝑓 𝑥 = f(a) and lim 𝑥→𝑏− 𝑓 𝑥 = f(b) lim 𝑥→0+ 𝒙 𝒙 = f(0) lim 𝑥→1− 𝒙 𝒙 = f(1) A function f(x) = 𝒙 𝒙 is continuous on a closed interval [0, 1].
  • 31. Solution: f(x) = 𝒙 𝒙 ; [𝟎, 𝟏] lim 𝑥→0+ 𝒙 𝒙 = f(0) lim 𝑥→1− 𝒙 𝒙 = f(1) A function f(x) = 𝒙 𝒙 is continuous on a closed interval [a, b].
  • 32. Solution: f(x) = 𝟗 − 𝒙𝟐 ; [−𝟑, 𝟑] a. f(-3) = ? f(x) = 𝟗 − 𝒙𝟐 f(-3) = 𝟗 − (−𝟑)𝟐 f(-3) = 𝟗 − 𝟗 f(3) = ? f(x) = 𝟗 − 𝒙𝟐 f(3) = 𝟗 − (𝟑)𝟐 f(3) = 𝟎 b. lim 𝑥→−3+ 𝑓 𝑥 and lim 𝑥→3− 𝑓 𝑥 lim 𝑥→−3+ 𝟗 − 𝒙𝟐 = 𝟗 − (−𝟑)𝟐 lim 𝑥→3− 𝟗 − 𝒙𝟐 = f(-3) = 𝟎 f(3) = 𝟗 − 𝟗 𝟗 − (𝟑)𝟐 lim 𝑥→−3+ 𝟗 − 𝒙𝟐 = 0 lim 𝑥→3− 𝟗 − 𝒙𝟐 = 0
  • 33. Solution: f(x) = 𝟗 − 𝒙𝟐; [−𝟑, 𝟑] f(-3) = 𝟎 f(3) = 𝟎 lim 𝑥→−3+ 𝟗 − 𝒙𝟐 = 0 lim 𝑥→3− 𝟗 − 𝒙𝟐 =0 A function f(x) = 𝟗 − 𝒙𝟐 is continuous on a closed interval [-3,3]. lim 𝑥→3− 𝟗 − 𝒙𝟐 =f(3) lim 𝑥→−3+ 𝟗 − 𝒙𝟐 = f(-3)
  • 34. Solution: f(x) = 𝟗 − 𝒙𝟐; [−𝟑, 𝟑] A function f(x) = 𝟗 − 𝒙𝟐 is continuous on a closed interval [-3,3]. lim 𝑥→3− 𝟗 − 𝒙𝟐 = f(3) lim 𝑥→−3+ 𝟗 − 𝒙𝟐 = f(-3)
  • 35. Solution: f(x) = 𝟏 𝒙𝟐−𝟏 ; [𝟎, 𝟏] a. f(0) = ? f(x) = 𝟏 𝒙𝟐−𝟏 f(0) = 𝟏 (𝟎)𝟐−𝟏 f(0) = 𝟏 (𝟎)𝟐−𝟏 f(1) = ? f(x) = 𝟏 𝒙𝟐−𝟏 f(1) = 𝟏 (𝟏)𝟐−𝟏 f(1) = undefined f(0) = −𝟏 f(1) = 𝟏 𝟎 Since f(x) is not defined at x = -1 or 1; thu s, it is continuous on the open interval (0, 1).
  • 36. Solution: f(x) = 𝟏 𝒙𝟐−𝟏 ; [𝟎, 𝟏] = 𝐷𝑁𝐸 lim 𝑥→1− 𝟏 𝒙𝟐 − 𝟏 𝑇ℎ𝑢𝑠, f(x) = 𝟏 𝒙𝟐 − 𝟏 𝒊𝒔 𝒏𝒐𝒕 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒂𝒕 [𝟎, 𝟏]