SlideShare a Scribd company logo
Introduction to Deep
Learning
Pabitra Mitra
Indian Institute of Technology Kharagpur
pabitra@cse.iitkgp.ac.in
NSM Workshop on Accelerated Data Science
Deep Learning
• Based on neural networks
• Uses deep architectures
• Very successful in many applications
Perceptron
Input
values
weights
Summing
function
Bias
b
Activation
function
Induced
Field
v
Output
y
x1
x2
xm
w2
wm
w1
 
 )
(

Neuron Models
●The choice of activation function determines the
neuron model.
Examples:
●step function:
●ramp function:
●sigmoid function with z,x,y parameters
●Gaussian function:














 


2
2
1
exp
2
1
)
(





v
v
)
exp(
1
1
)
(
y
xv
z
v


















otherwise
))
/(
)
)(
((
if
if
)
(
c
d
a
b
c
v
a
d
v
b
c
v
a
v







c
v
b
c
v
a
v
if
if
)
(

Sigmoid unit
• f is the sigmoid function
• Derivative can be easily computed:
• Logistic equation
• used in many applications
• other functions possible (tanh)
• Single unit:
• apply gradient descent rule
• Multilayer networks: backpropagation
x1
x2
xn
w1
w2
wn
:
:
x01
w0



n
i
i
i x
w
0
net
S f )
net
(
f
o 
x
e
x
f 


1
1
)
(
 
)
(
1
)
(
)
(
x
f
x
f
dx
x
df


5
Multi layer feed-forward NN (FFNN)
● FFNN is a more general network architecture, where there are
hidden layers between input and output layers.
● Hidden nodes do not directly receive inputs nor send outputs to
the external environment.
● FFNNs overcome the limitation of single-layer NN.
● They can handle non-linearly separable learning tasks.
Input
layer
Output
layer
Hidden Layer
3-4-2 Network
Backpropagation
• Initialize all weights to small random numbers
• Repeat
For each training example
1. Input the training example to the network and compute the network outputs
2. For each output unit k
dk ← ok 1  ok tk  ok
3. For each hidden unit h
dh ← oh 1  oh Skoutputs wk,hdk
4. Update each network weight wj,i
wj,i ← wj,i + Dwj,i
where Dwj,i  h dj xj,i
7
●Data representation
●Network Topology
●Network Parameters
●Training
●Validation
NN DESIGN ISSUES
Expressiveness
• Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer (Cybenko et al ‘89)
• Hidden layer of sigmoid functions
• Output layer of linear functions
• Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
(Cybenko ‘88)
• Sigmoid units in both hidden layers
• Output layer of linear functions
9
Choice of Architecture Neural Networks
• Training Set vs Generalization error
Motivation for Depth
Motivation: Mimic the Brain Structure
Feature
Extraction
Learning
Decision
Input Signal
Mid/Low
Level
Neurons
Higher
Brain
Decision
Sensory
Neurons
Arranged
In Coupled
Layers
End-to-End
Neural
Architecture
Motivation
• Practical success in computer vision, signal processing, text mining
• Increase in volume and complexity of data
• Availability of GPUs
Convolutional Neural Network: Motivation
Deep learning introduction basic information
CNN
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
Deep learning introduction basic information
ResNet
CNN + Skip Connections
Pyramidal cells in cortex
Full ResNet architecture:
• Stack residual blocks
• Every residual block has two 3x3 conv layers
• Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)
• Additional conv layer at the beginning
• No FC layers at the end (only FC 1000 to
output classes)
Densenet
Challenges of Depth
• Overfitting – dropout
• Vanishing gradient – ReLU activation
• Accelerating training – batch normalization
• Hyperparameter tuning
Computational Complexity
Types of Deep Architectures
• RNN, LSTM (sequence learning)
• Stacked Autoencoders (representation learning)
• GAN (classification, distribution learning)
• Combining architectures – unified backprop if all layers differentiable
• Tensorflow, PyTorch
References
• Introduction to Deep Learning – Ian Goodfellow
• Stanford Deep Learning course

More Related Content

Similar to Deep learning introduction basic information (20)

PDF
Review_of_Deep_Learning_Algorithms_and_Architectures.pdf
fayazahmed944049
 
PPTX
Deep learning lecture - part 1 (basics, CNN)
SungminYou
 
PDF
DSRLab seminar Introduction to deep learning
Poo Kuan Hoong
 
PPTX
Deep learning
Ratnakar Pandey
 
PDF
Introduction to Deep learning Models.pdf
cse21216
 
PPTX
Introduction to deep learning
Zeynep Su Kurultay
 
PPTX
Deep Learning Explained
Melanie Swan
 
PPTX
Introduction-to-Deep-Learning about new technologies
sindhibharat567
 
PPTX
Deep_Learning_Algorithms_Presentation.pptx
kamalpreetkaurgurna1
 
PPTX
Deep learning introduction
Adwait Bhave
 
PPTX
Deep-Learning-Basics-Introduction-RAJA M
RajaRebak
 
PPTX
Deep Learning Sample Class (Jon Lederman)
Jon Lederman
 
PPTX
AI Class Topic 6: Easy Way to Learn Deep Learning AI Technologies
Value Amplify Consulting
 
PPTX
Introduction to deep learning
Abhishek Bhandwaldar
 
PPTX
Session_2_Introduction_to_Deep_Learning.pptx
aljeboorymuhammed
 
PPTX
Introduction to deep learning
Amr Rashed
 
PDF
Hardware Acceleration for Machine Learning
CastLabKAIST
 
PPTX
Introduction to Deep learning
Massimiliano Patacchiola
 
PPTX
Sachpazis: Demystifying Neural Networks: A Comprehensive Guide
Dr.Costas Sachpazis
 
PDF
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Review_of_Deep_Learning_Algorithms_and_Architectures.pdf
fayazahmed944049
 
Deep learning lecture - part 1 (basics, CNN)
SungminYou
 
DSRLab seminar Introduction to deep learning
Poo Kuan Hoong
 
Deep learning
Ratnakar Pandey
 
Introduction to Deep learning Models.pdf
cse21216
 
Introduction to deep learning
Zeynep Su Kurultay
 
Deep Learning Explained
Melanie Swan
 
Introduction-to-Deep-Learning about new technologies
sindhibharat567
 
Deep_Learning_Algorithms_Presentation.pptx
kamalpreetkaurgurna1
 
Deep learning introduction
Adwait Bhave
 
Deep-Learning-Basics-Introduction-RAJA M
RajaRebak
 
Deep Learning Sample Class (Jon Lederman)
Jon Lederman
 
AI Class Topic 6: Easy Way to Learn Deep Learning AI Technologies
Value Amplify Consulting
 
Introduction to deep learning
Abhishek Bhandwaldar
 
Session_2_Introduction_to_Deep_Learning.pptx
aljeboorymuhammed
 
Introduction to deep learning
Amr Rashed
 
Hardware Acceleration for Machine Learning
CastLabKAIST
 
Introduction to Deep learning
Massimiliano Patacchiola
 
Sachpazis: Demystifying Neural Networks: A Comprehensive Guide
Dr.Costas Sachpazis
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 

More from AnoopCadlord1 (15)

PPTX
Introduction_to_Robotics_Presentation.pptx
AnoopCadlord1
 
PPTX
Introduction_to_Robotics_Introduction_to_Robotics
AnoopCadlord1
 
PPT
condition-monitoring introduction about re
AnoopCadlord1
 
PDF
Machine learning Support vector Machine case study which implies
AnoopCadlord1
 
PPTX
SP_SRV200_2-EN_ABB_Ability_Condition_Monitoring_External_Presentation.pptx
AnoopCadlord1
 
PDF
Control system introduction for different application
AnoopCadlord1
 
PPTX
mhfp-5.pptx
AnoopCadlord1
 
PPTX
Renewable energy engineering
AnoopCadlord1
 
PPTX
Renewable energy engineering
AnoopCadlord1
 
PDF
disaster risk assessment.pdf
AnoopCadlord1
 
PPT
Energy.ppt
AnoopCadlord1
 
PPTX
Solar radiation Anoop.pptx
AnoopCadlord1
 
PDF
Energy scenario
AnoopCadlord1
 
PPT
Solar radiation.ppt
AnoopCadlord1
 
PDF
SolarRadiation.pdf
AnoopCadlord1
 
Introduction_to_Robotics_Presentation.pptx
AnoopCadlord1
 
Introduction_to_Robotics_Introduction_to_Robotics
AnoopCadlord1
 
condition-monitoring introduction about re
AnoopCadlord1
 
Machine learning Support vector Machine case study which implies
AnoopCadlord1
 
SP_SRV200_2-EN_ABB_Ability_Condition_Monitoring_External_Presentation.pptx
AnoopCadlord1
 
Control system introduction for different application
AnoopCadlord1
 
mhfp-5.pptx
AnoopCadlord1
 
Renewable energy engineering
AnoopCadlord1
 
Renewable energy engineering
AnoopCadlord1
 
disaster risk assessment.pdf
AnoopCadlord1
 
Energy.ppt
AnoopCadlord1
 
Solar radiation Anoop.pptx
AnoopCadlord1
 
Energy scenario
AnoopCadlord1
 
Solar radiation.ppt
AnoopCadlord1
 
SolarRadiation.pdf
AnoopCadlord1
 
Ad

Recently uploaded (20)

PPTX
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
PDF
MAD Unit - 2 Activity and Fragment Management in Android (Diploma IT)
JappanMavani
 
PDF
Introduction to Productivity and Quality
মোঃ ফুরকান উদ্দিন জুয়েল
 
PDF
Biomechanics of Gait: Engineering Solutions for Rehabilitation (www.kiu.ac.ug)
publication11
 
PDF
Set Relation Function Practice session 24.05.2025.pdf
DrStephenStrange4
 
PDF
Book.pdf01_Intro.ppt algorithm for preperation stu used
archu26
 
DOCX
CS-802 (A) BDH Lab manual IPS Academy Indore
thegodhimself05
 
PPTX
artificial intelligence applications in Geomatics
NawrasShatnawi1
 
PPTX
Benefits_^0_Challigi😙🏡💐8fenges[1].pptx
akghostmaker
 
PPTX
Day2 B2 Best.pptx
helenjenefa1
 
PDF
Zilliz Cloud Demo for performance and scale
Zilliz
 
PPTX
Server Side Web Development Unit 1 of Nodejs.pptx
sneha852132
 
PPTX
The Role of Information Technology in Environmental Protectio....pptx
nallamillisriram
 
PPTX
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
PPTX
Innowell Capability B0425 - Commercial Buildings.pptx
regobertroza
 
PDF
PORTFOLIO Golam Kibria Khan — architect with a passion for thoughtful design...
MasumKhan59
 
PPTX
Arduino Based Gas Leakage Detector Project
CircuitDigest
 
PPTX
265587293-NFPA 101 Life safety code-PPT-1.pptx
chandermwason
 
PDF
monopile foundation seminar topic for civil engineering students
Ahina5
 
PDF
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
MAD Unit - 2 Activity and Fragment Management in Android (Diploma IT)
JappanMavani
 
Introduction to Productivity and Quality
মোঃ ফুরকান উদ্দিন জুয়েল
 
Biomechanics of Gait: Engineering Solutions for Rehabilitation (www.kiu.ac.ug)
publication11
 
Set Relation Function Practice session 24.05.2025.pdf
DrStephenStrange4
 
Book.pdf01_Intro.ppt algorithm for preperation stu used
archu26
 
CS-802 (A) BDH Lab manual IPS Academy Indore
thegodhimself05
 
artificial intelligence applications in Geomatics
NawrasShatnawi1
 
Benefits_^0_Challigi😙🏡💐8fenges[1].pptx
akghostmaker
 
Day2 B2 Best.pptx
helenjenefa1
 
Zilliz Cloud Demo for performance and scale
Zilliz
 
Server Side Web Development Unit 1 of Nodejs.pptx
sneha852132
 
The Role of Information Technology in Environmental Protectio....pptx
nallamillisriram
 
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
Innowell Capability B0425 - Commercial Buildings.pptx
regobertroza
 
PORTFOLIO Golam Kibria Khan — architect with a passion for thoughtful design...
MasumKhan59
 
Arduino Based Gas Leakage Detector Project
CircuitDigest
 
265587293-NFPA 101 Life safety code-PPT-1.pptx
chandermwason
 
monopile foundation seminar topic for civil engineering students
Ahina5
 
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
Ad

Deep learning introduction basic information

  • 1. Introduction to Deep Learning Pabitra Mitra Indian Institute of Technology Kharagpur [email protected] NSM Workshop on Accelerated Data Science
  • 2. Deep Learning • Based on neural networks • Uses deep architectures • Very successful in many applications
  • 4. Neuron Models ●The choice of activation function determines the neuron model. Examples: ●step function: ●ramp function: ●sigmoid function with z,x,y parameters ●Gaussian function:                   2 2 1 exp 2 1 ) (      v v ) exp( 1 1 ) ( y xv z v                   otherwise )) /( ) )( (( if if ) ( c d a b c v a d v b c v a v        c v b c v a v if if ) ( 
  • 5. Sigmoid unit • f is the sigmoid function • Derivative can be easily computed: • Logistic equation • used in many applications • other functions possible (tanh) • Single unit: • apply gradient descent rule • Multilayer networks: backpropagation x1 x2 xn w1 w2 wn : : x01 w0    n i i i x w 0 net S f ) net ( f o  x e x f    1 1 ) (   ) ( 1 ) ( ) ( x f x f dx x df   5
  • 6. Multi layer feed-forward NN (FFNN) ● FFNN is a more general network architecture, where there are hidden layers between input and output layers. ● Hidden nodes do not directly receive inputs nor send outputs to the external environment. ● FFNNs overcome the limitation of single-layer NN. ● They can handle non-linearly separable learning tasks. Input layer Output layer Hidden Layer 3-4-2 Network
  • 7. Backpropagation • Initialize all weights to small random numbers • Repeat For each training example 1. Input the training example to the network and compute the network outputs 2. For each output unit k dk ← ok 1  ok tk  ok 3. For each hidden unit h dh ← oh 1  oh Skoutputs wk,hdk 4. Update each network weight wj,i wj,i ← wj,i + Dwj,i where Dwj,i  h dj xj,i 7
  • 8. ●Data representation ●Network Topology ●Network Parameters ●Training ●Validation NN DESIGN ISSUES
  • 9. Expressiveness • Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer (Cybenko et al ‘89) • Hidden layer of sigmoid functions • Output layer of linear functions • Any function can be approximated to arbitrary accuracy by a network with two hidden layers (Cybenko ‘88) • Sigmoid units in both hidden layers • Output layer of linear functions 9
  • 10. Choice of Architecture Neural Networks • Training Set vs Generalization error
  • 12. Motivation: Mimic the Brain Structure Feature Extraction Learning Decision Input Signal Mid/Low Level Neurons Higher Brain Decision Sensory Neurons Arranged In Coupled Layers End-to-End Neural Architecture
  • 13. Motivation • Practical success in computer vision, signal processing, text mining • Increase in volume and complexity of data • Availability of GPUs
  • 16. CNN
  • 26. ResNet CNN + Skip Connections Pyramidal cells in cortex
  • 27. Full ResNet architecture: • Stack residual blocks • Every residual block has two 3x3 conv layers • Periodically, double # of filters and downsample spatially using stride 2 (in each dimension) • Additional conv layer at the beginning • No FC layers at the end (only FC 1000 to output classes)
  • 29. Challenges of Depth • Overfitting – dropout • Vanishing gradient – ReLU activation • Accelerating training – batch normalization • Hyperparameter tuning
  • 31. Types of Deep Architectures • RNN, LSTM (sequence learning) • Stacked Autoencoders (representation learning) • GAN (classification, distribution learning) • Combining architectures – unified backprop if all layers differentiable • Tensorflow, PyTorch
  • 32. References • Introduction to Deep Learning – Ian Goodfellow • Stanford Deep Learning course