SlideShare a Scribd company logo
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Deep	Learningによる
超解像の進歩
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
⾃⼰紹介
2
Hiroto Honda
@hirotomusiker
n メーカー研究所 → 2017/1 DeNA
n ETH Zurich CVLにて客員(2013-2014)
n CVPR NTIRE Workshop Program Committee
n DeNA AI研究開発エンジニア
n 現職:Object Detection
(OSS: https://github.com/DeNA/Chainer_Mask_R-CNN )
n 前職:Low-Level Vision, Computational, Sensor LSI
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Contents
n 超解像は試しやすい
n 初期のSISRネットワーク
⁃ SRCNN, ESPCN, VDSR
⁃ Upsampling⼿法– deconv or pixelshuffle
n ベースライン⼿法:SRResNet
⁃ SRResNet, SRGAN, and EDSR
n 超解像とperception
⁃ 復元結果とロス関数の関係
⁃ Perception – Distortion Tradeoff
n まとめ
3
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像とは
n 低解像度画像
n ⾼解像度画像
4
復元
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像は試しやすい!
5
original(HR) LR
resize
train
アノテーションが不要な
Self-supervised	learningの⼀種
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像の進歩
6
https://github.com/jbhuang0604/SelfExSRPSNR*	[dB]	(over	bicubic)
on	Set5	dataset,	x4
+1.86
+2.93
+2.06
+3.63
A+0.0
bicubic
2015 20172014 2016
+4.20
+2.48
PSNR	data	from:5)
SRCNN VDSR SRResNet EDSRESPCN
超解像の精度は年々向上している
*	PSNR	=	10	log10	(2552 /	MSE	)	when	max	value	is	255
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像ネットワークの学習
n 正解画像からpatchをcropする HR
n patchをダウンサンプルする LR = g(HR)
n バッチを編成する {LR}, {HR}
n ネットワークfを学習する ロス関数は: MSE(HR, f(LR))
n ...以上!
7
LR=g(HR) f(LR) HR
f
MSE
e.g.	bicubic	down-sampling
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Non-deep⼿法:	辞書ベースのアルゴリズム
8
=
係数を最適化する
8
ベースライン:	A+	(2014)
http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-ACCV-2014.pdf
=
学習済みの辞書
x	0			+	
x	0			+	
x	0.8			+	
x	0.8			+	
x	0.05		+	
x	0.05		+	
LR
patch
HR
patch
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n 初期のSISR networks
⁃ SRCNN, ESPCN, VDSR
⁃ Upsampling⼿法 – deconv or pixelshuffle
9
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
最初のDeep超解像– SRCNN
10
Kernel	size:	9	– 1	– 5	or		9	– 3	– 5	or	9	– 5	– 5
from:1)
⾮常にシンプルで計算量も少ない
bicubic	x2
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
VDSR:	ディープなSRCNN
11
from:3)
3x3,	64	ch D=	5	to	20
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Efficient	sub-pixel	CNN	(ESPCN)
12
SRCNNと違い、LR画像をconvするので効率的
Kernel	size
5	– 3	– 3
from:2)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRCNN	/	VDSR	とESPCNの違い
n Post-upsamplingのほうが効率的だが、1.6倍 といった⾮整数の
upsamplingができない
13
SRCNN,
VDSR
ESPCN
bicubic	x2 output
input
Pixel	shuffle	x2
ch
h
w
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
CNNによるアップスケール - Deconvolution	or	PixelShuffle?
n Deconvolution
14
https://distill.pub/2016/deconv-checkerboard/
位置ごとに関与する画素数が均⼀ではないため
格⼦パターンが出てしまう
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
CNNによるアップスケール - Deconvolution	or	PixelShuffle?
n resize – convolutionしては?
15
格⼦パターンはなくなる
Resize(low-pass)により情報が失われる可能性があるので、
Nearest	neighborで埋める⽅法も
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
CNNによるアップスケール - Deconvolution	or	PixelShuffle?
n Sub-pixel convolution (aka. PixelShuffle)
16
各位置でチャネルの情報をタイルする
e.g.	9	channels	->	3x3	サブピクセル
格⼦ノイズフリーではない
from:2)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n ベースライン⼿法:SRResNet
⁃ SRResNet, SRGAN, and EDSR
17
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet and	SRGAN	– twitter	CVPR’17
18
Skip connection
pixel
shuffle
x2
MSE
MSE
Discriminator
Trained VGG
Perceptual Loss
Discriminator
Loss
MSE Loss
from:4)
pixel
shuffle
x2
ch
h
w
・3種類のロス関数
・MSEのみを使⽤する場合SRResNetと呼ぶ
24 residual blocks, 64 ch
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet*	and	SRGAN	– ネットワーク詳細
19
・resblockとskip	connection
・pixel	shuffle	upsampling
from:4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
さらに⾼精度に特化したEnhanced	Deep	Super	Resolution	(EDSR)
ソウル⼤
20
32 residual blocks, 256 ch
Skip connection x2
x2
l1
l1 Loss
from:5)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
PSNRと⾒た⽬
21
from:5)
20dB台で1dB違うと明らかに⾒た⽬が変わる
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n 超解像とPerception
⁃ 復元結果とロス関数の関係
⁃ Perception – Distortion Tradeoff
22
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
主観評価とPSNR
23
Original
SRResNet
25.53dB
SRGAN
21.15dB
bicubic
21.59dB
Method→
PSNR	→
from:	4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet	and	SRGAN	– lossでこんなに違う
24
MSE loss ● ●
Perceptual loss using VGG ●
Discriminator loss ● ●
from:4)
PSNRが
最も⾼い
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
3タイプのロス関数
①l1/l2 loss
②perceptual loss
③GAN loss
25
generated
image
real	/	fake
ground	
truth
multi-scale
feature	
matching
VGG
discrimi-
nator
generated
image
ground	
truth
generated
image
ground	
truth
Low
Distortion
Good	
Perception
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Perception-Distortion	Tradeoff	
どの⼿法も、low	distortionとgood	perceptual	qualityを
同時に満たせない → tradeoff把握が⼤事
26
from:8)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
超解像の⽬的はなにか?
27
Accurate Plausible
正確な復元
⾃然な復元
どちらを選ぶかは、⽤途次第!!
引⽤元:4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n まとめ
28
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Progress	on	SISR	– 精度と速度
29
PSNR	[dB]	(over	bicubic)
on	Set5	dataset,	x4
+1.86
+2.93
+2.06
+3.63
A+ SRCNN VDSR SRResNet EDSR0.0
bicubic
2015 20172014 2016
+4.20
ESPCN
+2.48
0.44
0.04
0.74
1.33
40.7
・CNNを通る画像サイズ
・中間レイヤのチャネル数
で計算量が⼤きく変化する PSNRデータ引⽤元:5)
Mega-Multiplication
per	one	input	pixel
for	x2	restoration
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
NTIRE	2017	超解像コンペでのベンチマーク詳細
30
EDSR
SRResNet
VDSR
ESPCN
SRCNN
A+
from:	9)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
まとめ
n 超解像はdeepが主流、⾼精度だが計算量が⼤きい
n resblock連結 + skip connectionや、pixel shuffle upsamplingが重要
n SRResNetベースの⼿法がベースライン
n ʻAccurateʼ か ʻPlausibleʼ かは⽤途次第。
31
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Appendix:	Residual	Dense	Network	for	Super-Resolution
32
DenseNetベースのSRResNet
from:	6)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Appendix:	Deep	Back-Projection	Networks	For	Super-Resolution
(best	PSNR	in	NTIRE	ʼ18	x8	bicubic	downsampling	track)
33
from:	7)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Datasets
n DIV2K dataset (train, val)
https://data.vision.ee.ethz.ch/cvl/DIV2K/
n Set5 dataset (test)
http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html
n B100 dataset (test)
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
n Urban100 dataset (test)
https://sites.google.com/site/jbhuang0604/publications/struct_sr
34
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Competitions
n NTIRE2017:
New Trends in Image Restoration and Enhancement workshop and challenge on image super-
resolution in conjunction with CVPR 2017
http://www.vision.ee.ethz.ch/ntire17/
report: http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-CVPRW-2017.pdf
n NTIRE2018:
New Trends in Image Restoration and Enhancement workshop and challenge on super-resolution,
dehazing, and spectral reconstructionin conjunction with CVPR 2018
http://www.vision.ee.ethz.ch/ntire18/
report:
http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w13/Timofte_NTIRE_2018
_Challenge_CVPR_2018_paper.pdf
n PIRM2018:
Workshop and Challenge on Perceptual Image Restoration and Manipulation in conjunction with
ECCV 2018
https://www.pirm2018.org/
35
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
References
1) Dong et al., Image Super-Resolution Using Deep Convolutional Networks,
https://arxiv.org/abs/1501.00092
2) Shi et al., Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel
Convolutional Neural Network, https://arxiv.org/abs/1609.05158
3) Kim et al., Accurate Image Super-Resolution Using Very Deep Convolutional Networks,
https://arxiv.org/pdf/1511.04587
4) Ledig et al., Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network ,
https://arxiv.org/abs/1609.04802
5) Lim et al., Enhanced Deep Residual Networks for Single Image Super-Resolution,
https://arxiv.org/abs/1707.02921
6) Zhang et al., Residual Dense Network for Image Super-Resolution,
https://arxiv.org/abs/1802.08797
7) Haris et al., Deep Back-Projection Networks For Super-Resolution,
https://arxiv.org/pdf/1803.02735.pdf
8) Blau et al., Perception Distortion Tradeoff, https://arxiv.org/abs/1711.06077
9) Timofte et al., NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and
Results , http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-CVPRW-2017.pdf

More Related Content

PDF
【DL輪読会】Patches Are All You Need? (ConvMixer)
Deep Learning JP
 
PDF
【メタサーベイ】Vision and Language のトップ研究室/研究者
cvpaper. challenge
 
PDF
[DL輪読会]ICLR2020の分布外検知速報
Deep Learning JP
 
PDF
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
PDF
【DL輪読会】StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
Deep Learning JP
 
PPTX
畳み込みニューラルネットワークの研究動向
Yusuke Uchida
 
PDF
【メタサーベイ】Neural Fields
cvpaper. challenge
 
PPTX
近年のHierarchical Vision Transformer
Yusuke Uchida
 
【DL輪読会】Patches Are All You Need? (ConvMixer)
Deep Learning JP
 
【メタサーベイ】Vision and Language のトップ研究室/研究者
cvpaper. challenge
 
[DL輪読会]ICLR2020の分布外検知速報
Deep Learning JP
 
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
【DL輪読会】StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
Deep Learning JP
 
畳み込みニューラルネットワークの研究動向
Yusuke Uchida
 
【メタサーベイ】Neural Fields
cvpaper. challenge
 
近年のHierarchical Vision Transformer
Yusuke Uchida
 

What's hot (20)

PPTX
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
PDF
点群深層学習 Meta-study
Naoya Chiba
 
PDF
12. Diffusion Model の数学的基礎.pdf
幸太朗 岩澤
 
PDF
Optimizer入門&最新動向
Motokawa Tetsuya
 
PDF
実装レベルで学ぶVQVAE
ぱんいち すみもと
 
PPTX
モデル高速化百選
Yusuke Uchida
 
PPTX
ResNetの仕組み
Kota Nagasato
 
PDF
動作認識の最前線:手法,タスク,データセット
Toru Tamaki
 
PDF
ICLR2019 読み会in京都 ICLRから読み取るFeature Disentangleの研究動向
Yamato OKAMOTO
 
PPTX
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
PDF
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
PPTX
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
PPTX
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
Deep Learning JP
 
PDF
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
PPTX
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
PDF
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
PPTX
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
Deep Learning JP
 
PDF
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
Deep Learning JP
 
PDF
【メタサーベイ】Video Transformer
cvpaper. challenge
 
PPTX
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Deep Learning JP
 
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
点群深層学習 Meta-study
Naoya Chiba
 
12. Diffusion Model の数学的基礎.pdf
幸太朗 岩澤
 
Optimizer入門&最新動向
Motokawa Tetsuya
 
実装レベルで学ぶVQVAE
ぱんいち すみもと
 
モデル高速化百選
Yusuke Uchida
 
ResNetの仕組み
Kota Nagasato
 
動作認識の最前線:手法,タスク,データセット
Toru Tamaki
 
ICLR2019 読み会in京都 ICLRから読み取るFeature Disentangleの研究動向
Yamato OKAMOTO
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Kento Doi
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
Deep Learning JP
 
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
Deep Learning JP
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
Deep Learning JP
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
Deep Learning JP
 
【メタサーベイ】Video Transformer
cvpaper. challenge
 
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Deep Learning JP
 
Ad

Similar to Deep Learningによる超解像の進歩 (20)

PDF
Recent Progress on Single-Image Super-Resolution
Hiroto Honda
 
PPTX
SeRanet introduction
Kosuke Nakago
 
PDF
Small Deep-Neural-Networks: Their Advantages and Their Design
Forrest Iandola
 
PDF
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
PDF
Urs Köster Presenting at RE-Work DL Summit in Boston
Intel Nervana
 
PDF
Scaling Up AI Research to Production with PyTorch and MLFlow
Databricks
 
PDF
Operationalizing SDN
ADVA
 
PDF
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Intel® Software
 
PDF
Transformer 動向調査 in 画像認識
Kazuki Maeno
 
PDF
Deep Learning Hardware: Past, Present, & Future
Rouyun Pan
 
PDF
PointNet
PetteriTeikariPhD
 
PPTX
Distributed deep learning_over_spark_20_nov_2014_ver_2.8
Vijay Srinivas Agneeswaran, Ph.D
 
PDF
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
Edge AI and Vision Alliance
 
PDF
Synthetic dialogue generation with Deep Learning
S N
 
PDF
Hao hsiang ma resume
Eliot Ma
 
PDF
Introduction to Deep Learning and neon at Galvanize
Intel Nervana
 
PDF
GTC Europe 2017 Keynote
NVIDIA
 
PPTX
(Research Note) Delving deeper into convolutional neural networks for camera ...
Jacky Liu
 
PDF
Convolutional neural network
Yan Xu
 
DOC
PIES_Profile_INDIA
Piengsol India
 
Recent Progress on Single-Image Super-Resolution
Hiroto Honda
 
SeRanet introduction
Kosuke Nakago
 
Small Deep-Neural-Networks: Their Advantages and Their Design
Forrest Iandola
 
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
Urs Köster Presenting at RE-Work DL Summit in Boston
Intel Nervana
 
Scaling Up AI Research to Production with PyTorch and MLFlow
Databricks
 
Operationalizing SDN
ADVA
 
Software Defined Visualization (SDVis): Get the Most Out of ParaView* with OS...
Intel® Software
 
Transformer 動向調査 in 画像認識
Kazuki Maeno
 
Deep Learning Hardware: Past, Present, & Future
Rouyun Pan
 
Distributed deep learning_over_spark_20_nov_2014_ver_2.8
Vijay Srinivas Agneeswaran, Ph.D
 
"Designing CNN Algorithms for Real-time Applications," a Presentation from Al...
Edge AI and Vision Alliance
 
Synthetic dialogue generation with Deep Learning
S N
 
Hao hsiang ma resume
Eliot Ma
 
Introduction to Deep Learning and neon at Galvanize
Intel Nervana
 
GTC Europe 2017 Keynote
NVIDIA
 
(Research Note) Delving deeper into convolutional neural networks for camera ...
Jacky Liu
 
Convolutional neural network
Yan Xu
 
PIES_Profile_INDIA
Piengsol India
 
Ad

Recently uploaded (20)

PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PDF
Doc9.....................................
SofiaCollazos
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
GDG Cloud Munich - Intro - Luiz Carneiro - #BuildWithAI - July - Abdel.pdf
Luiz Carneiro
 
PDF
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
Software Development Methodologies in 2025
KodekX
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
PDF
How ETL Control Logic Keeps Your Pipelines Safe and Reliable.pdf
Stryv Solutions Pvt. Ltd.
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PDF
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PDF
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PPTX
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
PPTX
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
Doc9.....................................
SofiaCollazos
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
GDG Cloud Munich - Intro - Luiz Carneiro - #BuildWithAI - July - Abdel.pdf
Luiz Carneiro
 
Research-Fundamentals-and-Topic-Development.pdf
ayesha butalia
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Software Development Methodologies in 2025
KodekX
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
How ETL Control Logic Keeps Your Pipelines Safe and Reliable.pdf
Stryv Solutions Pvt. Ltd.
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
Agile Chennai 18-19 July 2025 | Emerging patterns in Agentic AI by Bharani Su...
AgileNetwork
 
Dev Dives: Automate, test, and deploy in one place—with Unified Developer Exp...
AndreeaTom
 

Deep Learningによる超解像の進歩