Deep learning and Watson Studio can be used for various tasks including planet discoveries, particle physics experiments at CERN, and scientific publications analysis. Convolutional neural networks are commonly used for image-related tasks like cancer diagnosis, object detection, and style transfer, while recurrent neural networks with LSTM or GRU are useful for sequential data like text for machine translation, sentiment analysis, and music generation. Hybrid and complex models combine different neural network architectures for tasks such as named entity recognition, music generation, blockchain security, and lip reading. Deep learning is now implemented using frameworks like TensorFlow and Keras on GPUs and distributed systems. Transfer learning helps accelerate development by reusing pre-trained models. Watson Studio provides a platform for developing, testing, and deploy