SlideShare a Scribd company logo
Deep Image Generating Models
/
Imperial College London
2016-11-23
Kai Arulkumaran @KaiLashArul
Foreword
Deep learning is a great creative tool
We can generate novel media in unexpected ways
(e.g. DeepDream/Inceptionism [1])
We can remix media (e.g. style transfer [2])
We can directly use deep generative models
The following applies to more than just images
Summary
Generative adversarial networks (GANs) [3]
Variational autoencoders (VAEs) [4, 5]
Autoregressive networks [6-8]
Generation
Let's create an image using a starting value
Speci cally, some random noise,
maybe sampled from a Gaussian: z ∼  (0, 1)
Create a transformation model that takes
and returns an image
f z
x
Images from space are generated from a value ∼ P(Z)
Networks as Functions
Arti cial neural networks are powerful function approximators
Approximate (many) continuous functions in
(universal approximation theorem) [9]
ℝ
n
Learn network parameters, , to satisfy a criterionθ
Generator Function
Learn a generator function, , that creates images:G(z; θ) x = G(z)
What criterion to train ?G
Discriminator Function
Train a discriminator function, , to label images:D(x; ϕ) y = D(x)
Learn to distinguish real images: when
Learn to distinguish fake images: when
(y = 1) x ∼ p(X)
(y = 0) x = G(z)
Adjust to maximise both criterionsϕ
Minimax Game
Train using the minimax rule from game theory [3]G
[log(D(x))] + [1 − log(D(G(z)))]minθ maxϕ x∼p(X) z∼p(Z)
never sees real images, but learns to create images
that would fool
G
D
GANs turn density estimation into an easier problem - classi cation
DCGAN
Convolutional neural networks improve GAN capabilities [10]
GAN Generations
Preserve general image statistics, sharp edges
Fail to preserve spatial relationships/coherence
Interpolations
Take 2 samples, linearly spherically interpolate [11], generate
Image Arithmetic
Networks learn a manifold (locally Euclidean space)
Conditional GANs
Use information about class of object [12-15]
Inference
Impose more meaning on latent space
Observation is generated by a latent variablex z
Inference tries to retrieve which was responsible for whichz x
Probabilistically, generation is
and inference is
x ∼ P(x|z)
z ∼ P(z|x)
Autoencoders learn both together
for "true" distributions, for model distributionsP Q
Autoencoders
Neural network encoder, , with encodinge z = e(x)
Decoder, , with decodingd x = d(z)
learns , learnse Q(z|x; θ) d Q(x|z; θ)
Compose networks, , and train jointlyd ∘ e
Criterion is minimising distance between real input
and reconstruction
x
d(e(x))
Mean square error/cross entropy criterions correspond to
maximising likelihood of reconstruction
Generative Autoencoders
Constrain encodings to follow a prior probability distribution, P(Z)
Idea 1: Directly sample from stochastic neurons
Optimisation requires estimating gradient over expectation,
naively requiring (Monte Carlo) sampling
Idea 2: Reparameterise to a deterministic function + noise source [4]
Encoder outputs parameters for a probability distribution
Criterion penalises di erence between
desired distribution parameters and encoder outputs
Stochastic samples via the reparameterisation trick
Variational Autoencoders
VAEs are latent variable models trained with variational inference
Maximise variational/evidence lower bound
[log(p(x|z))] − [Q(Z|X)‖P(Z)]q(z|x) DKL
KL divergence penalises deviating fromQ(Z|X) P(Z)
Variational Bayes w/ mean- eld approximation reverse KL divergence⟹
Divergence Behaviours
Forward KL divergence, , is "zero-avoiding",
covering, ensures whenever
[P‖Q]DKL
q(z) > 0 p(z) > 0
Reverse KL divergence, , is "zero-forcing", nds modes[Q‖P]DKL
Jensen-Shannon divergence
= [P‖ ] + [Q‖ ]DJS
1
2
DKL
P+Q
2
1
2
DKL
P+Q
2
GANs minimise JS divergence assuming is Bayes optimalD
Discriminative Regularisation
Reconstruction (bottom) of real image (middle) is blurry
in uncertain regions (such as hair detail)
Discriminative loss using pretrained network (top) [16, 17]
MCMC Sampling
does not perfectly match ; resolve with sampling [18]Q(Z) P(Z)
Sequential Drawing
Paint on canvas using recurrent neural network [19]
DRAW: A Recurrent Neural Network For Image G...
Conditional on Text
Condition generation on a text caption [20]
Independence Assumption
So far, pixels were created independently of each other,
given the penultimate layer
Autoregressive networks generate pixels one at a time,
conditional on the previous [6-8]
Conclusion
Deep generative models have improved a lot in a few years
Images are intuitively interpretable for qualitative evaluation
Generative models are hard to evaluate quantitatively [21]
Potential uses, e.g. procedural content generation
For more depth, see Building Machines that Imagine and Reason
Figures
1.
2.
3.
4.
5.
6.
7.
8.
Google Research Blog: Inceptionism: Going Deeper into Neural Networks
Neural Networks, Manifolds, and Topology -- colah's blog
Newmu/dcgan_code - GitHub
Pattern Recognition and Machine Learning | Christopher Bishop | Springer
[1602.03220] Discriminative Regularization for Generative Models
[1610.09296] Improving Sampling from Generative Autoencoders with Markov Chains
DRAW: A Recurrent Neural Network For Image Generation by Google DeepMind - YouTube
[1511.02793] Generating Images from Captions with Attention
References
1. Mordvintsev, A., Olah, C., & Tyka, M. (2015). Inceptionism: Going deeper into neural networks. Google Research Blog.
2. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576.
3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems (pp. 2672-2680).
4. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
5. Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082.
6. Larochelle, H., & Murray, I. (2011). The Neural Autoregressive Distribution Estimator. In AISTATS (Vol. 1, p. 2).
7. Gregor, K., Danihelka, I., Mnih, A., Blundell, C., & Wierstra, D. (2013). Deep autoregressive networks. arXiv preprint arXiv:1310.8499.
8. van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel Recurrent Neural Networks. arXiv preprint arXiv:1601.06759.
9. Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2), 251-257.
10. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434.
11. White, T. (2016). Sampling Generative Networks: Notes on a Few E ective Techniques. arXiv preprint arXiv:1609.04468.
12. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
13. Odena, A. (2016). Semi-Supervised Learning with Generative Adversarial Networks. arXiv preprint arXiv:1606.01583.
14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. arXiv preprint
arXiv:1606.03498.
15. Odena, A., Olah, C., & Shlens, J. (2016). Conditional Image Synthesis With Auxiliary Classi er GANs. arXiv preprint arXiv:1610.09585.
16. Dosovitskiy, A., & Brox, T. (2016). Generating images with perceptual similarity metrics based on deep networks. arXiv preprint
arXiv:1602.02644.
17. Lamb, A., Dumoulin, V., & Courville, A. (2016). Discriminative Regularization for Generative Models. arXiv preprint arXiv:1602.03220.
18. Arulkumaran, K., Creswell, A., & Bharath, A. A. (2016). Improving Sampling from Generative Autoencoders with Markov Chains. arXiv preprint
arXiv:1610.09296.
19. Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A recurrent neural network for image generation. arXiv
preprint arXiv:1502.04623.
20. Mansimov, E., Parisotto, E., Ba, J. L., & Salakhutdinov, R. (2015). Generating images from captions with attention. arXiv preprint
arXiv:1511.02793.
21. Theis, L., Oord, A. V. D., & Bethge, M. (2015). A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844.
Thanks
Friends on Twitter for posts and discussions
Toni Creswell, equal contributor on [16]
Colleagues at BICV and Computational Neurodynamics

More Related Content

What's hot (20)

PDF
Modern Convolutional Neural Network techniques for image segmentation
Gioele Ciaparrone
 
PDF
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Talk Norway Aug2016
xavierbresson
 
PDF
Spectral convnets
xavierbresson
 
PDF
Introduction to 3D Computer Vision and Differentiable Rendering
Preferred Networks
 
PPTX
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
PDF
ujava.org Deep Learning with Convolutional Neural Network
신동 강
 
PPTX
Machine Learning - Introduction to Convolutional Neural Networks
Andrew Ferlitsch
 
PPTX
Deep Learning
Pierre de Lacaze
 
PDF
Convolutional Neural Networks : Popular Architectures
ananth
 
PDF
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
PPTX
Convolutional neural networks 이론과 응용
홍배 김
 
PPTX
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Preferred Networks
 
PDF
[PR12] PR-063: Peephole predicting network performance before training
Taegyun Jeon
 
PDF
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
岳華 杜
 
PDF
Case Study of Convolutional Neural Network
NamHyuk Ahn
 
PPTX
Graph Neural Network - Introduction
Jungwon Kim
 
PDF
#4 Convolutional Neural Networks for Natural Language Processing
Berlin Language Technology
 
PPTX
Neuroevolution and deep learing
Accenture
 
PDF
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
NamHyuk Ahn
 
Modern Convolutional Neural Network techniques for image segmentation
Gioele Ciaparrone
 
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
Talk Norway Aug2016
xavierbresson
 
Spectral convnets
xavierbresson
 
Introduction to 3D Computer Vision and Differentiable Rendering
Preferred Networks
 
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
ujava.org Deep Learning with Convolutional Neural Network
신동 강
 
Machine Learning - Introduction to Convolutional Neural Networks
Andrew Ferlitsch
 
Deep Learning
Pierre de Lacaze
 
Convolutional Neural Networks : Popular Architectures
ananth
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Convolutional neural networks 이론과 응용
홍배 김
 
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Preferred Networks
 
[PR12] PR-063: Peephole predicting network performance before training
Taegyun Jeon
 
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
岳華 杜
 
Case Study of Convolutional Neural Network
NamHyuk Ahn
 
Graph Neural Network - Introduction
Jungwon Kim
 
#4 Convolutional Neural Networks for Natural Language Processing
Berlin Language Technology
 
Neuroevolution and deep learing
Accenture
 
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
NamHyuk Ahn
 

Viewers also liked (11)

PDF
Deep Style: Using Variational Auto-encoders for Image Generation
TJ Torres
 
PPT
Creative Responses to Artificial Intelligence
Luba Elliott
 
PPTX
Debating with teenagers to enhance Critical Thinking Skills
Maria Laura Damelli
 
PDF
Auto encoding-variational-bayes
mehdi Cherti
 
PDF
DRAW: Deep Recurrent Attentive Writer
Mark Chang
 
PDF
Iclr2016 vaeまとめ
Deep Learning JP
 
PPTX
Variational autoencoder talk
Shai Harel
 
PDF
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
Masahiro Suzuki
 
PDF
Deep Learning And Business Models (VNITC 2015-09-13)
Ha Phuong
 
PDF
Variational Autoencoder
Mark Chang
 
PDF
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
Taehoon Kim
 
Deep Style: Using Variational Auto-encoders for Image Generation
TJ Torres
 
Creative Responses to Artificial Intelligence
Luba Elliott
 
Debating with teenagers to enhance Critical Thinking Skills
Maria Laura Damelli
 
Auto encoding-variational-bayes
mehdi Cherti
 
DRAW: Deep Recurrent Attentive Writer
Mark Chang
 
Iclr2016 vaeまとめ
Deep Learning JP
 
Variational autoencoder talk
Shai Harel
 
(DL hacks輪読) How to Train Deep Variational Autoencoders and Probabilistic Lad...
Masahiro Suzuki
 
Deep Learning And Business Models (VNITC 2015-09-13)
Ha Phuong
 
Variational Autoencoder
Mark Chang
 
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
Taehoon Kim
 
Ad

Similar to Deep image generating models (20)

PPTX
GDC2019 - SEED - Towards Deep Generative Models in Game Development
Electronic Arts / DICE
 
PDF
Alberto Massidda - Scenes from a memory - Codemotion Rome 2019
Codemotion
 
PDF
Deep Generative Modelling (updated)
Petko Nikolov
 
PDF
Deep Generative Models
Chia-Wen Cheng
 
PDF
Deep Generative Modelling
Petko Nikolov
 
PDF
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Universitat Politècnica de Catalunya
 
PPTX
Introduction to Generative Models.pptx
JOBANPREETSINGH62
 
PDF
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PDF
gans_copy.pdfhjsjsisidkskskkskwkduydjekedj
fahid32446
 
PDF
Introduction to Generative Adversarial Network
vaidehimadaan041
 
PDF
Tutorial on Theory and Application of Generative Adversarial Networks
MLReview
 
PDF
Generational Adversarial Neural Networks - Essential Reference
Gokul Alex
 
PPTX
GAN Deep Learning Approaches to Image Processing Applications (1).pptx
RMDAcademicCoordinat
 
PDF
Generative Adversarial Networks GAN - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PDF
Generative adversarial networks
남주 김
 
PDF
Generative Adversarial Networks
Mustafa Yagmur
 
PDF
The Success of Deep Generative Models
inside-BigData.com
 
PDF
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
Changwon National University
 
PDF
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Codiax
 
PDF
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
Seldon
 
GDC2019 - SEED - Towards Deep Generative Models in Game Development
Electronic Arts / DICE
 
Alberto Massidda - Scenes from a memory - Codemotion Rome 2019
Codemotion
 
Deep Generative Modelling (updated)
Petko Nikolov
 
Deep Generative Models
Chia-Wen Cheng
 
Deep Generative Modelling
Petko Nikolov
 
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Universitat Politècnica de Catalunya
 
Introduction to Generative Models.pptx
JOBANPREETSINGH62
 
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
gans_copy.pdfhjsjsisidkskskkskwkduydjekedj
fahid32446
 
Introduction to Generative Adversarial Network
vaidehimadaan041
 
Tutorial on Theory and Application of Generative Adversarial Networks
MLReview
 
Generational Adversarial Neural Networks - Essential Reference
Gokul Alex
 
GAN Deep Learning Approaches to Image Processing Applications (1).pptx
RMDAcademicCoordinat
 
Generative Adversarial Networks GAN - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Generative adversarial networks
남주 김
 
Generative Adversarial Networks
Mustafa Yagmur
 
The Success of Deep Generative Models
inside-BigData.com
 
AI 로봇 아티스트의 비밀(창원대학교 정보통신공학과 특강)
Changwon National University
 
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Codiax
 
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
Seldon
 
Ad

More from Luba Elliott (20)

PDF
Luba Elliott - AI art - ICCV Conference
Luba Elliott
 
PDF
Luba Elliott - AI in contemporary art practice - Oxford
Luba Elliott
 
PPTX
Luba Elliott - AI in recent art practice - ML Prague
Luba Elliott
 
PDF
Three Images of the New - Richard Hames - Creative AI meetup
Luba Elliott
 
PDF
AI Art Gallery Overview - Luba Elliott - NeurIPS Creativity Workshop
Luba Elliott
 
PPTX
Creativity is Intelligence - Kenneth Stanley - NeurIPS Creativity Workshop
Luba Elliott
 
PDF
Seen by machine: Computational Spectatorship in the BBC Archive
Luba Elliott
 
PPTX
Luba Elliott AI art overview
Luba Elliott
 
PPTX
Natasha Jaques - Learning via Social Awareness - Creative AI meetup
Luba Elliott
 
PPTX
Sander Dieleman - Generating music in the raw audio domain - Creative AI meetup
Luba Elliott
 
PPTX
Design in AI
Luba Elliott
 
PDF
Marco Marchesi - Practical uses of style transfer in the creative industry
Luba Elliott
 
PDF
Hooman Shayani - CAD/CAM in the Age of AI: Designers’ Journey from Earth to Sky
Luba Elliott
 
PDF
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Luba Elliott
 
PPTX
Emily Denton - Unsupervised Learning of Disentangled Representations from Vid...
Luba Elliott
 
PPTX
Luba Elliott - Seeing AI through Art
Luba Elliott
 
PPTX
Georgia Ward Dyer - O Time thy pyramids - Creative AI meetup
Luba Elliott
 
PPTX
Daniel Berio - Graffiti synthesis, a motion centric approach - Creative AI me...
Luba Elliott
 
PDF
Ali Eslami - Artificial Intelligence and Computer Aided Design - Creative AI ...
Luba Elliott
 
PDF
Daghan Cam - Adaptive Autonomous Manufacturing with AI - Creative AI meetup
Luba Elliott
 
Luba Elliott - AI art - ICCV Conference
Luba Elliott
 
Luba Elliott - AI in contemporary art practice - Oxford
Luba Elliott
 
Luba Elliott - AI in recent art practice - ML Prague
Luba Elliott
 
Three Images of the New - Richard Hames - Creative AI meetup
Luba Elliott
 
AI Art Gallery Overview - Luba Elliott - NeurIPS Creativity Workshop
Luba Elliott
 
Creativity is Intelligence - Kenneth Stanley - NeurIPS Creativity Workshop
Luba Elliott
 
Seen by machine: Computational Spectatorship in the BBC Archive
Luba Elliott
 
Luba Elliott AI art overview
Luba Elliott
 
Natasha Jaques - Learning via Social Awareness - Creative AI meetup
Luba Elliott
 
Sander Dieleman - Generating music in the raw audio domain - Creative AI meetup
Luba Elliott
 
Design in AI
Luba Elliott
 
Marco Marchesi - Practical uses of style transfer in the creative industry
Luba Elliott
 
Hooman Shayani - CAD/CAM in the Age of AI: Designers’ Journey from Earth to Sky
Luba Elliott
 
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Luba Elliott
 
Emily Denton - Unsupervised Learning of Disentangled Representations from Vid...
Luba Elliott
 
Luba Elliott - Seeing AI through Art
Luba Elliott
 
Georgia Ward Dyer - O Time thy pyramids - Creative AI meetup
Luba Elliott
 
Daniel Berio - Graffiti synthesis, a motion centric approach - Creative AI me...
Luba Elliott
 
Ali Eslami - Artificial Intelligence and Computer Aided Design - Creative AI ...
Luba Elliott
 
Daghan Cam - Adaptive Autonomous Manufacturing with AI - Creative AI meetup
Luba Elliott
 

Recently uploaded (20)

PPTX
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
PDF
Français Patch Tuesday - Juillet
Ivanti
 
PDF
Productivity Management Software | Workstatus
Lovely Baghel
 
PPT
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
PPTX
Top iOS App Development Company in the USA for Innovative Apps
SynapseIndia
 
PPTX
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
PDF
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
PDF
Apache CloudStack 201: Let's Design & Build an IaaS Cloud
ShapeBlue
 
PDF
Empowering Cloud Providers with Apache CloudStack and Stackbill
ShapeBlue
 
PDF
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
PDF
Rethinking Security Operations - SOC Evolution Journey.pdf
Haris Chughtai
 
PDF
Women in Automation Presents: Reinventing Yourself — Bold Career Pivots That ...
DianaGray10
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PPTX
Building and Operating a Private Cloud with CloudStack and LINBIT CloudStack ...
ShapeBlue
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PPTX
Extensions Framework (XaaS) - Enabling Orchestrate Anything
ShapeBlue
 
PPTX
Top Managed Service Providers in Los Angeles
Captain IT
 
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
Français Patch Tuesday - Juillet
Ivanti
 
Productivity Management Software | Workstatus
Lovely Baghel
 
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
Human-centred design in online workplace learning and relationship to engagem...
Tracy Tang
 
Top iOS App Development Company in the USA for Innovative Apps
SynapseIndia
 
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Windsurf Meetup Ottawa 2025-07-12 - Planning Mode at Reliza.pdf
Pavel Shukhman
 
Apache CloudStack 201: Let's Design & Build an IaaS Cloud
ShapeBlue
 
Empowering Cloud Providers with Apache CloudStack and Stackbill
ShapeBlue
 
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
Rethinking Security Operations - SOC Evolution Journey.pdf
Haris Chughtai
 
Women in Automation Presents: Reinventing Yourself — Bold Career Pivots That ...
DianaGray10
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
Building and Operating a Private Cloud with CloudStack and LINBIT CloudStack ...
ShapeBlue
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Extensions Framework (XaaS) - Enabling Orchestrate Anything
ShapeBlue
 
Top Managed Service Providers in Los Angeles
Captain IT
 

Deep image generating models

  • 2. Foreword Deep learning is a great creative tool We can generate novel media in unexpected ways (e.g. DeepDream/Inceptionism [1]) We can remix media (e.g. style transfer [2]) We can directly use deep generative models The following applies to more than just images
  • 3. Summary Generative adversarial networks (GANs) [3] Variational autoencoders (VAEs) [4, 5] Autoregressive networks [6-8]
  • 4. Generation Let's create an image using a starting value Speci cally, some random noise, maybe sampled from a Gaussian: z ∼  (0, 1) Create a transformation model that takes and returns an image f z x Images from space are generated from a value ∼ P(Z)
  • 5. Networks as Functions Arti cial neural networks are powerful function approximators Approximate (many) continuous functions in (universal approximation theorem) [9] ℝ n Learn network parameters, , to satisfy a criterionθ
  • 6. Generator Function Learn a generator function, , that creates images:G(z; θ) x = G(z) What criterion to train ?G
  • 7. Discriminator Function Train a discriminator function, , to label images:D(x; ϕ) y = D(x) Learn to distinguish real images: when Learn to distinguish fake images: when (y = 1) x ∼ p(X) (y = 0) x = G(z) Adjust to maximise both criterionsϕ
  • 8. Minimax Game Train using the minimax rule from game theory [3]G [log(D(x))] + [1 − log(D(G(z)))]minθ maxϕ x∼p(X) z∼p(Z) never sees real images, but learns to create images that would fool G D GANs turn density estimation into an easier problem - classi cation
  • 9. DCGAN Convolutional neural networks improve GAN capabilities [10]
  • 10. GAN Generations Preserve general image statistics, sharp edges Fail to preserve spatial relationships/coherence
  • 11. Interpolations Take 2 samples, linearly spherically interpolate [11], generate
  • 12. Image Arithmetic Networks learn a manifold (locally Euclidean space)
  • 13. Conditional GANs Use information about class of object [12-15]
  • 14. Inference Impose more meaning on latent space Observation is generated by a latent variablex z Inference tries to retrieve which was responsible for whichz x Probabilistically, generation is and inference is x ∼ P(x|z) z ∼ P(z|x) Autoencoders learn both together for "true" distributions, for model distributionsP Q
  • 15. Autoencoders Neural network encoder, , with encodinge z = e(x) Decoder, , with decodingd x = d(z) learns , learnse Q(z|x; θ) d Q(x|z; θ) Compose networks, , and train jointlyd ∘ e Criterion is minimising distance between real input and reconstruction x d(e(x)) Mean square error/cross entropy criterions correspond to maximising likelihood of reconstruction
  • 16. Generative Autoencoders Constrain encodings to follow a prior probability distribution, P(Z) Idea 1: Directly sample from stochastic neurons Optimisation requires estimating gradient over expectation, naively requiring (Monte Carlo) sampling Idea 2: Reparameterise to a deterministic function + noise source [4] Encoder outputs parameters for a probability distribution Criterion penalises di erence between desired distribution parameters and encoder outputs Stochastic samples via the reparameterisation trick
  • 17. Variational Autoencoders VAEs are latent variable models trained with variational inference Maximise variational/evidence lower bound [log(p(x|z))] − [Q(Z|X)‖P(Z)]q(z|x) DKL KL divergence penalises deviating fromQ(Z|X) P(Z) Variational Bayes w/ mean- eld approximation reverse KL divergence⟹
  • 18. Divergence Behaviours Forward KL divergence, , is "zero-avoiding", covering, ensures whenever [P‖Q]DKL q(z) > 0 p(z) > 0 Reverse KL divergence, , is "zero-forcing", nds modes[Q‖P]DKL Jensen-Shannon divergence = [P‖ ] + [Q‖ ]DJS 1 2 DKL P+Q 2 1 2 DKL P+Q 2 GANs minimise JS divergence assuming is Bayes optimalD
  • 19. Discriminative Regularisation Reconstruction (bottom) of real image (middle) is blurry in uncertain regions (such as hair detail) Discriminative loss using pretrained network (top) [16, 17]
  • 20. MCMC Sampling does not perfectly match ; resolve with sampling [18]Q(Z) P(Z)
  • 21. Sequential Drawing Paint on canvas using recurrent neural network [19] DRAW: A Recurrent Neural Network For Image G...
  • 23. Independence Assumption So far, pixels were created independently of each other, given the penultimate layer Autoregressive networks generate pixels one at a time, conditional on the previous [6-8]
  • 24. Conclusion Deep generative models have improved a lot in a few years Images are intuitively interpretable for qualitative evaluation Generative models are hard to evaluate quantitatively [21] Potential uses, e.g. procedural content generation For more depth, see Building Machines that Imagine and Reason
  • 25. Figures 1. 2. 3. 4. 5. 6. 7. 8. Google Research Blog: Inceptionism: Going Deeper into Neural Networks Neural Networks, Manifolds, and Topology -- colah's blog Newmu/dcgan_code - GitHub Pattern Recognition and Machine Learning | Christopher Bishop | Springer [1602.03220] Discriminative Regularization for Generative Models [1610.09296] Improving Sampling from Generative Autoencoders with Markov Chains DRAW: A Recurrent Neural Network For Image Generation by Google DeepMind - YouTube [1511.02793] Generating Images from Captions with Attention
  • 26. References 1. Mordvintsev, A., Olah, C., & Tyka, M. (2015). Inceptionism: Going deeper into neural networks. Google Research Blog. 2. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576. 3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (pp. 2672-2680). 4. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. 5. Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082. 6. Larochelle, H., & Murray, I. (2011). The Neural Autoregressive Distribution Estimator. In AISTATS (Vol. 1, p. 2). 7. Gregor, K., Danihelka, I., Mnih, A., Blundell, C., & Wierstra, D. (2013). Deep autoregressive networks. arXiv preprint arXiv:1310.8499. 8. van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel Recurrent Neural Networks. arXiv preprint arXiv:1601.06759. 9. Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2), 251-257. 10. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 11. White, T. (2016). Sampling Generative Networks: Notes on a Few E ective Techniques. arXiv preprint arXiv:1609.04468. 12. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. 13. Odena, A. (2016). Semi-Supervised Learning with Generative Adversarial Networks. arXiv preprint arXiv:1606.01583. 14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. arXiv preprint arXiv:1606.03498. 15. Odena, A., Olah, C., & Shlens, J. (2016). Conditional Image Synthesis With Auxiliary Classi er GANs. arXiv preprint arXiv:1610.09585. 16. Dosovitskiy, A., & Brox, T. (2016). Generating images with perceptual similarity metrics based on deep networks. arXiv preprint arXiv:1602.02644. 17. Lamb, A., Dumoulin, V., & Courville, A. (2016). Discriminative Regularization for Generative Models. arXiv preprint arXiv:1602.03220. 18. Arulkumaran, K., Creswell, A., & Bharath, A. A. (2016). Improving Sampling from Generative Autoencoders with Markov Chains. arXiv preprint arXiv:1610.09296. 19. Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623. 20. Mansimov, E., Parisotto, E., Ba, J. L., & Salakhutdinov, R. (2015). Generating images from captions with attention. arXiv preprint arXiv:1511.02793. 21. Theis, L., Oord, A. V. D., & Bethge, M. (2015). A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844.
  • 27. Thanks Friends on Twitter for posts and discussions Toni Creswell, equal contributor on [16] Colleagues at BICV and Computational Neurodynamics