SlideShare a Scribd company logo
Deep Learning with
Apache MXNet
Julien Simon, AI Evangelist, EMEA
@julsimon
What to expect
• Apache MXNet
• Demos using Jupyter notebooks
• Resources
• Q&A
Apache MXNet: Open Source library for Deep Learning
Programmable Portable High Performance
Near linear scaling
across hundreds of
GPUs
Highly efficient
models for
mobile
and IoT
Simple syntax,
multiple
languages
Most Open Best On AWS
Optimized for
Deep Learning on AWS
Accepted into the
Apache Incubator
CPU or GPU: your choice
mod = mx.mod.Module(lenet)
mod = mx.mod.Module(lenet, context=mx.gpu(0))
mod = mx.mod.Module(lenet,
context=(mx.gpu(7), mx.gpu(8), mx.gpu(9)))
Ideal
Inception v3
Resnet
Alexnet
88%
Efficiency
0
64
128
192
256
1 2 4 8 16 32 64 128 256
Multi-GPU Scaling With MXNet
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
• Storing and accessing data in multi-dimensional arrays
àNDArray API
• Building models (layers, weights, activation functions)
à Symbol API
• Serving data during training and validation
à Iterators
• Training and using models
à Module API
The Apache MXNet API
Input Output
1 1 1
1 0 1
0 0 0
3
mx.sym.Convolution(data, kernel=(5,5), num_filter=20)
mx.sym.Pooling(data, pool_type="max", kernel=(2,2),
stride=(2,2)
lstm.lstm_unroll(num_lstm_layer, seq_len, len, num_hidden, num_embed)
4 2
2 0
4=Max
1
3
...
4
0.2
-0.1
...
0.7
mx.sym.FullyConnected(data, num_hidden=128)
2
mx.symbol.Embedding(data, input_dim, output_dim = k)
0.2
-0.1
...
0.7
Queen
4 2
2 0
2=Avg
Input Weights
cos(w, queen) = cos(w, king) - cos(w, man) + cos(w, woman)
mx.sym.Activation(data, act_type="xxxx")
"relu"
"tanh"
"sigmoid"
"softrelu"
Neural Art
Face Search
Image Segmentation
Image Caption
“People Riding
Bikes”
Bicycle, People,
Road, Sport
Image Labels
Image
Video
Speech
Text
“People Riding
Bikes”
Machine Translation
“Οι άνθρωποι
ιππασίας ποδήλατα”
Events
mx.model.FeedForward model.fit
mx.sym.SoftmaxOutput
Gluon: Deep Learning gets even easier
https://github.com/gluon-api/
• Available now in MXNet, soon in Microsoft
Cognitive Toolkit
• Developer-friendly high-level API
• Dynamic networks can be modified during training
• No compromise on performance
• Extensive model zoo
https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/
Gluon Model Zoo
VGG
ResNet
AlexNet
DenseNet
SqueezeNet
Inception
MobileNet
https://mxnet.incubator.apache.org/versions/master/api/python/gluon/model_zoo.html
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
Deep Learning in practice
AWS Deep Learning AMI
MXNet
Torch
CTKKeras
TheanoCaffe
TensorFlow
Amazon EC2
AnacondaIntel MKL
CUDA+cuDNN Python 2+3
Caffe2
• One-click launch
• Single node or distributed
• CPU, GPU, FPGA
• NVIDIA & Intel libraries
• Anaconda Data Science Platform
• Python w/ AI/ML/DL libraries
Demos
https://github.com/juliensimon/dlnotebooks
1) Synthetic data set
2) Learn MNIST with a Multi-Layer Perceptron
3) Learn MNIST with the LeNet CNN
4) Predict handmade MNIST samples
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
The MNIST data set
• 70,000 hand-written digits
• 28x28 grayscale images
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
• MLP does well on MNIST, but not on real-life samples.
• MLP flattens the 28x28 image into a 784-byte vector
à the 2-D relationship between pixels is lost.
• Look at the ‘5’: the top-left angle is a unique feature. No other
digit exhibits this. Same thing for the intersection on the ‘8’.
• CNNs such as LeNet work on 2-D images and learn to detect
these unique geometric features.
• The result is a more accurate and more robust network.
Training models on MNIST
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
Resources
https://aws.amazon.com/machine-learning
https://aws.amazon.com/blogs/ai
https://mxnet.incubator.apache.org
https://github.com/apache/incubator-mxnet
https://github.com/gluon-api
https://medium.com/@julsimon
Thank you!
Julien Simon, AI Evangelist, EMEA
@julsimon

More Related Content

What's hot (16)

PPTX
Machine Learning inference at the Edge
Julien SIMON
 
PDF
Deep Learning for Developers (October 2017)
Julien SIMON
 
PDF
Deep Dive on Deep Learning (June 2018)
Julien SIMON
 
PPTX
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
PDF
DeepLearning001&ApacheMXNetWithSparkForInference-ACNA2018
Apache MXNet
 
PDF
Deep Learning for Developers (October 2017)
Julien SIMON
 
PPTX
MXNet Paris Workshop - Intro To MXNet
Apache MXNet
 
PDF
Intro to the Distributed Version of TensorFlow
Altoros
 
PDF
AI 클라우드로 완전 정복하기 - 데이터 분석부터 딥러닝까지 (윤석찬, AWS테크에반젤리스트)
Amazon Web Services Korea
 
PDF
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
PPTX
FPGAs in the cloud? (October 2017)
Julien SIMON
 
PPTX
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
PDF
Deep Learning at the Edge
Julien SIMON
 
PDF
Accelerate your Machine Learning workflows with Amazon SageMaker
Julien SIMON
 
PDF
Amazon Elastic Map Reduce: the demos
Julien SIMON
 
PDF
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
Amazon Web Services Korea
 
Machine Learning inference at the Edge
Julien SIMON
 
Deep Learning for Developers (October 2017)
Julien SIMON
 
Deep Dive on Deep Learning (June 2018)
Julien SIMON
 
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
DeepLearning001&ApacheMXNetWithSparkForInference-ACNA2018
Apache MXNet
 
Deep Learning for Developers (October 2017)
Julien SIMON
 
MXNet Paris Workshop - Intro To MXNet
Apache MXNet
 
Intro to the Distributed Version of TensorFlow
Altoros
 
AI 클라우드로 완전 정복하기 - 데이터 분석부터 딥러닝까지 (윤석찬, AWS테크에반젤리스트)
Amazon Web Services Korea
 
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
FPGAs in the cloud? (October 2017)
Julien SIMON
 
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON
 
Deep Learning at the Edge
Julien SIMON
 
Accelerate your Machine Learning workflows with Amazon SageMaker
Julien SIMON
 
Amazon Elastic Map Reduce: the demos
Julien SIMON
 
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
Amazon Web Services Korea
 

Similar to Deep Learning with Apache MXNet (20)

PPTX
Aran Khanna, Software Engineer, Amazon Web Services at MLconf ATL 2017
MLconf
 
PDF
Deep Dive into Apache MXNet on AWS
Kristana Kane
 
PDF
Scalable Deep Learning on AWS using Apache MXNet (May 2017)
Julien SIMON
 
PPTX
Using MXNet to Train and Deploy your Deep Learning Model
Qing Lan
 
PDF
Time series modeling workd AMLD 2018 Lausanne
Sunil Mallya
 
PDF
Scalable Deep Learning on AWS with Apache MXNet
Julien SIMON
 
PPTX
An introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
PPTX
AI powered emotion recognition: From Inception to Production - Global AI Conf...
Vandana Kannan
 
PPTX
AI powered emotion recognition: From Inception to Production - Global AI Conf...
Apache MXNet
 
PPTX
Apache MXNet and Gluon
Soji Adeshina
 
PDF
Scalable Deep Learning on AWS using Apache MXNet (May 2017)
Julien SIMON
 
PDF
Deep Learning을 위한 AWS 기반 인공 지능(AI) 서비스 (윤석찬)
Amazon Web Services Korea
 
PDF
Apache MXNet ODSC West 2018
Apache MXNet
 
PDF
Machine Learning on the Cloud with Apache MXNet
delagoya
 
PPTX
An Introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
PDF
Apache MXNet EcoSystem - ACNA2018
Apache MXNet
 
PDF
Alex Smola at AI Frontiers: Scalable Deep Learning Using MXNet
AI Frontiers
 
PDF
Apache MXNet AI
Mike Frampton
 
PPTX
Deep Learning in Java with Apache MXNet
Qing Lan
 
PDF
Using Java to deploy Deep Learning models with MXNet
Apache MXNet
 
Aran Khanna, Software Engineer, Amazon Web Services at MLconf ATL 2017
MLconf
 
Deep Dive into Apache MXNet on AWS
Kristana Kane
 
Scalable Deep Learning on AWS using Apache MXNet (May 2017)
Julien SIMON
 
Using MXNet to Train and Deploy your Deep Learning Model
Qing Lan
 
Time series modeling workd AMLD 2018 Lausanne
Sunil Mallya
 
Scalable Deep Learning on AWS with Apache MXNet
Julien SIMON
 
An introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
AI powered emotion recognition: From Inception to Production - Global AI Conf...
Vandana Kannan
 
AI powered emotion recognition: From Inception to Production - Global AI Conf...
Apache MXNet
 
Apache MXNet and Gluon
Soji Adeshina
 
Scalable Deep Learning on AWS using Apache MXNet (May 2017)
Julien SIMON
 
Deep Learning을 위한 AWS 기반 인공 지능(AI) 서비스 (윤석찬)
Amazon Web Services Korea
 
Apache MXNet ODSC West 2018
Apache MXNet
 
Machine Learning on the Cloud with Apache MXNet
delagoya
 
An Introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
Apache MXNet EcoSystem - ACNA2018
Apache MXNet
 
Alex Smola at AI Frontiers: Scalable Deep Learning Using MXNet
AI Frontiers
 
Apache MXNet AI
Mike Frampton
 
Deep Learning in Java with Apache MXNet
Qing Lan
 
Using Java to deploy Deep Learning models with MXNet
Apache MXNet
 
Ad

More from Julien SIMON (20)

PDF
deep_dive_multihead_latent_attention.pdf
Julien SIMON
 
PDF
Deep Dive: Model Distillation with DistillKit
Julien SIMON
 
PDF
Deep Dive: Parameter-Efficient Model Adaptation with LoRA and Spectrum
Julien SIMON
 
PDF
Building High-Quality Domain-Specific Models with Mergekit
Julien SIMON
 
PDF
Tailoring Small Language Models for Enterprise Use Cases
Julien SIMON
 
PDF
Tailoring Small Language Models for Enterprise Use Cases
Julien SIMON
 
PDF
Julien Simon - Deep Dive: Compiling Deep Learning Models
Julien SIMON
 
PDF
Tailoring Small Language Models for Enterprise Use Cases
Julien SIMON
 
PDF
Julien Simon - Deep Dive - Optimizing LLM Inference
Julien SIMON
 
PDF
Julien Simon - Deep Dive - Accelerating Models with Better Attention Layers
Julien SIMON
 
PDF
Julien Simon - Deep Dive - Quantizing LLMs
Julien SIMON
 
PDF
Julien Simon - Deep Dive - Model Merging
Julien SIMON
 
PDF
An introduction to computer vision with Hugging Face
Julien SIMON
 
PDF
Reinventing Deep Learning
 with Hugging Face Transformers
Julien SIMON
 
PDF
Building NLP applications with Transformers
Julien SIMON
 
PPTX
Building Machine Learning Models Automatically (June 2020)
Julien SIMON
 
PDF
Starting your AI/ML project right (May 2020)
Julien SIMON
 
PPTX
Scale Machine Learning from zero to millions of users (April 2020)
Julien SIMON
 
PPTX
An Introduction to Generative Adversarial Networks (April 2020)
Julien SIMON
 
PPTX
AIM410R1 Deep learning applications with TensorFlow, featuring Fannie Mae (De...
Julien SIMON
 
deep_dive_multihead_latent_attention.pdf
Julien SIMON
 
Deep Dive: Model Distillation with DistillKit
Julien SIMON
 
Deep Dive: Parameter-Efficient Model Adaptation with LoRA and Spectrum
Julien SIMON
 
Building High-Quality Domain-Specific Models with Mergekit
Julien SIMON
 
Tailoring Small Language Models for Enterprise Use Cases
Julien SIMON
 
Tailoring Small Language Models for Enterprise Use Cases
Julien SIMON
 
Julien Simon - Deep Dive: Compiling Deep Learning Models
Julien SIMON
 
Tailoring Small Language Models for Enterprise Use Cases
Julien SIMON
 
Julien Simon - Deep Dive - Optimizing LLM Inference
Julien SIMON
 
Julien Simon - Deep Dive - Accelerating Models with Better Attention Layers
Julien SIMON
 
Julien Simon - Deep Dive - Quantizing LLMs
Julien SIMON
 
Julien Simon - Deep Dive - Model Merging
Julien SIMON
 
An introduction to computer vision with Hugging Face
Julien SIMON
 
Reinventing Deep Learning
 with Hugging Face Transformers
Julien SIMON
 
Building NLP applications with Transformers
Julien SIMON
 
Building Machine Learning Models Automatically (June 2020)
Julien SIMON
 
Starting your AI/ML project right (May 2020)
Julien SIMON
 
Scale Machine Learning from zero to millions of users (April 2020)
Julien SIMON
 
An Introduction to Generative Adversarial Networks (April 2020)
Julien SIMON
 
AIM410R1 Deep learning applications with TensorFlow, featuring Fannie Mae (De...
Julien SIMON
 
Ad

Recently uploaded (20)

PPTX
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PDF
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PDF
Smart Air Quality Monitoring with Serrax AQM190 LITE
SERRAX TECHNOLOGIES LLP
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PPTX
Q2 Leading a Tableau User Group - Onboarding
lward7
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
PDF
Learn Computer Forensics, Second Edition
AnuraShantha7
 
✨Unleashing Collaboration: Salesforce Channels & Community Power in Patna!✨
SanjeetMishra29
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Smart Air Quality Monitoring with Serrax AQM190 LITE
SERRAX TECHNOLOGIES LLP
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Q2 Leading a Tableau User Group - Onboarding
lward7
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
Learn Computer Forensics, Second Edition
AnuraShantha7
 

Deep Learning with Apache MXNet

  • 1. Deep Learning with Apache MXNet Julien Simon, AI Evangelist, EMEA @julsimon
  • 2. What to expect • Apache MXNet • Demos using Jupyter notebooks • Resources • Q&A
  • 3. Apache MXNet: Open Source library for Deep Learning Programmable Portable High Performance Near linear scaling across hundreds of GPUs Highly efficient models for mobile and IoT Simple syntax, multiple languages Most Open Best On AWS Optimized for Deep Learning on AWS Accepted into the Apache Incubator
  • 4. CPU or GPU: your choice mod = mx.mod.Module(lenet) mod = mx.mod.Module(lenet, context=mx.gpu(0)) mod = mx.mod.Module(lenet, context=(mx.gpu(7), mx.gpu(8), mx.gpu(9)))
  • 5. Ideal Inception v3 Resnet Alexnet 88% Efficiency 0 64 128 192 256 1 2 4 8 16 32 64 128 256 Multi-GPU Scaling With MXNet
  • 6. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. • Storing and accessing data in multi-dimensional arrays àNDArray API • Building models (layers, weights, activation functions) à Symbol API • Serving data during training and validation à Iterators • Training and using models à Module API The Apache MXNet API
  • 7. Input Output 1 1 1 1 0 1 0 0 0 3 mx.sym.Convolution(data, kernel=(5,5), num_filter=20) mx.sym.Pooling(data, pool_type="max", kernel=(2,2), stride=(2,2) lstm.lstm_unroll(num_lstm_layer, seq_len, len, num_hidden, num_embed) 4 2 2 0 4=Max 1 3 ... 4 0.2 -0.1 ... 0.7 mx.sym.FullyConnected(data, num_hidden=128) 2 mx.symbol.Embedding(data, input_dim, output_dim = k) 0.2 -0.1 ... 0.7 Queen 4 2 2 0 2=Avg Input Weights cos(w, queen) = cos(w, king) - cos(w, man) + cos(w, woman) mx.sym.Activation(data, act_type="xxxx") "relu" "tanh" "sigmoid" "softrelu" Neural Art Face Search Image Segmentation Image Caption “People Riding Bikes” Bicycle, People, Road, Sport Image Labels Image Video Speech Text “People Riding Bikes” Machine Translation “Οι άνθρωποι ιππασίας ποδήλατα” Events mx.model.FeedForward model.fit mx.sym.SoftmaxOutput
  • 8. Gluon: Deep Learning gets even easier https://github.com/gluon-api/ • Available now in MXNet, soon in Microsoft Cognitive Toolkit • Developer-friendly high-level API • Dynamic networks can be modified during training • No compromise on performance • Extensive model zoo https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/
  • 10. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Deep Learning in practice AWS Deep Learning AMI MXNet Torch CTKKeras TheanoCaffe TensorFlow Amazon EC2 AnacondaIntel MKL CUDA+cuDNN Python 2+3 Caffe2 • One-click launch • Single node or distributed • CPU, GPU, FPGA • NVIDIA & Intel libraries • Anaconda Data Science Platform • Python w/ AI/ML/DL libraries
  • 11. Demos https://github.com/juliensimon/dlnotebooks 1) Synthetic data set 2) Learn MNIST with a Multi-Layer Perceptron 3) Learn MNIST with the LeNet CNN 4) Predict handmade MNIST samples
  • 12. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. The MNIST data set • 70,000 hand-written digits • 28x28 grayscale images
  • 13. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. • MLP does well on MNIST, but not on real-life samples. • MLP flattens the 28x28 image into a 784-byte vector à the 2-D relationship between pixels is lost. • Look at the ‘5’: the top-left angle is a unique feature. No other digit exhibits this. Same thing for the intersection on the ‘8’. • CNNs such as LeNet work on 2-D images and learn to detect these unique geometric features. • The result is a more accurate and more robust network. Training models on MNIST
  • 14. © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Resources https://aws.amazon.com/machine-learning https://aws.amazon.com/blogs/ai https://mxnet.incubator.apache.org https://github.com/apache/incubator-mxnet https://github.com/gluon-api https://medium.com/@julsimon
  • 15. Thank you! Julien Simon, AI Evangelist, EMEA @julsimon