SlideShare a Scribd company logo
4
Most read
6
Most read
8
Most read
[course site]
Augmentation
Day 2 Lecture 2
Eva Mohedano
Introduction
ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky A., 2012
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 1.2
million training images, 50,000 validation images, and 150,000
testing images
Architecture of 5 convolutional + 3 fully connected = 60 million
parameters ~ 650.000 neurons.
Overfitting!!
2
● Reduce network capacity
● Dropout
● Data augmentation
Ways to reduce overfitting
3
● Reduce network capacity
● Dropout
● Data augmentation
Ways to reduce overfitting
1% of total parameters (884K). Decrease in performance
4
● Reduce network capacity
● Dropout
● Data augmentation
Ways to reduce overfitting
37M, 16M, 4M parametes!! (fc6,fc7,fc8)
5
Ways to reduce overfitting
● Reduce network capacity
● Dropout
● Data augmentation Every forward pass, network slightly different.
Reduce co-adaptation between neurons
More robust features
More interations for convergence
6
Ways to reduce overfitting
● Reduce network capacity
● Dropout
● Data augmentation
7
Data Augmentation
During training, alterate the input image (Krizhevsky A., 2012)
- Random crops on the original image
- Translations
- Horitzontal reflections
- Increases size of training x2048
- On-the-fly augmentation
During testing
- Average prediction of image augmented by the four corner
patches and the center patch + flipped image. (10
augmentations of the image)
8
Data Augmentation
Alternate intensities RGB channels intensities
PCA on the set of RGB pixel throughout the ImageNet training set.
To each training image, add multiples of the found principal components
Object identity should be invariant to changes of
illumination
9
Augmentation for discriminative unsupervised
feature learning
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, Dosovitskiy,
A., 2014
MOTIVATION
● Large datasets of training data
● Local descriptors should be invariant transformations (rotation, translation, scale, etc)
WHAT THEY DO
● Training a CNN to generate local representation by optimising a surrogate classification task
● Task does NOT require labeled data
10
Augmentation for discriminative unsupervised
feature learning
Select random location k and crop 32x32 window
(restrictions: region must contain objects or part of the
object: high amount of gradients)
Apply a transformation [translation, rotation, scalig, RGB
modification, contrast modification]
...
Generate augmented dataset: 16000 classes of 150 examples each
Class k=1, with 150 examples
11
Augmentation for discriminative unsupervised
feature learning
Generate augmented dataset: 16000 classes of 150 examples each
Example of classes
Example of examples for one class
12
Augmentation for discriminative unsupervised
feature learning
Classification accuracies
Superior performance to SIFT for image matching.
13
Summary
Augmentation helps to prevent overfitting
It makes network invariant to certain transformations: translations, flip, etc
Can be done on-the-fly
Can be used to learn image representations when no label datasets are available.
14

More Related Content

What's hot (20)

PPTX
Techniques in Deep Learning
Sourya Dey
 
PDF
Understanding Convolutional Neural Networks
Jeremy Nixon
 
PDF
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Overcoming catastrophic forgetting in neural network
Katy Lee
 
PDF
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
PDF
An Introduction to Deep Learning
Poo Kuan Hoong
 
PPTX
3D Gaussian Splatting
taeseon ryu
 
PDF
Emerging Properties in Self-Supervised Vision Transformers
Sungchul Kim
 
PDF
Mask R-CNN
Chanuk Lim
 
PDF
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Vincenzo Lomonaco
 
PDF
Recurrent Neural Networks. Part 1: Theory
Andrii Gakhov
 
PDF
[기초개념] Graph Convolutional Network (GCN)
Donghyeon Kim
 
PDF
Introduction to Generative Adversarial Networks
BennoG1
 
PDF
Generative adversarial networks
Yunjey Choi
 
PDF
Machine learning in image processing
Data Science Thailand
 
PPTX
CNN Tutorial
Sungjoon Choi
 
PPTX
Convolutional neural network from VGG to DenseNet
SungminYou
 
PDF
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
PDF
Training Neural Networks
Databricks
 
PPTX
Transfer Learning and Fine-tuning Deep Neural Networks
PyData
 
Techniques in Deep Learning
Sourya Dey
 
Understanding Convolutional Neural Networks
Jeremy Nixon
 
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Universitat Politècnica de Catalunya
 
Overcoming catastrophic forgetting in neural network
Katy Lee
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
An Introduction to Deep Learning
Poo Kuan Hoong
 
3D Gaussian Splatting
taeseon ryu
 
Emerging Properties in Self-Supervised Vision Transformers
Sungchul Kim
 
Mask R-CNN
Chanuk Lim
 
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Vincenzo Lomonaco
 
Recurrent Neural Networks. Part 1: Theory
Andrii Gakhov
 
[기초개념] Graph Convolutional Network (GCN)
Donghyeon Kim
 
Introduction to Generative Adversarial Networks
BennoG1
 
Generative adversarial networks
Yunjey Choi
 
Machine learning in image processing
Data Science Thailand
 
CNN Tutorial
Sungjoon Choi
 
Convolutional neural network from VGG to DenseNet
SungminYou
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
Training Neural Networks
Databricks
 
Transfer Learning and Fine-tuning Deep Neural Networks
PyData
 

Viewers also liked (20)

PDF
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Memory usage and computational considerati...
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Deep Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: ImageNet Challenge (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Image Classification (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Face Recognition (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Optimization (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Welcome (UPC TelecomBCN 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Generative models and adversarial training...
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Saliency Prediction (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Video Analytics (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Deep Learning for Computer Vision: Attention Models (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Memory usage and computational considerati...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Deep Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: ImageNet Challenge (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Software Frameworks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Image Classification (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Face Recognition (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Optimization (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Welcome (UPC TelecomBCN 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Generative models and adversarial training...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Saliency Prediction (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Video Analytics (UPC 2016)
Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision: Attention Models (UPC 2016)
Universitat Politècnica de Catalunya
 
Ad

Similar to Deep Learning for Computer Vision: Data Augmentation (UPC 2016) (20)

PPTX
Seminar_Presentation_ppt
AyushDixit52
 
PDF
Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)
Universitat Politècnica de Catalunya
 
PPTX
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
PyData
 
PPTX
Introduction to Deep Learning for Image Analysis at Strata NYC, Sep 2015
Turi, Inc.
 
PPTX
CNN_INTRO.pptx
NiharikaThakur32
 
PDF
Learning visual representation without human label
Kai-Wen Zhao
 
PDF
Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016
Universitat Politècnica de Catalunya
 
PDF
imageclassification-160206090009.pdf
KammetaJoshna
 
PPTX
Image classification with Deep Neural Networks
Yogendra Tamang
 
PDF
Unsupervised Computer Vision: The Current State of the Art
TJ Torres
 
PDF
Deep learning in Computer Vision
David Dao
 
PPTX
Image Classification using deep learning
Asma-AH
 
PDF
Image classification with neural networks
Sepehr Rasouli
 
PDF
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Universitat Politècnica de Catalunya
 
PDF
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
UMBC
 
PPTX
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
PAY2 YOU
 
PDF
A Simple Framework for Contrastive Learning of Visual Representations
Seunghyun Hwang
 
PDF
Image Classification on ImageNet (D1L3 Insight@DCU Machine Learning Workshop ...
Universitat Politècnica de Catalunya
 
PDF
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Universitat Politècnica de Catalunya
 
PDF
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
GeeksLab Odessa
 
Seminar_Presentation_ppt
AyushDixit52
 
Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)
Universitat Politècnica de Catalunya
 
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
PyData
 
Introduction to Deep Learning for Image Analysis at Strata NYC, Sep 2015
Turi, Inc.
 
CNN_INTRO.pptx
NiharikaThakur32
 
Learning visual representation without human label
Kai-Wen Zhao
 
Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016
Universitat Politècnica de Catalunya
 
imageclassification-160206090009.pdf
KammetaJoshna
 
Image classification with Deep Neural Networks
Yogendra Tamang
 
Unsupervised Computer Vision: The Current State of the Art
TJ Torres
 
Deep learning in Computer Vision
David Dao
 
Image Classification using deep learning
Asma-AH
 
Image classification with neural networks
Sepehr Rasouli
 
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Universitat Politècnica de Catalunya
 
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
UMBC
 
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
PAY2 YOU
 
A Simple Framework for Contrastive Learning of Visual Representations
Seunghyun Hwang
 
Image Classification on ImageNet (D1L3 Insight@DCU Machine Learning Workshop ...
Universitat Politècnica de Catalunya
 
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Universitat Politècnica de Catalunya
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
GeeksLab Odessa
 
Ad

More from Universitat Politècnica de Catalunya (20)

PDF
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
PDF
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
PDF
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
PDF
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
PDF
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
PDF
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
PPTX
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
PPTX
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
PDF
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
PDF
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
PDF
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
PDF
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
PDF
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
PDF
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
PDF
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
PDF
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
PDF
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 
PDF
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Universitat Politècnica de Catalunya
 

Recently uploaded (20)

PPTX
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PPTX
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PPTX
apidays Munich 2025 - Building Telco-Aware Apps with Open Gateway APIs, Subhr...
apidays
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PDF
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
PPTX
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
PPTX
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
PDF
apidays Singapore 2025 - Building a Federated Future, Alex Szomora (GSMA)
apidays
 
PDF
apidays Singapore 2025 - Streaming Lakehouse with Kafka, Flink and Iceberg by...
apidays
 
PPTX
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PPTX
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
PDF
Using AI/ML for Space Biology Research
VICTOR MAESTRE RAMIREZ
 
PDF
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
PPT
AI Future trends and opportunities_oct7v1.ppt
SHIKHAKMEHTA
 
PPTX
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
apidays Munich 2025 - Building Telco-Aware Apps with Open Gateway APIs, Subhr...
apidays
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
apidays Singapore 2025 - Building a Federated Future, Alex Szomora (GSMA)
apidays
 
apidays Singapore 2025 - Streaming Lakehouse with Kafka, Flink and Iceberg by...
apidays
 
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
Using AI/ML for Space Biology Research
VICTOR MAESTRE RAMIREZ
 
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
AI Future trends and opportunities_oct7v1.ppt
SHIKHAKMEHTA
 
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 

Deep Learning for Computer Vision: Data Augmentation (UPC 2016)

  • 1. [course site] Augmentation Day 2 Lecture 2 Eva Mohedano
  • 2. Introduction ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky A., 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 1.2 million training images, 50,000 validation images, and 150,000 testing images Architecture of 5 convolutional + 3 fully connected = 60 million parameters ~ 650.000 neurons. Overfitting!! 2
  • 3. ● Reduce network capacity ● Dropout ● Data augmentation Ways to reduce overfitting 3
  • 4. ● Reduce network capacity ● Dropout ● Data augmentation Ways to reduce overfitting 1% of total parameters (884K). Decrease in performance 4
  • 5. ● Reduce network capacity ● Dropout ● Data augmentation Ways to reduce overfitting 37M, 16M, 4M parametes!! (fc6,fc7,fc8) 5
  • 6. Ways to reduce overfitting ● Reduce network capacity ● Dropout ● Data augmentation Every forward pass, network slightly different. Reduce co-adaptation between neurons More robust features More interations for convergence 6
  • 7. Ways to reduce overfitting ● Reduce network capacity ● Dropout ● Data augmentation 7
  • 8. Data Augmentation During training, alterate the input image (Krizhevsky A., 2012) - Random crops on the original image - Translations - Horitzontal reflections - Increases size of training x2048 - On-the-fly augmentation During testing - Average prediction of image augmented by the four corner patches and the center patch + flipped image. (10 augmentations of the image) 8
  • 9. Data Augmentation Alternate intensities RGB channels intensities PCA on the set of RGB pixel throughout the ImageNet training set. To each training image, add multiples of the found principal components Object identity should be invariant to changes of illumination 9
  • 10. Augmentation for discriminative unsupervised feature learning Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, Dosovitskiy, A., 2014 MOTIVATION ● Large datasets of training data ● Local descriptors should be invariant transformations (rotation, translation, scale, etc) WHAT THEY DO ● Training a CNN to generate local representation by optimising a surrogate classification task ● Task does NOT require labeled data 10
  • 11. Augmentation for discriminative unsupervised feature learning Select random location k and crop 32x32 window (restrictions: region must contain objects or part of the object: high amount of gradients) Apply a transformation [translation, rotation, scalig, RGB modification, contrast modification] ... Generate augmented dataset: 16000 classes of 150 examples each Class k=1, with 150 examples 11
  • 12. Augmentation for discriminative unsupervised feature learning Generate augmented dataset: 16000 classes of 150 examples each Example of classes Example of examples for one class 12
  • 13. Augmentation for discriminative unsupervised feature learning Classification accuracies Superior performance to SIFT for image matching. 13
  • 14. Summary Augmentation helps to prevent overfitting It makes network invariant to certain transformations: translations, flip, etc Can be done on-the-fly Can be used to learn image representations when no label datasets are available. 14